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Abstract9

An environmental dynamic system is usually modeled as a nonlinear system described by a set of nonlinear

ODEs. A central challenge in computational modeling of environmental systems is the determination of

the model parameters. In these cases, estimating these variables or parameters from other easily obtained

measurements can be extremely useful. This work addresses the problem of monitoring and modeling a leaf

area index and soil moisture model (LSM) using state estimation. The performances of various conventional

and state-of-the-art state estimation techniques are compared when they are utilized to achieve this objective.

These techniques include the extended Kalman filter (EKF), particle filter (PF), and the more recently

developed technique variational filter (VF). Specifically, two comparative studies are performed. In the

first comparative study, the state variables (the leaf-area index LAI , the volumetric water content of the

soil layer 1, HUR1 and the volumetric water content of the soil layer 2, HUR2) are estimated from noisy

measurements of these variables, and the various estimation techniques are compared by computing the

estimation root mean square error (RMSE) with respect to the noise-free data. In the second comparative

study, the state variables as well as the model parameters are simultaneously estimated. In this case, in

addition to comparing the performances of the various state estimation techniques, the effect of number of

estimated model parameters on the accuracy and convergence of these techniques are also assessed. The

results of both comparative studies show that the PF provides a higher accuracy than the EKF, which is

due to the limited ability of the EKF to handle highly nonlinear processes. The results also show that the

VF provides a significant improvement over the PF because, unlike the PF which depends on the choice of
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sampling distribution used to estimate the posterior distribution, the VF yields an optimum choice of the

sampling distribution, which also accounts for the observed data. The results of the second comparative

study show that, for all techniques, estimating more model parameters affects the estimation accuracy as

well as the convergence of the estimated states and parameters. However, the VF can still provide both

convergence as well as accuracy related advantages over other estimation methods.

Keywords: State and Parameter estimation, variational filter, Particle filter, Extended Kalman filter,10

Nonlinear Environmental System, leaf area index and soil moisture model.11

1. Introduction12

Crop models such as EPIC [37], WOFOST [12], DAISY[17], STICS [9], and SALUS [7] are dynamic non-13

linear models that describe the growth and development of a crop interacting with environmental factors (soil14

and climate) and agricultural practices (crop species, tillage type, fertilizer amount, ). They are developed15

to predict crop yield and quality or to optimize the farming practices in order to satisfy environmental16

objectives, as the reduction of nitrogen lixiviation. More recently, crop models are used to simulate the17

effects of climate changes on the agricultural production. Nevertheless, the prediction errors of these models18

may be important due to uncertainties in the estimates of initial values of the states, in input data, in the19

parameters, and in the equations. The measurements needed to run the model are sometimes not numerous,20

whereas the field spatial variability and the climatic temporal fluctuations over the field may be high. The21

degree of accuracy is therefore difficult to estimate, apart from numerous repetitions of measurements.22

For these reasons, the problem of state/parameter estimation represents a key issue in such nonlinear and23

non Gaussian crop models including a large number of parameters, while measurement noise exists in the24

data.25

Several state estimation techniques are developed and used in practice. These techniques include the26

extended Kalman filter, particle filter, and more recently the variational filter. The classical Kalman Filter27

(KF) was developed in the 1960s [19], and is widely used in various engineering and science applications,28

including communications, control, machine learning, neuroscience, and many others. In the case where the29

model describing the system is assumed to be linear and Gaussian, the KF provides an optimal solution30
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[32, 15, 1, 26]. The KF has also been formulated in the context of Takagi-Sugeno fuzzy systems to handle31

nonlinear models, which can be described as a convex set of multiple linear models [10, 31, 28]. It is known32

that the KF is computationally efficient; however, it is limited by the non-universal linear and Gaussian33

modeling assumptions. To relax these assumptions, the extended Kalman filter [32, 15, 18, 24, 20] and34

the unscented Kalman filter [32, 15, 36, 27, 30] are developed. In extended Kalman filtering, the model35

describing the system is linearized at every time sample (in order to estimate the mean and covariance36

matrix of the state vector), and thus the model is assumed to be differentiable. Unfortunately, for highly37

nonlinear or complex models, the EKF does not usually provide a satisfactory performance. On the other38

hand, instead of linearizing the model to approximate the mean and covariance matrix of the state vector, the39

UKF uses the unscented transformation to improve the approximation of these moments. In the unscented40

transformation, a set of samples (called sigma points) are selected and propagated through the nonlinear41

model, which provides more accurate approximations of the mean and covariance matrix of the state vector,42

and thus more accurate state estimation.43

Other state estimation techniques use a Bayesian framework to estimate the state and/or parameter

vector [8]. The Bayesian framework relies on computing the probability distribution of the unobserved state

given a sequence of the observed data in addition to a state evolution model. Consider an observed data set

y, which is generated from a model defined by a set of unknown state variables and/or parameters z [8]. The

beliefs about the data are completely expressed via the parametric probabilistic observation model, P (y|z).

The learning of uncertainty or randomness of a process is solved by constructing a distribution P (z|y), called

the posterior distribution, which quantifies our belief about the system after obtaining the measurements.

According to Bayes rule, the posterior can be expressed as:

P (z|y) ∝ P (y|z)P (z),

where P (y|z) is the conditional distribution of the data given the vector, z, which is called the likelihood44

function, and P (z) is the prior distribution, which quantifies our belief about z before obtaining the mea-45

surements. Thus, Bayes rule specifies how our prior belief, quantified by the priori distribution, is updated46

according to the measured data y. Unfortunately, for most nonlinear systems and non-Gaussian noise obser-47
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vations, closed-form analytic expressions of the posterior distribution of the state vector are untractable [21].48

To overcome this drawback, a non-parametric Monte Carlo sampling based method called particle filter-49

ing [33, 14, 29] has recently gained popularity.50

The Particle Filter approximates the posterior probability distribution by a set of weighted samples, called51

particles [3]. Since real-world problems usually involve high-dimensional random variables with complex52

uncertainty, the nonparametric and sample-based estimation of uncertainty (provided by the PF) has thus53

become quite popular to capture and represent the complex distribution P (z|y) for nonlinear and non-54

Gaussian process models [3]. The PF has the ability to accommodate nonlinear and multi-modal dynamics,55

but at the cost of more computational complexity and storage requirements. Also, taking into account56

the stringent calculus and storage constraints, the propagation of a huge amount of particles has impeded57

the implementation of the PF in very challenging parameter estimation problems. As a consequence, the58

variational filter is proposed recently to enhance state estimation [25, 4] because VF yields an optimal choice59

of the sampling distribution by minimizing a Kullback-Leibler (KL) divergence criterion. In fact, variational60

calculus leads to a simple Gaussian sampling distribution whose parameters (which are estimated iteratively)61

also utilize the observed data, which provides more accurate and computationally efficient computation of62

the posterior distribution.63

Each of the above state estimation techniques has its advantages and disadvantages. The VF can be64

applied to large parameter spaces, has better convergence properties, and is easier to implement than the PF,65

and both of them can provide improved accuracy over the EKF. The objective of this paper is to compare66

the performances of the EKF, PF, and VF when used to monitor and model a LSM process through the67

estimation of its state variables and model parameters. This comparative study is assess the accuracy68

and convergence of these techniques, as well as the effect of the size of the parameter space (i.e., number69

of estimated parameters) on the performances of these estimation techniques. Some practical challenges,70

however, can affect the accuracy of estimated states and/or parameters. Such challenges include the large71

number of states and parameters to be estimated, the presence of measurement noise in the data, and the72

availability of small number of measured data samples. The objective of this paper is two-fold: i) we study73

4



the accuracy and convergence of EKF, UKF and PF techniques, ii) we investigate the effect of the above74

challenges on the performances of these techniques. Then, a comparative investigation are be conducted to75

study their performances under the same challenge mentioned above. The above analysis are be performed76

using an environment process model representing leaf area index and soil moisture (LSM) (i.e, the leaf-area77

index LAI, the volumetric water content of the layer 1, HUR1 and the volumetric water content of the layer78

2, HUR2) and their abilities to estimate some of the key system parameters, which are needed to define the79

LSM model.80

The rest of the paper is organized as follows. In Section 2, a statement of the problem addressed in81

this paper is presented, followed by descriptions of various commonly used state estimation techniques in82

Section 2.2. Then, in Section 3, the performances of the various state estimation techniques are compared83

through their application to estimate the state variables and model parameters of a LSM process. Finally,84

some concluding remarks are presented in Section 4.85

2. Material and Methods86

In this section, the mathematical formulation of the the state/parameter estimation problem is developed,87

according to the filtering approaches that are studied. In a second step, the dynamic model simulation is88

presented, and the problem is formulated.89

2.1. Problem Statement90

Here, the estimation problem of interest is formulated for a general system model. Let a nonlinear state

space model be described as follows:

ẋ = g(x, u, θ, w),

y = l(x, u, θ, v),

(1)

where x ∈ R
n is a vector of the state variables, u ∈ R

p is a vector of the input variables, θ ∈ R
q is an

unknown parameter vector, y ∈ R
m is a vector of the measured variables, w ∈ R

n and v ∈ R
m are process

and measurement noise vectors, respectively, and g and l are nonlinear differentiable functions. Discretizing
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the state space model (1), the discrete model can be written as follows:

xk = f(xk−1, uk−1, θk−1, wk−1),

yk = h(xk, uk, θk, vk),

(2)

which describes the state variables at some time step (k) in terms of their values at a previous time step (k−1).

Let the process and measurement noise vectors have the following properties: E[wk] = 0, E[wkw
T
k ] = Qk,

E[vk] = 0 and E[vkv
T
k ] = Rk. Since we are interested in estimating the state vector, xk, as well as the

parameter vector, θk, let’s assume that the parameter vector is described by the following model:

θk = θk−1 + γk−1. (3)

which means that it corresponds to a stationary process, with an identity transition matrix, driven by white

noise. In order to include the parameter vector θk into the state estimation problem, let’s define a new state

vector zk that augments the state vector xk and the parameter vector θk as follows:

zk =
[ xk

θk

]
=

[ f(xk−1, uk−1, wk−1, θk−1)

θk−1 + γk−1

]
, (4)

where zk ∈ R
n+q. Also, defining the augmented noise vector as:

εk−1 =
[ wk−1

γk−1

]
, (5)

the model (2) can be written as,

zk = F(zk−1, uk−1, εk−1), (6)

yk = R(zk, uk, vk), (7)

where F and R are differentiable nonlinear functions. Thus, the objective here is to estimate the augmented91

state vector zk, given the measurements vector yk. Descriptions of some of the state estimation techniques92

that can be used to solve this estimation problem are presented next.93

2.2. Description of State and Parameter Estimation Techniques94

In this section, the formulations as well as the algorithms used in some of the state estimation techniques95

(EKF, PF and VF) are be presented.96
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2.2.1. extended Kalman filter97

As the name indicates, EKF is an extension of the Kalman filter, where the model is linearized to

estimate the covariance matrix of the state vector [22, 39]. As in KF, the state vector zk is estimated by

minimizing a weighted covariance matrix of the estimation error, i.e., E[(zk − ẑk)M(zk − ẑk)
T ], where M

is a symmetric nonnegative definite weighting matrix. If all the states are equally important, M can be

taken as the identity matrix, which reduces the covariance matrix to P = E[(zk − ẑk)(zk − ẑk)
T ]. Such a

minimization problem can be solved by minimizing the following objective function:

J =
1

2
Tr

(
E[(zk − ẑk)(zk − ẑk)

T ]
)
. (8)

subject to the model defined in equations (6 and 7). To minimize the above objective function (8), EKF

estimates the state vector using a two-step algorithm: prediction and estimation (or update), which are

described next.

Prediction Step:

In the prediction step, one-step predictions of the augmented state vector and the measurement vector are

calculated from the previously estimated state vector using the nonlinear model, i.e.,

ẑk|k−1 = F(ẑk−1|k−1, uk−1),

ŷk|k−1 = R(ẑk|k−1, uk).

(9)

Estimation (Update) Step:

Then, an updated estimate of the augmented state vector is calculated after obtaining the measurement

vector, yk, as follows:

Pk|k−1 = Ak−1Pk−1|k−1 +Gk−1QPT
k−1,

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k +HkRHT

k )
−1,

Pk|k = (I −KkCk)P
T
k|k−1,

ẑk|k = ẑk|k−1 +Kk(ŷk|k−1 − yk), (10)
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where Ak−1 ≈ ∂F
∂z |ẑk−1|k−1

, Ck−1 ≈ ∂R
∂z |ẑk−1|k−1

, Gk−1 ≈ ∂F
∂ε |εk−1

and Hk ≈ ∂R
∂v |vk are the matrices of the98

linearized system model at every time step. And Q is the process noise covariance.99

The EKF algorithm does not always provide a satisfactory performance, especially for highly nonlinear100

processes, because linearizing the process model does not necessarily provide good estimates of the mean of101

the state vector and the covariance matrix of the estimation error which are used in state estimation.102

2.2.2. Particle Filter103

A particle filter is an implementation of a recursive Bayesian estimator [16, 3]. Bayesian estimation relies104

on computing the posterior p(zk|y1:k), which is the density function of the unobserved state vector, zk, given105

the sequence of the observed data y1:k ≡ {y1, y2, · · · , yk}. However, instead of describing the required106

posterior distribution in a functional form, in this particle filter scheme, it is represented approximately as107

a set of random samples of the posterior distribution. These random samples, which are called the particles108

of the filter, are propagated and updated according to the dynamics and measurement models [13, 3]. The109

advantage of the PF is that it is not restricted by the linear and Gaussian assumptions, which makes it110

applicable in a wide range of applications. The basic form of the PF is also very simple, but may be111

computationally expensive. Thus, the advent of cheap, powerful computers over the last ten years is a key112

to the introduction and utilization of particle filters in various applications.113

For a given dynamical system describing the evolution of the states and parameters that we wish to114

estimate, the estimation problem can be viewed as an optimal filtering problem [2], in which the posterior115

distribution, p(zk|y1:k), is recursively updated. Here, the dynamical system is characterized by a Markov116

state evolution model, p(zk|z1:k−1) = p(zk|zk−1), and an observation model, p(yk|zk). In a Bayesian con-117

text, the task of state estimation can be formulated as recursively calculating the predictive distribution118

p(zk|y1:k−1) and the filtering distribution p(zk|y1:k) as follows,119
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p(zk|y1:k−1) =

∫

Rn

p(zk|zk−1)p(zk−1|y1:k−1)dzk−1,

and p(zk|y1:k) =
p(yk|zk)p(zk|y1:k−1)

p(yk|y1:k−1)
,

where p(yk|y1:k−1) =

∫

Rx

p(yk|zk)p(zk|y1:k−1)dzk. (11)

The state vector zk is assumed to follow a Gaussian model, zk ∼ N (µk, λk), where at any time instant k,

the expectation µk and the covariance matrix λk are both constants. Thus, the marginal state distribution

is obtained by integrating over the mean and covariance matrix as follows,

p(zk|zk−1) =

∫
N (zk|µk, λk)p(µk, λk|zk−1)dµkdλk, (12)

where the integration with respect to the covariance matrix leads to the known class of scale mixture120

distributions introduced by Barndorff-Nielsen [6] for the scalar case.121

The nonlinear nature of the system model leads to intractable integrals when evaluating the marginal

state distribution, p(zk|zk−1). Therefore, Monte Carlo approximation is utilized, where the joint poste-

rior distribution, p(z0:k|y1:k), is approximated by the point-mass distribution of a set of weighted samples

(particles) {z
(i)
0:k, `

(i)
k }Ni=1, i.e.,:

p̂N (z0:k|y1:k) =
N∑

i=1

`
(i)
k δ

z
(i)
0:k

(d z0:k)/
N∑

i=1

`
(i)
k , (13)

where δ
z
(i)
0:k

(d z0:k) denotes the Dirac function, and N is the total number of particles. Based on the same set

of particles, the marginal posterior probability of interest, p(zk|y1:k), can also be approximated as follows:

p̂N (zk|y1:k) =
N∑

i=1

`
(i)
k δ

z
(i)
k

(d zk)/

N∑

i=1

`
(i)
k . (14)

In the Bayesian importance sampling (IS) method, the particles {z
(i)
0:k}

N
i=1 are sampled according to a122

distribution,123

π(z0:k|y1:k) = p(zk|zk−1) =

∫
N (zk|µk, λk)p(µk, λk|zk−1)dµkdλk, (15)

9



Then, the estimate of the augmented state ẑk can be approximated by a Monte Carlo scheme:

ẑk =

N∑

i=1

`
(i)
k z

(i)
k , (16)

where `
(i)
k are the corresponding importance weights:

`
(i)
k ∝

p(y1:k|z
(i)
0:k)p(z

(i)
0:k)

π(z
(i)
0:k|y1:k)

. (17)

A common problem with the sequential importance sampling particle filter is the degeneracy phe-

nomenon, where after a few iterations, all but one particle have negligible weights. It is shown [38] that

the variance of the importance weights can only increase over time, and thus, it is impossible to avoid the

degeneracy phenomenon. This degeneracy implies that a large computational effort is devoted to updat-

ing particles whose contribution to the approximation of p(zk|y0:k) is almost zero. A suitable measure of

degeneracy of the algorithm is the effective sample size Neff introduced in [16] and [23] and defined as,

Neff =
1

∑N
i=1(`

(i)
k )2

(18)

where `
(i)
k is the normalized weight obtained using (17).124

In summary, particle filtering suffers from two major drawbacks. First, its efficient implementation125

requires the ability to sample from p(zk|zk−1), which does not take into account current the observed data,126

yk, and thus many particles can be wasted in low likelihood (sparse) areas.The second drawback is that127

propagating such a huge amount of particles and their corresponding weights increases the computational128

complexity. These issues are addressed by the variational filter, which is described in the next section. The129

PF algorithm for state/parameter estimation is summarized in Algorithm 1.130

2.2.3. variational filter131

The variational filter was developed [25, 4] to address the limitations encountered in particle filtering.132

Unlike the PF algorithm, the temporal dependence in the VF is reduced to a single Gaussian statistic instead133

of a huge number of particles. This helps dramatically reduce the computational complexity associated with134

state estimation, especially since the computation time grows proportionally with the number of particles.135

Also, the estimation accuracy achieved in particle filtering depends on the choice of the importance sampling136
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Algorithm 1: Particle Filtering algorithm

Input: yk, µ0, λ0

Output: ẑk

for i = 1, 2, . . . do

Importance sampling step:

Sample z̃
(i)
k ∼ π(z

(i)
k |z

(i)
0:k−1, y1:k), according the equation (12), and set z̃

(i)
0:k = (z

(i)
0:k−1, z

(i)
k );

Compute the approximated joint distribution, p̂N (z0:k|y1:k), using equation 13;

Evaluate importance weights using equation (17);

Normalize importance weights:

˜̀(i)
k =

`
(i)
k∑N

j=1(`
(j)
k )

Selection step:

if Neff = 1∑
N
i=1(`

(i)
k

)2
< Nthreshold then

Resample with replacement N particles {z
(i)
0:k}

N
i=1 from the set {z̃

(i)
0:k}

N
i=1 according to the

normalised importance weights, `
(i)
k = ˜̀(i)

k ;

Compute the estimated state using equation (16);

end

end

Return the augmented state estimation ẑk.

distribution. The VF, however, yields an optimal choice of the sampling distribution over the state variable137

by minimizing the Kullback-Leibler (KL) divergence. In fact, variational calculus leads to a simple Gaussian138

sampling distribution, p(zk|zk−1, yk) whose parameters (which are estimated iteratively) also utilize the139

observed data, yk.140

In Bayesian estimation, the distribution of interest for state estimation takes the form of a marginal141

posterior distribution p(zk|y1:k). The VF approximates the posterior distribution, p(zk|y1:k), by a separable142

distribution q(zk) =
∏

i q(z
i
k) that minimizes the following KL divergence criterion:143
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DKL(q||p) =

∫
q(zk) log

q(zk)

p(zk|y1:k)
dzk,

where q(zk) =
∏

i

q(zik) (19)

subject to the constraint
∫
q(zk)dzk =

∏
i

∫
q(zik)dz

i
k = 1. The above KL divergence criterion can be

minimized using the Lagrange multiplier method, which yields the following separable approximate distri-

bution [35, 8, 11],

q(zik) ∝ exp〈log p(y1:k, zk)〉∏
j 6=i q(z

j

k
), (20)

where 〈·〉q(zj

k
) denotes the expectation operator relative to the distribution q(zjk). Therefore, these dependent

parameters can be jointly and iteratively updated. Taking into account the separable approximate distri-

bution q(zk−1) at time k − 1, the filtering distribution p(zk|y1:k) is sequentially approximated according to

the following scheme:

p̂(zk|y1:k) ∝ p(yk|zk)p(zk). (21)

Therefore, through a simple integral with respect to µk−1, the filtering distribution p(zk|y1:k) can be sequen-

tially updated. However, the state vector zk does not have a tractable approximate distribution because of

the nonlinear nature of the system model. By combining equations (20) and (21), we have,

q(zk) ∝ p(yk|zk)N (〈µk〉, 〈λk〉). (22)

which suggests an importance sampling (IS) procedure to approximate the posterior, where samples are

drawn from the Gaussian distribution N (〈µk〉, 〈λk〉) and weighted according to their likelihoods:

z
(i)
k ∼ N (〈µk〉, 〈λk〉), `

(i)
k ∝

N∏

j=1

p(zjk|z
(i)
k ). (23)

Then, the estimated state, ẑk, can be approximated by the following Monte Carlo scheme:

ẑk =

N∑

i=1

`
(i)
k z

(i)
k . (24)

In a Bayesian inference framework, besides updating the filtering distribution p(zk|y1:k), the predictive

distribution p(zk|y1:k−1) needs to be computed. The predictive distribution p(zk|y1:k−1) can be efficiently
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updated by variational inference. Taking into account the separable approximate distribution q(zk−1) ∝

p(zk−1|y1:k−1), the predictive distribution can be expressed as,

p(zk|y1:k−1) ∝

∫
p(zk|zk−1)q(zk−1)dzk−1.

Similar to the filtering distribution, the predictive distribution that minimizes the Kullback-Leibler diver-

gence yields the following Gaussian distribution:

qk|k−1(zk) ∝ N (〈µk〉qk|k−1
, 〈λk〉qk|k−1

), (25)

and the predictive expectations of the state can be evaluated by the following expressions:

〈zk〉qk|k−1
= 〈µk〉qk|k−1

, (26)

〈zkz
T
k 〉qk|k−1

= 〈λk〉
−1
qk|k−1

+ 〈µk〉qk|k−1
〈µk〉

T
qk|k−1

.

Compared with the PF, the computational cost and the memory requirements associated with the VF are144

dramatically reduced by the variational approximation in the prediction phase. In fact, the expectations145

involved in the computation of the predictive distribution have closed forms, avoiding the use of Monte146

Carlo integration. The VF algorithm for state/parameter estimation is summarized in Algorithm 2.147

In the next Section, these state estimation techniques (EKF, PF, and VF) are used to estimate the states148

variables (the leaf-area index LAI , the volumetric water content of the layer 1, HUR1 and the volumetric149

water content of the layer 2, HUR2) as well as the model parameters of a LSM process.150
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Algorithm 2: variational filtering algorithm

Input: yk, µ0, λ0

Output: ẑk

for i = 1, 2, . . . do

Predict p(zk|y1:k−1) according to the equation (25);

The predicted expectation 〈z〉qk|k−1
is calculated using equation (26);

Generate N samples {z
(i)
k , `

(i)
k }Nk=1 from q(zk), where q(zk) ∝ p(yk|zk)N (〈µk〉, 〈λk〉) using

equation (23);

if Neff = 1∑
N
i=1(`

(i)
k

)2
< Nthreshold then

Resample with replacement N particles {z
(i)
0:k}

N
i=1 from the set {z̃

(i)
0:k}

N
i=1 according to the

normalised importance weights, `
(i)
k = ˜̀(i)

k ;

Compute the estimated state using equation (24):

ẑk =
N∑

i=1

`
(i)
k z

(i)
k

end

end

Return the augmented state estimation ẑk.

3. Simulation Results Analysis151

Next, the Crop model, that are be used in our analysis, are be described.152

3.1. Crop model153

The original data were issued from experiments carried out on a silty soil in Belgium, with a wheat crop154

(Triticum aestivum L., cultivar Julius), during 3 consecutive years, the crop seasons 2008-09, 2009-10 and155

2010-11. The measurements were the results of 4 repetitions by date, each one of them being performed on156

a small block (2m times 6m) randomly spread over the field to ensure the measurements independence. A157

wireless monitoring system (eKo pro series system, Crossbow) completed by a micrometeorological station158
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was used for measuring continuously soil and climate characteristics. Especially, the measurements of soil159

water content were performed at 20 and 50 cm depth.160

The plant characteristics (LAI and biomass) were also measured using reference techniques at regular in-161

tervals (2 weeks) along the crop seasons. The reference measurements were each year performed since the162

middle of February (around Julian day 410) till harvest. During the season 2008-2009, yields were quite163

high and close to the optimum of the cultivar. This is mainly explained by the good weather conditions164

and a sufficient nitrogen nutrition level. The season 2009-2010 and 2010-11 were known to induce deep165

water stresses, and thus characterized by yield losses. In 2009-10 they occurred at early spring and early166

June, but stayed limited. The following year, deeper water stresses occurred from February till beginning167

of June. In the summer, rainfall came back and allowed good grain yield while low straws yield were never168

compensated.169

The model for which the methods are tested is Mini-STICS model. The model equations are presented in170

Appendix A [34], and the model parameters presented at Table 1. The dynamic equations indicates how171

each state variable evolves from one day to the next as a function of the current values of the state variables,172

of the explanatory variables, and of the parameters value. Encoding these equations over time allows one173

to eliminate the intermediate values of the state variables and relate the state variables at any time to the174

explanatory variables on each day. The model structure can be derived from the basic conservation laws,175

namely material and energy balances.176

In the first step we are be interested to compare the estimation performances of EKF, PF and VF in

estimating three state variables of the mini-STICS model : the leaf-area index LAI , the volumetric water

content of the layer 1, HUR1 and the volumetric water content of the layer 2, HUR2. Based on the model

equations described in Appendix A, the mathematical model of the LAI and soil moisture (called in the rest

of the document LSM model) is given by:





LAI(t) = f1(LAI(t− 1), θ)

HUR1(t) = f2(HUR1(t− 1), θ)

HUR2(t) = f3(HUR2(t− 1), θ)

(27)
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where t is the time step (one day), f1−3 are the corresponding model function, and θ is the vector of177

parameters driving the simulations (Table 1).178

Here, we therefore assume that some of the states are wrong simulated by the model, and our objective is179

to re-estimate them, under the hypothesis that the states are measured at some moment, along the season.180

Discretizing the model (27) using a sampling interval of ∆t, it can be written as:181





LAIk =
[
g1(θ)

]
∆t+ LAIk−1 + w1

k

HUR1k =
[
g2(θ)

]
∆t+HUR1k−1 + w2

k

HUR2k =
[
g3(θ)

]
∆t+HUR2k−1 + w3

k

(28)

where, wj ,j∈{1,..,3} is a measurement Gaussian noise with zero mean and known variance σ2
wj .182

3.2. Generation of Dynamic Data183

To go further in the research, it appear now to own data on which running the model. Indeed, the results184

may depend on the details of the model, on the way/quality the data are generated/measured with and on185

the specific data that are used. To be independent of these consideration, we are generate dynamic data186

from the LSM. The model is first used to simulate the responses LAIk , HUR1k, HUR2k as functions of187

time of the first recorded climatic variable of the crop season 2008-2009. These simulated states, which are188

assumed to be noise free, are then contaminated with zero mean Gaussian errors, i.e., a measurement noise189

vk−1 ∼ N (0, σ2
v).190

Considering a value of σ2
v = 0.1 the following data set can be generated. Figure 1 shows the changes in the191

three state variables. The sampling time used for discretization is 1 day and the LSM model parameters as192

well as other physical properties are shown in Table 1. The parameter values are determined in [5].193

3.3. Comparative Study 1: Estimation of State Variables from Noisy Measurements194

At this point of the research, the model parameters are assumed to be constants, and at their true value195

presented in Table 1. Therefore, we consider the state vector that we wish to estimate as:196

zk = xk = [LAIk HUR1k HUR2k]
T
,
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Eventually, to perform comparison between the techniques, the estimation root mean square errors197

(RMSE) criteria are be used and calculated on the states (with respect to the noise free data)198

RMSE =
√
E ((x− x̂)2) (29)

Where x (resp. x̂) is the true parameter/state (resp. the estimated parameter/state).199

The simulation results of estimating the three states: the leaf-area index LAIk, HUR1k the volumetric200

water content of the layer 1 and HUR2k the volumetric water content of the layer 2 using EKF, PF and VF201

are shown in Figures 2(a,b,c), Figures 2(d,e,f) and Figures 2(g,h,i), respectively. Also, the estimation root202

mean square errors (RMSE) for the estimated states are shown in Table 2. It can be observed from Figure 2203

and Table 2 that EKF resulted in the worst performance of all estimation techniques, which is expected204

due to the limited ability of EKF to accurately estimate the mean and covariance matrix of the estimated205

states through lineralization of the nonlinear process model. The results also show that the VF provides a206

significant improvement over the PF, which is due to the fact that the VF yields an optimal choice of the207

sampling distribution, p(zk|zk−1, yk), by minimizing a KL divergence criterion that also utilizes the observed208

data yk.209

3.4. Comparative Study 2: Simultaneous Estimation of State Variables and Model Parameters210

The model (28) assumes that the parameters are fixed and/or are determined previously. However,211

the model involves several parameters that are usually not exactly known, or that have to be estimated.212

Estimating these parameters, to completely define the model, usually requires several experiment setups,213

which can be expensive and challenging in practice. In a second step, in this work, we propose to use214

a Bayesian approach that can considerably simplify the task of modeling compared to the conventional215

experimentally intensive methods. Let’s thus consider that some of the parameter have to be estimated to216

improve the simulations, by example the ADENS, DLAIMAX and PSISTURG parameter. ADENS is217

the parameter of compensation between stem number and plant density, DLAIMAX is the maximum rate218

of the setting up of LAI and PSISTURG is the absolute value of the potential of the beginning of decrease219
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in the cellular extension. To estimate these parameters, the following equations that describe their evolution220

are also needed:221





ADENSk = ADENSk−1 + γ1
k

DLAIMAXk = DLAIMAXk−1 + γ2
k

PSISTURGk = PSISTURGk−1 + γ3
k

(30)

where, γj,j∈{1,..,3} is a process Gaussian noise with zero mean and known variance σ2
γj .222

The model (28) needs to incorporate the evolution of these parameters as follows:223





LAIk =
[
g1(θk−1)

]
∆t+ LAIk−1 + w1

k

HUR1k =
[
g2(θk−1)

]
∆t+HUR1k−1 + w2

k

HUR2k =
[
g3(θk−1)

]
∆t+HUR2k−1 + w3

k

(31)

Where, g is nonlinear differentiable function, it can be used to compute the predicted state from the previous224

estimate.225

226

Hence, the discrete nonlinear system model of the LAI and soil moisture can be written as:227





f1 : LAIk =
[
g1(θk−1)

]
∆t+ LAIk−1 + w1

k

f2 : HUR1k =
[
g2(θk−1)

]
∆t+HUR1k−1 + w2

k

f3 : HUR2k =
[
g3(θk−1)

]
∆t+HUR2k−1 + w3

k

f4 : ADENSk = ADENSk−1 + γ1
k

f5 : DLAIMAXk = DLAIMAXk−1 + γ2
k

f6 : PSISTURGk = PSISTURGk−1 + γ3
k

(32)

where, fk,k∈{1,...,6} are some nonlinear functions, it is desired to estimate the parameter vector θ given228

dynamic measurements of the state variables LAI, HUR1 and HUR2 .229

In the following, we denote w = (w1 w2 w3)
T , and γ = (γ1 γ2 γ3)T , respectively the measurement and230

process noise vectors, which quantify (i) errors in the measurements and (ii) randomness in the process.231
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Note that we are forming the augmented state:232

zk = [xk θk]
T = [LAIk HUR1k HUR2k ADENSk DLAIMAXk PSISTURGk]

T
233

as a 6 by 1 matrix with the following:234





xk(1, :) − > LAIk

xk(2, :) − > HUR1k

xk(3, :) − > HUR2k

θk(1, :) − > ADENSk

θk(2, :) − > DLAIMAXk

θk(3, :) − > PSISTURGk

(33)

The idea here is that, if a dynamic model structure is available, the model parameters can be estimated235

using one of state estimation technique. State estimation is a system-engineering approach, in which the236

states (and sometimes the parameters) of a state space model can be estimated given time-series dynamic237

measurements of some of the state variables.238

Several state estimation techniques are developed, which can be used to solve this nonlinear state estimation239

problem, and include Extended Kalman Filtering, Particle Filtering, Variational Filtering, and others. In240

this work, the EKF, PF and VF are be used to illustrate the idea of modeling LAI and soil moisture.241

In this section, we are interested in examining the effect of the number of estimated parameters on the242

estimation performances of EKF, PF and VF and in estimating the states and parameters of the LSM243

process model, during the first crop season 2008-2009 (unstressed growth data).244

To investigate the effect of the number of estimated model parameters on the performances of the different245

state estimators, this comparative study are be conducted through the following three cases, which are246

summarized below. In all cases, it is assumed that three states ( LAIk, HUR1k and HUR2k) are measured.247

1. Case 1: the three states (LAI, HUR1 andHUR2) along with the parameterADENS are be estimated.248

2. Case 2: the three states (LAI, HUR1 and HUR2) and two parameters (ADENS and DLAIMAX)249

are be estimated.250
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3. Case 3: the three states (LAI, HUR1 and HUR2) and three parameters (ADENS, DLAIMAX and251

PSISTURG) are be estimated.252

The state and parameter estimation results for the three cases using EKF are shown in Figures 3 to253

5; similarly, Figures 6 to 8 show the simulation results using PF, and Figures 9 to 11 show the simulation254

results using VF.255

Moreover, Table 3 compares the estimation performances of EKF, PF and VF for case 1 in terms of the256

estimation root mean square errors (RMSE) for the three states LAI, HUR1 and HUR2 (with respect257

to the noise free data) and the mean of the estimated parameter DLAIMAX at steady state. Tables 4258

and 5 provide similar comparisons for cases 2 and 3, respectively, (i.e., estimating the three states and259

the parameters ADENS and DLAIMAX in case 2, and estimating the three states and the parameters260

ADENS, DLAIMAX , and PSISTURG in case 3).261

Comparing the estimation performances of EKF, PF and VF based on the simulation results shown262

in Tables 4 and 5, it is observed, as expected, that the root mean square errors (RMSE) of estimated263

states increase for all estimation techniques as the number of estimated states and parameters increases.264

Also, VF shows improved estimation performance over EKF and PF (and PF showed improved estimation265

performance over EKF) in estimating the states and parameters in all cases. In particular, the EKF is able266

to estimate the three states and one parameter, DLAIMAX , as shown in Figure 3.267

However, when EKF is used in case 2 (case 3) to estimate the three states and respectively two or three268

parameters, the estimates of PSISTURG and DLAIMAX did not converge to the true values using the269

available data. The PF is able to estimate the three states and one (two) parameter(s), ADENS (ADENS270

and DLAIMAX), as shown in Figure 5 (Figure 6). However, when PF is used in case 3 to estimate the three271

states and all three parameters (ADENS, DLAIMAX and PSISTURG), the estimate of PSISTURG272

did not converge to the true value using the available data. The VF is able to estimate the three states273

and the parameters in all cases. However, the RMSE of the estimated states (with respect to the noise free274

data) using PF is less than the RMSE obtained using EKF, but it is higher than the RMSE obtained using275

the VF. Also, using PF, the parameter estimates show improved convergence rates to their true values over276
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the EKF, but worse convergence rates compared to the VF. Hence, as the number of states and parameters277

to be estimated increases, the VF shows improved estimation performance over the EKF and PF.278

3.5. The Effect of driving variables279

We applied the different algorithms described above; EKF, PF and VF to simulate the responses of280

the leaf-area index LAIk, the volumetric water content of the layer 1 HUR1k and the volumetric water281

content of the layer 2 HUR2k as functions of time; in the second crop season 2009-2010 (season with deep282

water stresses). And respectively the above techniques are used for estimating the three model parameters;283

ADENS, DLAIMAX and PSISTURG. From figure 13 (resp. Tables 6 to 8), we can show that varia-284

tional filtering algorithm outperforms the classical algorithms, and demonstrate the performance and the285

good behavior of the proposed algorithm when the growing season is varied.286

Here, we assume that a Gaussian noise is added to the time profiles of the metabolites. In order to show the287

performance of the states estimation techniques in the presence of measurement noise, five different mea-288

surements noise values, 0.1, 0.15, 0.2, 0.25 and 0.3, are considered. The RMSEs using the three techniques289

are summarized in Table 9. The simulation results of estimating the three states; leaf-area index LAIk, the290

volumetric water content of the layer 1 HUR1k and the volumetric water content of the layer 2 HUR2k291

using EKF, UKF and PF when the variances noise vary in {0.1, 0.3}.292

In other words, for the three estimation techniques, the estimation RMSE of the three states LAIk, HUR1k293

and HUR2k increases from the first comparative study (noise variance = 0.1) to case (where the noise294

variance = 0.3). For example, the RMSEs obtained using EKF for LAI where the noise variance = 0.1 and295

= 0.2 are 0.0634, and 0.0639, respectively, which increase as the noise variance increases (refer to Table 9).296

This observation is valid for the other state variables LAIk, HUR1k and HUR2k.297

4. Conclusions298

In this paper, state estimation techniques are used to predict simultaneously three state variables (Leaf299

area index (LAI) and soil moisture model for a winter wheat crop) and several parameters. Various state300

estimation techniques, which include the extended Kalman filter, particle filter, and variational filter, are301
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compared as they are used to achieve this objective. Two comparative studies are conducted to compare302

the estimation performances of these three estimation techniques. In the first comparative study, EKF, PF303

and VF are used to estimate the three state variables (Leaf area index (LAI) and the moisture content304

of the two top soil layers) of the LSM process. In this second comparative study, the state variables305

are model parameters are simultaneously estimated, and the effect of number of estimated parameters306

on the performances of the three estimation techniques is investigated. The simulation results of both307

comparative studies show that the PF provides a higher accuracy than the EKF due to the limited ability308

of the EKF to deal with highly nonlinear process models. The results also show that the VF provides309

a significant improvement over the PF. This is because, unlike the PF which depends on the choice of310

sampling distribution used to estimate the posterior distribution, the VF yields an optimum choice of the311

sampling distribution, which also utilizes the observed data. The results of the second comparative study312

show that, for all techniques, estimating more model parameters affects the estimation accuracy as well as313

the convergence of the estimated states and parameters. The VF, however, still provides advantages over314

other methods with respect to estimation accuracy as well convergence.315

5. Appendix A316

Leaf Area Index

DELTAI(J) = LAI(J) − LAI(J − 1) =
DLAIMAX

[1 − exp(5.5 × (2.2 − ULAI(J)))]
× (TCULT (J − 1) − TCMIN) × TURFAC(J) × EFDENSITE × DENSITE

ULAI(J) = 2.2 + (3 − 2.2) ×
SUDEV CULT (J)

NBDJAMF−LAX

EFDENSITE = (
DENSITE

BDENS
)ADENS

Soil Water Evaporation317

EOS(J) = ETP (J) × exp(EXTIN − 0.2) × LAI(J)

HA =
ARGI

100
×

DA1

15

HI =
HUCC1

10
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A = 0.5 × ACLIM × (0.63 − HA)53 × (HI − HA)

∑
ES(J) =

√
(2 × A ×

∑
EOS(J) + A2) − A

∑
EOS(J) =






∑
EOS(J − 1) + EOS(J)

EOS(J)






if
∑

ES(J − 1) > PLUIE(J)

else

∑
ES(J) =






∑
ES(J − 1) + ES(J − 1)

ES(J)






if
∑

ES(J − 1) > PLUIE(J)

else

ES1(J) = min(HUR1(J − 1) − 10 × HA × EPAIS1, ES(J))

HUR1(J) = HUR1(J − 1) −
ES1(J)

EPAIS1
.

Transpiration318

EO(J) =
ETP (J) × (1 + (KMAX − 1)

(1 + exp(−1.5 × (LAI(J) − 3)))

EOP (J) =
(EO(J) − EOS(J))(1.4 − 0.4 × (ES(J)))

EOS(J)

S = −
4.6

ZLABOUR − ZPENTE

ZDEMI(J) = max(ZRAC(J) − ZPRLIM + ZPENTE,
1.4

S
)

LRAC1(J) =
LVOPT

(1 + exp(−S × (PROF1)ZDEMI(J)))

LRAC2(J) =
LVOPT

(1 + exp(−S × (PROF2)ZDEMI(J)))

CUMULRACZ(J) =
∑

LRAC1(J) × EPAIS1CUMULRACZ(J) =
∑

LRAC2(J) × EPAIS2

TETSTOMATE(J) =
1

40
ln(

EOP (J)

(2CUMULRACZ(J) × PSISTO × 10−3)
) × ln(

1
rayon

× ((ZRAC(J)))

CUMULRACZ(J)
)
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TETA(J) =






max[HUR1(J) − HUMIN(J), 0]

(TETA1(J)+TETA2(J))

(ZRAC(J)×10)






if ZRAC(J) ≤ EPAIS1

else

with

TETA1(J) = max[(HUR1(J) − HUMIN1) × EPAIS1, 0]

and

TETA2(J) = max[(HUR2(J) − HUMIN2) × EPAIS2, 0]

EP (J) =






EOP (J)

(EOP (J)×TETA(J))
TETSTOMATE(J)






if TETA(J) > TETSTOMATE(J)

else

EP1(J) =
(EP (J) × ZRACZ((J))) × EPAIS1

CUMULRACZ(J)
EP2(J) =

(EP (J) × ZRACZ((J))) × EPAIS2

CUMULRACZ(J)

EP1(J) = min((HUR1(J) − HUMIN1) × EPAIS1, EP1(J))EP2(J) = min((HUR2(J) − HUMIN2) × EPAIS2, EP (J) − EP1(J))

HUR1(J) = (HUR1(J) − EP1(J)) × EPAIS1

HUR2(J) = (HUR2(J) − EP2(J)) × EPAIS2

Water Budget319

HUR1(J) =
HUR1(J) × EPAIS1 + PLUIE − DRAIN1(J)

EPAIS1

with320

DRAIN1(J) =






HUR1(J) × EPAIS1 + PLUIE − HUCC1 × EPAIS1

0






if HUR1(J)EPAIS1 + PLUIE > HUCC1 × EPAIS1

else

HUR2(J) =
HUR2(J) × EPAIS2 + PLUIE − DRAIN2(J)

EPAIS2
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DRAIN2(J) =






HUR2(J) − EPAIS2 + PLUIE − HUCC2 × EPAIS2

0






if HUR2(J) − EPAIS2 + PLUIE > HUCC2 × EPAIS2

else

Stress Index321

TETURG(J) =
1

40
ln(

EOP (J)

(2CUMULRACZ(J) × PSISTURG × 10−3)
) × ln(

1
rayon

× ((ZRAC(J)))

CUMULRACZ(J)
)

TURFAC(J) =






1

TETA(J)
TETURG(J)






if TETA(J) > TETURG(J)

else
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Table 1: LSM model parameters and physical properties

Name Meaning True value

ADENS Parameter of compensation between stem number and plant density −0.8

BDENS(plants.m−2) Maximum density above which there is competition between plants 1.25

CROIRAC(cm.degree − day−1) Growth rate of the root front 0.25

DLAIMAX(m2.l.s.m−2.degreedays−1) Maximum rate of the setting up of LAI 0.0078

EXTIN Extinction coefficient of photosynthetic active radiation in the canopy 0.9

KMAX Maximum crop coefficient for water requirements 1.2

LVOPT (cm.root.cm−3.s) Optimum root density 0.5

PSISTO(bars) Absolute value of the potential of stomatal closing 10

PSISTURG(bars) Absolute value of the potential of the beginning of decrease in the cellular extension 4

RAYON(cm) Average radius of roots 0.02

TCMIN(◦C) Minimum temperature of growth 6

TCOPT (◦C) Optimum temperature of growth 32

TURFAC turgescence stress index –

ZPENTE(cm) Depth where the root density is 1/2 of the surface root density for the reference profile 120

ZPRLIM(cm) Maximum depth of the root profile for the reference profile 150

HUMIN Minimum volumetric water content U(1.2, 1.7)

HUCC Usable reserve U(1.2, 1.7)

DENSITE(plm2) Sowing density U(5, 7)

Table 2: Root mean square errors (RMSE) of estimated states for EKF, PF and VF; 2008-2009

Technique LAI HUR1 HUR2

EKF 0.0634 0.0598 0.0297

PF 0.0358 0.0347 0.0251

VF 0.0190 0.0187 0.0122

Table 3: Root mean square errors (RMSE) of estimated states and mean of estimated parameter - case 1; 2008-2009

RMSE Mean at steady state

Technique LAI HUR1 HUR2 ADENS

EKF 0.0649 0.0602 0.0303 −0.8

PF 0.0364 0.0376 0.0257 −0.8

VF 0.0198 0.0190 0.0126 −0.8
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Table 4: Root mean square errors of estimated states and mean of estimated parameters - case 2; 2008-2009

RMSE Means at steady state

Technique LAI HUR1 HUR2 ADENS DLAIMAX

EKF 0.1228 0.1244 0.0631 −0.8 did not converge

PF 0.0789 0.0808 0.0532 −0.8 0.0078

VF 0.0377 0.0389 0.0244 −0.8 0.0078

Table 5: Root mean square errors (RMSE) of estimated states and mean of estimated parameters - case 3; 2008-2009

RMSE Mean at steady state

Technique LAI HUR1 HUR1 ADENS DLAIMAX PSISTURG

EKF 0.1794 0.1754 0.0957 −0.8 did not converge did not converge

PF 0.1146 0.1186 0.0774 −0.8 0.0078 did not converge

VF 0.0608 0.0586 0.0369 −0.8 0.0078 4

Table 6: Root mean square errors (RMSE) of estimated states and mean of estimated parameter - case 1; 2009-2010

RMSE Mean at steady state

Technique LAI HUR1 HUR2 ADENS

EKF 0.0939 0.0901 0.0461 −0.8

PF 0.0542 0.0531 0.0342 −0.8

VF 0.0341 0.0357 0.0232 −0.8

Table 7: Root mean square errors of estimated states and mean of estimated parameters - case 2; 2009-2010

RMSE Means at steady state

Technique LAI HUR1 HUR2 ADENS DLAIMAX

EKF 0.1502 0.1589 0.0723 −0.8 did not converge

PF 0.0988 0.0957 0.0592 −0.8 0.0078

VF 0.0638 0.0557 0.0364 −0.8 0.0078
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Table 8: Root mean square errors (RMSE) of estimated states and mean of estimated parameters - case 3; 2009-2010

RMSE Mean at steady state

Technique LAI HUR1 HUR1 ADENS DLAIMAX PSISTURG

EKF 0.2143 0.2045 0.1061 −0.8 did not converge did not converge

PF 0.1431 0.1433 0.0945 −0.8 0.0078 did not converge

VF 0.0847 0.0859 0.0594 −0.8 0.0078 4

Figure 1: Simulated LSM data used in estimation: state variables (leaf-area index LAI, volumetric water content of the layer

1;HUR1 and volumetric water content of the layer 2; HUR2).
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Table 9: Estimations of the three states versus noisy measurement variances.

LAI HUR1 HUR1

Technique σ2
v = 0.1

EKF 0.0634 0.0598 0.0297

PF 0.0358 0.0347 0.0251

VF 0.0190 0.0187 0.0122

σ2
v = 0.15

EKF 0.0636 0.0599 0.0299

PF 0.0367 0.0348 0.0253

VF 0.0192 0.0189 0.0124

σ2
v = 0.2

EKF 0.0639 0.0607 0.0305

PF 0.0369 0.0357 0.0259

VF 0.0196 0.0193 0.0128

σ2
v = 0.25

EKF 0.0641 0.0614 0.0315

PF 0.0383 0.0383 0.0276

VF 0.0201 0.0213 0.0152

σ2
v = 0.3

EKF 0.0671 0.0625 0.0328

PF 0.0395 0.0394 0.0283

VF 0.0214 0.0215 0.0163
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Figure 2: Estimation of state variables using various state estimation techniques (comparative study 1).
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Figure 3: Estimation of z = [LAI HUR1 HUR2 ADENS]T using EKF - Case 1.
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Figure 4: Estimation of z = [LAI HUR1 HUR2 ADENS DLAIMAX]T using EKF - Case 2.
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Figure 5: Estimation of z = [LAI HUR1 HUR2 ADENS DLAIMAX PSISTURG]T using EKF - Case 3.
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Figure 6: Estimation of z = [LAI HUR1 HUR2 ADENS]T using PF - Case 1.
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Figure 7: Estimation of z = [LAI HUR1 HUR2 ADENS DLAIMAX]T using PF - Case 2.
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Figure 8: Estimation of z = [LAI HUR1 HUR2 ADENS DLAIMAX PSISTURG]T using PF - Case 3.
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Figure 9: Estimation of z = [LAI HUR1 HUR2 ADENS]T using VF - Case 1.
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Figure 10: Estimation of z = [LAI HUR1 HUR2 ADENS DLAIMAX]T using VF - Case 2.
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Figure 11: Estimation of z = [LAI HUR1 HUR2 ADENS DLAIMAX PSISTURG]T using VF - Case 3.
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