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Abstract. The so-called "magnetic flux profile" AC inductive technique is a powerful method 
for determining the critical current density Jc of bulk superconductors. In this work we aim at 
reporting analytical expressions for magnetic flux profiles of superconducting rectangular 
samples exhibiting a critical current density anisotropy. The results are used for examining the 
error resulting from approximating a rectangular cross-section by an "infinite cylinder" or 
"infinite slab" geometry. It is found that such approximations can lead to an artificial curvature 
of the flux profiles and errors of 10%-20% in the determination of Jc. Next, the effects of how 
planar defects (cracks, platelet boundaries,...) affect the magnetic flux profile signal are 
discussed. It is found that the magnetic flux profiles are much sensitive to the lengthscale of 
shielding currents, thereby providing means of investigation of the typical size of induced 
current loops in bulk superconductors. Finally some illustrative flux profile data measured on a 
bulk, large grain melt-processed YBCO single domain exhibiting Jc anisotropy are presented 
and discussed in relation with theoretical predictions. 

1.  Introduction 
Thanks to their zero electrical resistance at cryogenic temperature, superconducting materials 
represent a promising way of designing attractive electrical engineering applications [1-3]. In 
particular, when YBa2Cu3O7-δ (YBCO) superconductors are cooled at the liquid nitrogen temperature 
(T = 77 K), they can carry current densities larger than 10 kA/cm² [4-5] and trap magnetic flux 
densities in excess of 2 teslas. The key physical parameter determining the practical usefulness of 
superconductors is the maximum current density that can flow without dissipation, i.e. the critical 
current density Jc. Due the usually high values of Jc, the reliable and accurate determination of the 
critical current density is sometimes a challenge. Basically, either transport methods or magnetic 
methods can be used. In transport measurements, the current is directly injected through the specimen. 
Magnetic measurements consist in applying an external magnetic field which causes lossless shielding 
currents to flow mostly along the perimeter of the sample. In the case of strong magnetic flux pinning, 
the model proposed in the 60's by C.P. Bean in infinite geometry [6] assumes that the density of the 
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screening currents is equal to the critical current density Jc. Therefore an appropriate mathematical 
treatment of magnetic measurements allows the critical current density Jc to be determined indirectly.  
     There are several methods for magnetic Jc measurements, which can be classified in AC or DC 
techniques [7]. The magnetic flux profile method, as proposed first by Campbell [8] and Rollins [9], is 
a convenient and straightforward AC measurement technique for determining Jc. It requires a primary 
coil generating an AC magnetic field and a secondary “pick-up” coil measuring the AC magnetic flux. 
Its advantage over other techniques is that it can probe volume properties of bulk superconducting 
samples of any size, in contrast to those relying on classical AC susceptometers and DC 
magnetometers which usually accommodate small samples (a few mm³), with some exceptions [10-
13]. Basically, the flux profile technique involves applying an AC magnetic field of amplitude H0, and 
recording the flux amplitude Φ(H0) in the sample for several increasing values of H0, as illustrated 
schematically in figure 1a. If the critical current density is assumed to be independent of H0, the 
penetration depth p of magnetic flux inside the sample is directly related to the derivative dΦ(H0)/dH0 
[8,14]. The plot of H0 vs. p is called flux profile, whose slope is proportional to the local critical 
current density of the sample. A flux profile measurement represents therefore a convenient way of 
indirectly probing the local critical current density variations in a high-temperature superconductor 
[15]. Moreover, in the case of granular superconducting ceramics, the flux profiles have been shown to 
exhibit a pronounced kink, as shown in figure 1b; the two slopes of the flux profile are related to the 
inter- and intra- granular critical current densities [14,16]. A careful examination of the flux profiles 
measured at several frequencies and magnetic field configurations allows also more fundamental 
physical parameters to be determined, such as the thermal activation energy of flux lines [17], or 
pinning lengthscales and flux line lattice constants [18,19]. It can also be used to assess the quality and 
homogeneity of the bulk material, e.g. in melt-textured YBCO [20] as well as in MgB2 [21]. 
     The extraction of the critical current density from the flux profile also depends on the sample 
geometry. Flux profile calculations which have been published in the literature concern only isotropic 
samples having either an infinite slab or infinite cylinder geometry, as sketched in figure 2a. The aim 
of the present work is to extend calculations of flux profiles in the case of parallelipipedic samples of 
rectangular cross-section a × b (figure 2b), which are relevant to bulk single domain superconductors 
and single crystals. In addition, we will investigate how the anisotropy of Jc and / or the shielding 
current lengthscales affect the measured signal. Finally, flux profile measurements carried out on bulk 
melt-processed YBa2Cu3O7-δ samples will be presented, and the results will be compared to the 
theoretical predictions.  
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Figure 1. (a) Schematic representation of the magnetic flux density B at the edge of the sample as a 
function of distance x for two applied AC magnetic fields H0 and H0 + δH0. (b) Flux profiles measured 
on a YBCO ceramic sample at 77K for different superimposed DC fields (see legend), showing clearly 
the appearance of a “kink” for the largest DC fields.  
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(a)                                                              (b) 
 

Figure 2. (a) Two geometries for which analytical calculations of magnetic flux profiles are available 
in the literature (infinite slab and infinite cylinder). (b) Geometry investigated in the present work 
(infinite prism of rectangular cross-section). 

2.  Theory 
 
2.1. General considerations 
As recalled above, the key point of the Campbell method is that the derivative of the magnetic flux Φ 
with respect to the magnetic field amplitude H0 gives access to the magnetic flux penetration depth 
p(H0). For a sample approximated either by an infinite slab of thickness 2a or by an infinite cylinder of 
diameter 2a (cf. figure 2a), the penetration depths are given respectively by [8,9,14] 
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where ΦN denotes the magnetic flux in the normal state (i.e. above the critical temperature Tc). The 
quantity (dΦ/dH0) / (dΦN /dH0) is involved in both above formulas and represents a normalized flux-
derivative which can be determined easily by two experiments (one in the superconducting state below 
Tc and one in the normal state above Tc) , it will be noted hereafter by the letter F, i.e.  
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The purpose of the present section is to find the analytical expressions for F as a function of the 
sample parameters (Jc and geometry) in the case of a bulk sample with a rectangular cross-section (b ≥
 a). The sample is assumed to be infinite in the direction parallel to the magnetic field H; in order to 
keep a finite magnetic moment however, we will consider a layer of thickness z.  In the following 
calculations, we also assume that Jc is independant of H0. 
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Figure 3. Cross-section of a rectangular the sample with dimensions a and b in the isotropic case. The 
supercurrents are assumed to flow along rectangular paths (shaded area). The solid interior lines show 
the field meeting lines when the sample is fully penetrated. 
 
 
The principle of the flux profile determination involves calculating the magnetic moment m caused by 
rectangular shielding currents loops in the sample, as depicted in figure 3. Hence the magnetization M 
is obtained by dividing the magnetic moment m by the sample volume. By replacing Φ = ab µ0(H0+ 
M) and ΦN = abµ0H0 in Eq. (2) the normalized derivative F is given by 
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1
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2.2. Rectangular sample with isotropic critical current density Jcx = Jcy = Jc  
Figure 3 shows a sketch of both sample geometry and current loops for an applied magnetic field of 
amplitude H0. The current density is assumed to be the same for both directions, i.e. Jcx = Jcy = Jc. The 
penetration depth of magnetic flux, p, is equal to H0 / Jc. The area delimited by the shaded current 
loop, situated at a distance x from the flux corner, is given by 
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The total magnetic moment m is given by 
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In the particular case p = a/2 (full penetration condition), the above formula becomes 
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in accordance with the results published some time ago by Gyorgy et al. [22]. The resulting global 
magnetization M is negative and equal to the magnetic moment divided by the sample volume, i.e.  
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Finally, the normalized flux-derivative F is given by  
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This equation is only valid when the magnetic flux penetration depth, p = H0 / Jc, is smaller than the 
half of the smallest side of the rectangular cross-section (a/2), even at the highest applied AC magnetic 
field amplitude H0. Such a condition is realistic in practice since bulk (RE)BCO large grain 
superconductors (where “RE” denotes a rare-earth ion) are characterized by large Jc values [5]. 
 
2.3. Rectangular sample with anisotropic critical current density Jcx ≠ Jcy 
When the current density is anisotropic, the cases (Jcx ≥ Jcy) and (Jcx ≤ Jcy) need to be examined 
separately. Figure 4 shows a sketch of current loops within a rectangular sample (b ≥ a) for which the 
critical current density along the x-direction Jcx is larger than along the y-direction Jcy. The anisotropy 
ratio Jcx / Jcy is denoted by r (in the case of figure 4, one has r ≥1). Taking into account the 
conservation of the total current flow and defining py as the penetration depth of magnetic flux along 
the y-direction, is equal to (py = H0 / Jcy), the magnetic moment m is given by 
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Note that in the particular case py = a/2 (full penetration condition), the above formula becomes 
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in accordance with the calculations published in the literature [22]. The normalized flux-derivative F 
as defined by Eq. (2) is given by 
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The above calculations assumed that the critical current density along the x-direction Jcx was larger 
than along the y-direction Jcy, which led to an anisotropy ratio r = Jcx / Jcy larger than unity. In the 
opposite case (r ≤ 1), two different situations arise. If the ratio (a / 2r) is smaller than b/2, the current 
loops illustrated in Figure 2a are valid and the above calculations are still correct. If a / 2r is larger 
than b/2 - which arises when a > br - the current loops are similar to those shown in figure 2b. The 
corresponding formulations for magnetic properties can be easily obtained through interchanging x 
and y axes. This procedure leads to 
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Figure 4. Supercurrent paths within a rectangular sample which exhibits a critical current density 
anisotropy, in the case  Jcx > Jcy (left) or Jcx < Jcy (right). 
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In the full-penetration limit px = b/2, the magnetic moment is given by 
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Finally, the flux-derivative F is given by 
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3. Discussion 
 
3.1. The influence of the sample geometry 
As can be seen in Eq. (8), (11) and (14), the normalized flux derivative F is a parabolic function of the 
penetration depth p, although Jc is assumed to be a constant. The non-linearity is thus a geometric 
effect which arises from the penetration of flux through both (orthogonal) faces of the sample. As a 
consequence, using a slab or cylinder approximation for a rectangular geometry always leads to the 
following errors : (i) an underestimation of Jc; the error being often in the range 10-20 % and (ii) a 
non-physical curvature of flux profiles.  
 
3.2. The influence of lengthscale of shielding currents 
The determination of Jc from the slope of the flux profiles assumes that shielding (critical) currents 
flow on a macroscopic lengthscale, fixed by the dimensions of the sample cross-section. Any defect in 
the microstructure (macro crack, grain boundary,...) may result in an alteration of this lengthscale, i.e. 
smaller shielding current loops. In the present section we want to investigate how a reduction of the 
lengthscale affects the flux profiles determined by the Campbell method. This has been done here for a 
superconducting sample with rectangular cross-section a = s, b = 2s, where s denotes a fixed and 
known length (e.g. s = 1mm). The magnetic moment m1 generated by shielding currents in the sample 
shown in in the inset of figure 5a is given by  
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Suppose that a very weak link (Jc ≈ 0) parallel to a divides the sample into two identical squared parts 
of side s; the lengthscale of shielding currents is now reduced, as shown in the inset of figure 5a The 
magnetic moment m2 of this sample is given by  
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Similarly, a sample split into 4 identical parts is characterized by a magnetic moment m4 given by 
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Suppose now that the Campbell flux profile method is applied on each of the 3 above samples, and 
that the flux penetration depth is calculated from the measured flux derivatives F by inserting the 
whole sample dimensions, a = s and b = 2s, in Eq. (15), (16), (17). This procedure is equivalent to 
ignoring the weak links and assuming that shielding currents flow on a scale on the order of the 
sample size. The results are shown in figure 5a. The presence of one or two weak links located in the 
middle of the sample is clearly seen to affect the slope of the flux profiles, whatever the formula used 
for its determination. Such a situation is quite different from the case of granular samples for which a 
weak-link network results in a pronounced kink in the flux profile [14,16]. In ceramics, the kink is 
visible because of a non-negligible proportion of weak links in the sample. In the case of isolated weak 
links, the intergrain volume is small and all flux profiles are linear. As a consequence, the above 
simulation shows that isolated weak links may strongly affect the flux profiles determined by the 
Campbell method. However their effects cannot be distinguished from an intrinsically small critical 
current density.  
 
3.3. Anisotropy effects 
In this section we want to examine the effect of an anisotropic Jc on the problem of shielding current 
lengthscales discussed in Sect. 3.2 above. As an example, we compare the slope of the flux derivative, 
dF / dH0, for a "single grain" (SG) rectangular sample with dimensions a ≤ b, and for a "double grain" 
(DG) sample consisting in a juxtaposition of two rectangular samples of dimensions a ≤ (b/2). The 
magnetic moment mSG of the SG sample and the corresponding normalized flux derivative, FSG, are 
given by Eq. (9) and (11). From them we can calculate the initial slope (denoted SSG) of the magnetic 
flux profile (H0,FSG) plot; this slope is given by 
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A similar procedure for the double grain (DG) sample, yields an initial slope (SDG) given by 
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Figure 5. (a) Comparison of the calculated flux profiles for the different “lengthscaled” samples 1, 2 
and 4 schematically illustrated in the inset. The critical current density Jc is assumed to be equal to 104 
A/cm². The flux profiles are calculated by approximating the rectangular cross-section by either a slab 
(squares) of thickness s or a cylinder (triangles) of equivalent radius R = (2/π)1/2 s. The circles refer to 
the flux profiles calculated using the formulas of the present paper, with no assumption on the cross-
section. (b) Comparison of the flux profiles measured for two superconducting bulk YBCO samples, 
(i) the original single grain (SG) sample (black symbols) and (ii) a split double grain (DG) sample. 
The measurement is carried out at T = 77 K. The applied DC magnetic induction is 1500 gauss 
(0.15 T). 
 
 
From Eq. (18) and (19), the ratio of the slopes of the magnetic flux profiles in the two cases, SDG / SSG, 
is given by 
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Several observations can be drawn from the above equation. First, the slope S = dF / dH0, which is 
inversely proportional to the "apparent" critical current density Jc, is clearly higher for the split sample 
than for the original one. However, in the limit case r >> 1, Eq. (20) shows that both slopes are the 
same. Indeed, in such a case, the equivalent “thickness” of current flow parallel to a, is negligible with 
respect to the sample dimensions, and currents in the vicinity of the cutting plane cancel out each 
other. This theoretical result will be compared to the experimental result in the next section. 
 
 
4. Experiment 
Flux profile measurements on a superconducting YBa2Cu3O7-δ single domain are carried out in order 
to illustrate how the theoretical formulas developed above can be applied in practice. The single 
domain material is synthesised by a method described elsewhere [23,24]. The samples are 
characterized by the following superconducting parameters : critical current density Jc = 104 A/cm² 
and Tc = 89 K. Measurements of the critical current density for both directions gives an anisotropy 
ratio (Jc

ab / Jc
c) close to 3 at low magnetic inductions (< 0.5 T) [24,25]. 

    Since the theoretical results clearly show (cf. Eq. (20)) that flux profile measurements are sensitive 
to the lengthscale over which shielding currents flow, the question we want to address is whether the 
shielding current loops when the magnetic field is applied parallel to the ab planes (and hence 
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shielding currents do have a component parallel to the c-axis) are macroscopic, i.e. flow along the 
perimeter of the sample, or microscopic, i.e. flow along small circular loops because of the numerous 
microcracks and platelet boundaries in the single domain. To answer this question, magnetic flux 
profiles are first measured on a single grain sample with the applied field parallel to ab (“original” 
sample). Then the specimen is cleaved along the ab planes, both identical parts are repositioned side 
by side, glued with insulating GE varnish, and the same measurement is repeated (“cut and glued” 
sample). The sample geometries and results are summarized in figure 5b. When comparing both 
curves, it turns out that for a given magnetic field value, the AC penetration depth is higher in the case 
of the cleaved sample than for the original large specimen. The average slopes are found to differ by 
12 %. From the results worked out above (Eq. 20), the ratio of slopes measured for single grain (SG) 
and double grain (DG) can be calculated analytically, knowing the dimensions of the original 
specimen cross section (b ≥ a), and the anisotropy ratio r (= Jc

ab / Jc
c). In the present case, one has 

b = 2a and r ≈ 3. By assuming macroscopic shielding current loops, the theoretical ratio is thus given 
by SDG / SSG = 1.14. This result is in fairly good agreement with the measured data (1.12). In contrast, 
if the current loops were microscopic, i.e. much smaller than the sample dimensions, the flux profiles 
would not be influenced by the cutting / rejoining process. Consequently, the measurement result gives 
experimental evidence that shielding currents globally flow over a lengthscale comparable to the 
sample size, despite the presence of cracks and platelet boundaries. As discussed in ref. [24], the 
examination of M(H) loops on the same sample leads the same conclusion, but the sensitivity of the 
experiment is much more pronounced in the present case.  
    From this result we can conclude that the magnetic flux profiles are not only helpful in bringing out 
current density inhomogeneities but also in examining the influence of shielding currents lengthscales 
in bulk, large grain superconducting samples.  
 
5. Conclusion 
In this paper we developed analytical expressions relevant to the magnetic flux profile methods. 
Generally speaking, these methods consist in applying an external AC magnetic field and recording 
the magnetic flux Φ threading the sample cross-section, in order to deduce the penetration depth p as a 
function of the AC field amplitude H0. If the AC field is superimposed to a bias DC field, the critical 
current density Jc may be assumed to be field-independent. In such a case, the slope of the flux profile 
gives the local critical current density. In the present work, flux profiles were calculated for samples of 
rectangular cross-section characterized by a field-independent but anisotropic critical current density. 
Such a model is quite appropriate for a crystal-like superconducting sample, e.g. a single crystal or a 
bulk, large grain YBCO superconductor. The effects resulting from approximating the parallelipipedic 
geometry by either a cylinder or a slab geometry were discussed. It was also shown that a few isolated 
weak links in the material affect the slope of the flux profile. Such a situation differs from a ceramic 
containing a weak link network, which results in a kink in the flux profile. Finally, we showed how the 
slope of flux profiles is influenced by the lengthscale of shielding currents. In the case of bulk melt-
textured sample with applied field parallel to ab plane, the theoretical results were found to agree 
nicely with experiments.  
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