
SUBMITTED TO IEEE/ACM TRANSACTIONS ON NETWORKING 1

DMFSGD: A Decentralized Matrix Factorization
Algorithm for Network Distance Prediction

Yongjun Liao, Wei Du, Pierre Geurts and Guy Leduc

Abstract—The knowledge of end-to-end network distances is
essential to many Internet applications. As active probing of all
pairwise distances is infeasible in large-scale networks, a natural
idea is to measure a few pairs and to predict the other ones
without actually measuring them. This paper formulates the dis-
tance prediction problem as matrix completion where unknown
entries of an incomplete matrix of pairwise distances are to be
predicted. The problem is solvable because strong correlations
among network distances exist and cause the constructed distance
matrix to be low rank. The new formulation circumvents the well-
known drawbacks of existing approaches based on Euclidean
embedding.

A new algorithm, so-called Decentralized Matrix Factorization
by Stochastic Gradient Descent (DMFSGD), is proposed to solve
the network distance prediction problem. By letting network
nodes exchange messages with each other, the algorithm is
fully decentralized and only requires each node to collect and
to process local measurements, with neither explicit matrix
constructions nor special nodes such as landmarks and central
servers. In addition, we compared comprehensively matrix factor-
ization and Euclidean embedding to demonstrate the suitability
of the former on network distance prediction. We further studied
the incorporation of a robust loss function and of non-negativity
constraints. Extensive experiments on various publicly-available
datasets of network delays show not only the scalability and the
accuracy of our approach but also its usability in real Internet
applications.

Index Terms—network distance prediction, matrix completion,
matrix factorization, stochastic gradient descent.

I. INTRODUCTION

On large networks such as the Internet, many applications
require the knowledge of end-to-end network distances in
order to achieve Quality of Service (QoS) objectives. In the
networking field, the distance between two network nodes is
defined by the delay or latency between them, in the form
of either one-way delay or more often round-trip time (RTT).
Examples include peer-to-peer file sharing, overlay networks,
and content distribution systems where peers preferably access
nodes or servers that are likely to respond fast [1]–[7].

Clearly, it is infeasible to probe actively end-to-end dis-
tances among all pairs of nodes in large networks as the
demand in terms of measurements grows quadratically with the
scale of the network. A natural idea is to probe a small set of
pairs and then predict the distances between other pairs where
there are no direct measurements. This understanding has

Yongjun Liao and Guy Leduc are with Research Unit in Networking (RUN),
University of Liège, Belgium. Email: {yongjun.liao, guy.leduc}@ulg.ac.be.

Wei Du is with Intelligent and Interactive Systems (IIS), University of
Innsbruck, Austria. Email: wei.du@uibk.ac.at.

Pierre Geurts is with Systems and Modeling, University of Liège, Belgium.
Email: p.geurts@ulg.ac.be.

motivated numerous research on Network Coordinate System
(NCS) [8]–[12]. For instance, approaches based on Euclidean
embedding have been widely studied and achieved good
performance in interesting scenarios [9], [13]. Realizing that
the assumption of Euclidean distance properties (symmetry
and triangle inequality) are often violated in practice, as
observed in various studies [9], [14]–[18], matrix factorization
has recently drawn increasing attention of the networking
community [10], [11].

In this paper, we investigate matrix factorization for network
distance prediction. In particular, we formulate the problem of
network distance prediction as a matrix completion problem
where a partially observed matrix is to be completed [19]–
[21]. Here, the matrix contains distance measurements such
as RTTs between network nodes with some of them known
and the others unknown thus to be filled. Matrix completion
is only possible if matrix entries are largely correlated, which
certainly holds for network distances because Internet paths
with nearby end nodes often overlap and share common
bottleneck links. These redundancies among network paths
cause the constructed distance matrix to be low rank, which
will be empirically demonstrated for various RTT datasets.

Although numerous approaches to matrix completion have
been proposed, many of which are based on low-rank matrix
factorization [22]–[24], very few are directly applicable to
network applications where decentralized processing of data is
most of the time a necessity. In this paper, we propose a fully
decentralized algorithm based on Stochastic Gradient Descent
(SGD), which is founded on the stochastic optimization theory
with nice convergence guarantees [25].

The so-called Decentralized Matrix Factorization by
Stochastic Gradient Descent (DMFSGD) algorithm has two
distinct features. First, it requires neither explicit constructions
of matrices nor special nodes such as landmarks and central
servers where measurements are collected and processed. In-
stead, by letting network nodes exchange messages with each
other, matrix factorization is collaboratively and iteratively
achieved at all nodes, with each node equally retrieving a num-
ber of distance measurements. Second, the algorithm is simple,
with no infrastructure, and is computationally lightweight,
containing only vector operations. These features make it
suitable for dealing with practical problems, when deployed in
real applications, such as measurement dynamics where net-
work measurements vary largely over time and network churn
where nodes join and leave a network frequently. Extensive
experiments on various publicly-available RTT datasets show
not only the scalability and the accuracy of our approach but
also its usability in real Internet applications.

ar
X

iv
:1

20
1.

11
74

v1
 [

cs
.N

I]
 5

 J
an

 2
01

2

LIAO et al.: DMFSGD: A DECENTRALIZED MATRIX FACTORIZATION ALGORITHM FOR NETWORK DISTANCE PREDICTION 2

Our preliminary work on decentralized matrix factorization
for network distance prediction was published in [11]. In the
present paper, we make the following distinct contributions:
• Our previous approach in [11] was based on Alternating

Least Squares (ALS), requiring each node to probe all
local measurements simultaneously. In contrast, the new
SGD-based approach allows each node to probe one
measurement at a time, making the system more flexible.
The new approach also addresses several issues arising
when applied practically, including the difficult choice
of the learning rate parameter and the consideration of
passive distance acquisitions and dynamic measurements.

• We compare comprehensively matrix factorization and
Euclidean embedding to reveal the suitability of matrix
factorization. A unified view is provided which leads to
a unified optimization framework to solve both of them.

• Two extensions of the current matrix factorization model
are proposed, including the incorporation of a robust loss
function and the introduction of constraints in the model
to ensure the nonnegativity of the predicted distances.
These extensions are found helpful in improving the
accuracy of the prediction and require little modification
to the algorithm with no additional computational cost.

• In addition, more extensive evaluations have been carried
out to study not only the impact of the parameters but also
the accuracy of our approach. In particular, we highlight
the usability of our approach by simulations on real
dynamic data collected from a peer-to-peer file sharing
application, namely Azureus [2], [13].

The rest of the paper is organized as follows. Section II
summarizes the related work on network distance prediction
based on Euclidean embedding and matrix factorization. Sec-
tion III introduces the formulation of network performance
prediction as matrix completion and its resolution by low-rank
matrix factorization. Section IV describes the decentralized
matrix factorization algorithm based on Stochastic Gradient
Descent. Section V discusses possible extensions to the current
matrix factorization model. Section VI evaluates our approach
on various publicly available datasets of RTT. Conclusions and
future work are given in Section VII.

II. RELATED WORK

Among numerous works on network distance prediction,
we only discuss and compare approaches based on Euclidean
embedding and on matrix factorization due to their simplicity
and generality. We refer the interested readers to [12] for a
more detailed review of this field.

A. Euclidean Embedding
A straightforward approach to network distance prediction is

to embed network nodes into a metric space where each node
is assigned a coordinate from which distances can be directly
computed. Two representatives are Globe Network Positioning
(GNP) [8] and Vivaldi [9].

GNP firstly proposed the idea of network embedding that
relies on a small number of landmarks. Based on inter-
landmark distance measurements, the landmarks are first em-
bedded into a metric space such as Euclidean or spherical

coordinate systems. Then, the ordinary nodes calculate their
coordinates with respect to the landmarks. Vivaldi extended
GNP in a decentralized manner by eliminating the landmarks.
It simulates the network by a physical system of spring and
minimizes its energy according to Hooke’s law to find an
optimal embedding.

In all metric spaces, distances undergo two important prop-
erties:

• Symmetry: d(A,B) = d(B,A);
• Triangle Inequality: d(A,B) + d(B,C) > d(A,C).

However, network distances are not necessarily symmetric
especially when represented by one-way delays [26], [27]. The
bigger issue is the property of triangle inequality. Many studies
have shown that the violations of triangle inequality (TIV) are
widespread and persistent in current Internet [9], [14]–[18].
In the presence of TIVs, metric space embedding shrinks the
long edges and stretches the short ones, degrading heavily the
accuracy of the embedding. Figure 1 illustrates the idea of
Euclidean embedding for network distance prediction and the
impact of TIVs on the accuracy.

Without loss of generality, we focus on the simplest metric
space, namely Euclidean coordinate systems, in the rest of the
paper.

B. Matrix Factorization

Alternatively, matrix factorization has also been used for
network distance prediction (see Figure 2 for an illustration).
The biggest advantage of matrix factorization is that it makes
no assumption of Euclidean distance properties and thus can
tolerate the widespread TIVs and the possible asymmetry in
network distance spaces.

The first system based on matrix factorization was Inter-
net Distance Estimation Service (IDES) [10] which has the
same landmark-based architecture as GNP. IDES factorizes a
small but full inter-landmark distance matrix, at a so-called
information server, by using Singular Value Decomposition
(SVD). Similarly, Phoenix treated the early-entered nodes
as landmarks and allowed an ordinary node to select any
existing nodes in the system which already have coordinates
assigned [28]. Landmark-based systems suffers from several
drawbacks including single-point failures, landmark overloads,
and potential security problems. The selection of landmarks
can also affect the accuracy of the prediction. Moreover, in
Section III-D, we will show that landmark-based approaches
are actually special cases of a general decentralized matrix
factorization model and thus can also be solved by our
approach.

III. NETWORK DISTANCE PREDICTION BY MATRIX
FACTORIZATION

This section formulates the problem of network distance
prediction as matrix completion and describes its resolution
by matrix factorization. We also provide a unified view of dif-
ferent approaches to network distance prediction, the insights
of which lead to a unified optimization framework.

LIAO et al.: DMFSGD: A DECENTRALIZED MATRIX FACTORIZATION ALGORITHM FOR NETWORK DISTANCE PREDICTION 3

3030

50A(10,10) B(60,10)BA
100

10

C

Euclidean Space

10

Internet Delay Space
C(35,26)

Embedding

Fig. 1. Network distance prediction by Euclidean Embedding.

25 20 32 23

25 27 20 25 31

23 25 27 33

20 27 20 10

20 18 21 29

27 21 33

31 18 19 39

43 31 33 39

D

≈ X

︷︸︸︷r columns

× Y T =

26 39 19 35 25 28 41

24 29 6 18 6 23 30

39 29 27 19 33 13 30

19 6 24 19 6 18 34

35 18 19 20 20 25 16

23 6 25 6 20 19 34

28 23 13 16 25 22 44

41 30 30 34 16 34 44

D̂

Fig. 2. Network distance prediction by matrix factorization. Note that the diagonal entries of D and D̂ are empty.

A. Problem Formulation

Assuming n nodes in the network, a n× n distance matrix
is constructed with some distances between nodes measured
and the others unmeasured. Denote D the measured distance
matrix with dij the measured distance from node i to node
j and D̂ the predicted distance matrix with d̂ij the predicted
distance computed from some function.

Given the above notations, network distance prediction can
be viewed as a matrix completion problem that estimates
the missing entries in D from a small number of known
entries [20]. Its resolution generally amounts to minimizing
a loss function of the following form

L(D, D̂,W) =

n∑

i,j=1

wij l(dij , d̂ij), (1)

where W is a weight matrix with wij taking values between
0 and 1. In a simple case, wij = 1 if dij is measured
and 0 otherwise. Note that if the distance measurements are
RTTs, then dji = dij as RTTs are approximately symmetric.
Consequently, wji = wij as dji and dij are either both known
or both unknown.
l is a loss function that penalizes the difference between an

estimate and its desired or true value. The most commonly-
used loss function is the L2 or square loss function,

l(d, d̂) = (d− d̂)2. (2)

We will discuss other loss functions in Section V.

B. Low-Rank Approximation and Matrix Factorization

Additional constraints are needed to solve the matrix com-
pletion problem in eq. 1. A common approach is to constrain
the rank of the approximate matrix D̂ so that

Rank(D̂) = r, (3)

where r � n for D of size n× n
The assumption in this low-rank approximation is that the

entries of D are largely correlated, which causes D to have
a low effective rank. To show that it holds for our problem,
Figure 3 plots the singular values of two RTT matrices. It
can be seen that the singular values of both matrices decrease
fast as the 10th singular values are 5.7% and 2.9% of the
largest ones respectively, indicating strong correlations in
them. The low-rank nature of many other RTT datasets have
been previously reported in [29].

Directly finding D̂ by minimizing eq. 1 subject to eq. 3 is
considerably difficult due to the rank constraint. However, as
D̂ is of low rank, we can factorize it into the product of two
smaller matrices, i.e.,

D̂ = XY T , (4)

where X and Y are of size n× r. Therefore, we can get rid
of the rank constraint by replacing D̂ by XY T in eq. 1, and
then look for X and Y instead by minimizing

L(D,X, Y,W) =

n∑

i,j=1

wij l(dij , xiy
T
j), (5)

where xi is the ith row of X , yi is the ith row of Y , and
xiy

T
j = d̂ij is the estimate of dij . Note that the factorization

LIAO et al.: DMFSGD: A DECENTRALIZED MATRIX FACTORIZATION ALGORITHM FOR NETWORK DISTANCE PREDICTION 4

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

singular value

s
in

g
u
la

r
v
a
lu

e
s

P2psim525

Meridian2255

Fig. 3. The singular values of a RTT matrix of 2255×2255, extracted from
the Meridian dataset [30] and called “Meridian2255”, and of a RTT matrix of
525× 525, extracted from the P2psim dataset [30] and called “P2psim525”.
The singular values are normalized so that the largest singular values of both
matrices are equal to 1.

in eq. 4 has no unique solution as

D̂ = XY T = XGG−1Y T , (6)

where G is any arbitrary r×r invertible matrix. Thus, replacing
X by XG and Y T by G−1Y T results in the same D̂.

Generally, the class of techniques to solve the low-rank
approximation is matrix factorization. When D is complete,
analytic solutions can be found by using singular value de-
composition (SVD) [31]. With missing entries, the factoriza-
tion is usually done by iterative optimization methods such
as Gradient Descent or Newton algorithms [32]. Note that
additional constraints can be imposed in eq. 5. For instance, the
entries of X and Y can be required to be nonnegative in order
to recover a nonnegative matrix, leading to the nonnegative
matrix factorization (NMF) [33].

C. Incorporation of the Regularization

Matrix completion by matrix factorization suffers from a
well-known problem called overfitting in the field of machine
learning [34]. In words, directly optimizing eq. 5 often leads
to a “perfect” model with no or small errors on the training
data while having large errors on the unseen data which are
not used in learning. The problem is more severe when D is
sparse or when r is large.

A common way to avoid overfitting is through regularization
that penalizes the norms of the solutions, resulting in the
following regularized loss function,

L(D,X,Y,W, λ) = (7)
n∑

i,j=1

wij l(dij , xiy
T
j) + λ

n∑

i=1

xix
T
i + λ

n∑

i=1

yiy
T
i ,

where λ is the regularization coefficient that controls the extent
of regularization.

Besides avoiding overfitting, the regularization also helps
overcome the drift of the solutions due to the non-uniqueness
of the factorization (see eq. 6), which often leads to the
overflows of the solutions. Among the infinite number of pairs

Fig. 4. Architectures of landmark-based, the left plot, and decentralized, the
right plot, systems for network distance prediction. The squares are landmarks
and the circles are ordinary nodes. The directed path from node i to node j
means that node i probes node j and therefore wij = 1.

of X and Y which produce the same D̂, the incorporation
of the regularization will force to choose the pair with the
smallest norm.

D. A Unified View of Approaches to Network Distance Pre-
diction

Although popular approaches to network distance predic-
tion vary by adopting various models including Euclidean
embedding and matrix factorization and by adopting different
architectures of either landmark-based or landmark-less and
thus decentralized, these seemingly different approaches all
optimize the same function in eq. 1 but differ only in the
setting of wij and in the associated distance functions to
calculate d̂ij .
• Setting of wij : For landmark-based methods, as all paths

between landmarks are measured and ordinary nodes
probe only the landmarks,

wij =

{
1 if node j is a landmark
0 otherwise

.

For decentralized methods, as each node equally probes
a number of nodes,

wij =

{
1 if node i probes node j
0 otherwise

.

Figure 4 illustrates the architectures of landmark-based
and decentralized systems.

• Distance functions to calculate d̂ij : For matrix factoriza-
tion, as described above,

d̂ij = xiy
T
j , (8)

For Euclidean embedding, the Euclidean distance is de-
fined as

d̂ij =
√

(xi − xj)T (xi − xj), (9)

where xi and xj are the Euclidean coordinates of node i
and node j.

The above insights suggest a unified framework to treat and
to solve equally network distance prediction under different
models and different architectures. For instance, the decentral-
ized matrix factorization algorithms proposed in the following
sections can be used to solve both Euclidean embedding and
landmark-based systems with little modification.

LIAO et al.: DMFSGD: A DECENTRALIZED MATRIX FACTORIZATION ALGORITHM FOR NETWORK DISTANCE PREDICTION 5

IV. DECENTRALIZED MATRIX FACTORIZATION FOR
NETWORK DISTANCE PREDICTION

The goal is to find X and Y such that XY T best approxi-
mates D by minimizing Eq. 7. Commonly, it requires to collect
and to process a number of distance measurements at a central
node, which is a major obstacle to network applications.
Below, we introduce algorithms to minimize eq. 7 in a fully
decentralized manner.

A. Problem Formulation

A decentralized resolution of eq. 7 forbids the explicit
constructions of large matrices. Thus, each row of X and of
Y , denoted by xi and yi and called the x and y coordinates of
node i in the sequel, are stored distributively at each node. To
calculate xi and yi locally, we let node i probe and exchange
messages with a number of nodes in the network, called
neighbors in the sequel, and optimize the following losses

li =

n∑

j=1

wi
j l(dij , xiy

T
j) + λxix

T
i , (10)

li =

n∑

j=1

wi
j l(dji, xjy

T
i) + λyiy

T
i , (11)

where wi
j represents the neighboring relationship of node j

to node i, i.e., wi
j = 1 if node j is a neighbor of node i or

equivalently if node i probes node j, and 0 otherwise. Note
that as wi

j is not necessarily equal to wj
i , measurements dij

and dji may only be known by one node of either node i or
node j but not by the other.

Essentially, li is the regularized loss of the edges from node
i to other nodes and li is that of the edges from other nodes to
node i. Thus, we address the large-scale optimization problem
in eq. 7 by decomposing it into a number of subproblems in
eqs. 10 and 11 which can be solved locally at each node by
using only local measurements.

In seeing that eqs. 10 and 11 are standard least-squares
problems where analytical solutions exist, our previous work
in [11] solved the matrix factorization problem by Alternat-
ing Least Squares (ALS), which alternatively and iteratively
solves the small least-squares problems in eqs. 10 and 11.
While the ALS-based algorithm performed well in simula-
tions on datasets containing static measurements, it requires
each node to probe measurements with a number of nodes
simultaneously, which is impractical when deployed in real
applications. Below, we propose a different algorithm based
on Stochastic Gradient Descent (SGD) that processes, at each
node, measurements one by one and one at a time.

B. Stochastic Gradient Descent (SGD)

SGD is a variation of traditional Batch Gradient Descent
which is often used for online machine learning [25]. Instead
of collecting all training samples beforehand and computing
the gradients over them, each iteration of SGD chooses one
training sample at random and updates the parameters being
estimated along the negative gradients computed over that
chosen sample. SGD is particularly appropriate for network

applications, as measurements can be acquired on demand and
processed locally at each node. It also has simple update rules
that involve only vector operations and is able to deal with
large-scale dynamic measurements.

1) Stochastic Updates: When using SGD, each node probes
one neighbor at a time, measures its distance with respect to
that node and retrieves that node’s coordinates. Let node j be
the chosen neighbor by node i at the current time. Then, the
regularized losses that node i seeks to reduce with respect to
node j are

lij = l(dij , xiy
T
j) + λxixi

T , (12)

lji = l(dji, xjy
T
i) + λyiyi

T . (13)

The gradients of lij and lji are

∂lij
∂xi

=
∂l(dij , xiy

T
j)

∂xi
+ λxi, (14)

∂lji
∂yi

=
∂l(dji, xjy

T
i)

∂yi
+ λyi. (15)

In particular, the gradients of the L2 loss function are

∂l

∂xi
= −(dij − xiyTj)yj , (16)

∂l

∂yi
= −(dji − xjyTi)xj . (17)

Note that we dropped the factor 2 from the derivatives of
the regularization terms and of the L2 loss function for
mathematical convenience.

Then, node i updates its coordinates along the negative
gradient directions, given by

xi = (1− ηλ)xi + η(dij − xiyTj)yj , (18)

yi = (1− ηλ)yi + η(dji − xjyTi)xj , (19)

where η, called learning rate or step size, controls the speed
of the updates.

2) Minibatch and Line Search: The SGD algorithm is
sensitive to the learning rate η, where a too large η results in
large steps of updates and may overflow the solution, whereas
a too small η makes the convergence slow. This sensitivity can
be relieved by using more training samples at the same time,
leading to minibatch SGD with the following update rules

xi = (1− ηλ)xi + η

n∑

j=1

wi
j(dij − xiyTj)yj , (20)

yi = (1− ηλ)yi + η

n∑

j=1

wi
j(dji − xjyTi)xj . (21)

To completely get rid of η, a line search strategy can be
incorporated to determine η adaptively [35]. In particular, in
each update, η starts with a large initial value and is gradually
decreased until the losses in eqs. 10 or 11 are reduced after the
update. The line search algorithm for updating xi is given in
Algorithm 1. The same algorithm can be used for updating yi
by replacing eq. 10 by eq. 11 and eq. 20 by eq. 21. Note that
δ in Line 6 is a small positive constant that helps overcome
poor local optimums. We will demonstrate the effectiveness
of adapting η by line search using Algorithm 1 in Section VI.

LIAO et al.: DMFSGD: A DECENTRALIZED MATRIX FACTORIZATION ALGORITHM FOR NETWORK DISTANCE PREDICTION 6

Algorithm 1 Line Search (for updating xi)
1: compute l0i by eq. 10;
2: initialize η with a large value;
3: for i = 1 to maxNumberLineSearch do
4: compute xi by eq. 20;
5: compute li by eq. 10;
6: if li < l0i + δ then
7: return
8: end if
9: η ←− η/2;

10: end for

C. Neighbor Decay and Neighbor Selection

As mentioned earlier, it is preferable to have a system that
probes and processes measurements one by one. Thus, we let
each node maintain the information (distance measurements
and coordinates) of its neighbors, i.e., the nodes with which
it communicates. In minibatch SGD, each node probes one
neighbor at a time but updates its coordinates with respect to
all neighbors in the neighbor set using their recorded historical
information.

A neighbor decay strategy is incorporated that scales the
weight of each node in the neighbor set by its age so that
older information receives less weight, i.e.,

wi
j =

amax − aj∑
j∈NeighborSet(i)(amax − aj)

, (22)

where aj is the age of the information of node j and amax is
the age of the oldest information in the neighbor set. Note that
this neighbor decay strategy was firstly proposed by [13] to
overcome the problem of skewed neighbor update in Vivaldi.
In words, some nodes may be probed at far greater frequency
than others due simply to their longer life cycles and a direct
consequence is that the optimization will become skewed
toward these nodes.

Conventionally, the neighbors of a node are selected ran-
domly and the distances between a node and its neighbors are
probed by active measurements [9]. However, in practice, it
is more attractive to perform the updates of the coordinates
passively without generating any extra traffic. In some appli-
cations such as Azureus, passivity is enforced, as we have
no control over the selection of neighbors with which a node
communicates and when it communicates with them [13].

Therefore, we differentiate the situations where distances
are probed by active and passive measurements. For the
former, the conventional random neighbor selection procedure
is adopted, i.e., each node randomly selects k nodes as its
neighbors and actively probes one of them from time to time.
For the latter, no neighbor selection is performed explicitly
and each node maintains a relatively small set of active
neighbors with which it recently communicated and updates its
coordinates whenever a new measurement is made available.
Note that this difference has no impact on the update rules in
eqs 18 and 19 or in eqs 20 and 21.

Algorithm 2 DMFSGD(i, j)
1: node i retrieves dij , dji, xj , yj actively or passively;
2: node i updates the weights of its neighbors by eq. 22;
3: update xi by eq. 20 with η set by line search;
4: update yi by eq. 21 with η set by line search;

D. Algorithm

We denote the SGD-based decentralized matrix factoriza-
tion algorithm as DMFSGD, given in Algorithm 2. Like
Vivaldi [9], our DMFSGD algorithm has no infrastructure and
employs the same process at all nodes. It is simple, with update
rules containing only vector operations.

In the implementation, the coordinates of each node are
initialized with random numbers uniformly distributed be-
tween 0 and 1. Empirically, the algorithm is insensitive to
the random initializations of the coordinates. We would like
to point out that the algorithm is one of those randomized
gossip algorithms where each node exchanges messages with
a number of other nodes randomly [36].

As mentioned earlier, the algorithm is generic and can also
deal with landmark-based architectures, by letting each node
only select landmarks as its neighbors, and with Euclidean
embedding, by adopting the Euclidean distance defined as
eq. 9 when optimizing eq. 1, which leads to the update rule
of Vivaldi [9], given by

xi = xi − η
∂l(dij , d̂ij)

∂xi
= xi + η(dij − d̂ij)

xi − xj
d̂ij

.

Note that Vivaldi adopted the L2 loss function in eq. 1 with
no regularization incorporated, and the learning rate η, termed
differently as timestep, was adapted by taking into account
some confidence measure of each node to its coordinate. Thus,
Vivaldi can be viewed as a SGD-based decentralized Euclidean
embedding algorithm, instead of the simulation of a spring
system in [9].

V. EXTENDED MATRIX FACTORIZATION MODELS

This section discusses possible ways to extend the common
matrix factorization model.

A. Robust Matrix Factorization

The widely-used L2 loss function is known to be sensitive
to outliers which often occur in network measurements due
to network anomaly such as sudden traffic bursts and attacks
from malicious nodes. Other loss functions such as the L1

loss function, the ε-insensitive loss function and the Huber
loss function are more robust and can tolerate outliers [37],
[38]. For example, the L1 loss function is defined as

l(d, d̂) = |d− d̂|. (23)

Thus, we can potentially enhance the robustness of matrix
factorization by replacing the L2 loss function by e.g. the L1

loss function, and the same SGD procedure can be applied to
solve the robust matrix factorization problem. Note that the

LIAO et al.: DMFSGD: A DECENTRALIZED MATRIX FACTORIZATION ALGORITHM FOR NETWORK DISTANCE PREDICTION 7

L1 loss function is non-differentiable and the gradients have
to be approximated by the subgradients 1, given by

∂l

∂xi
= −sign(dij − xiyTj)yj , (24)

∂l

∂yi
= −sign(dji − xjyTi)xj . (25)

Replacing the gradient functions of eqs. 14 and 15 by eqs. 24
and 25, the update rules of minibatch SGD become

xi = (1− ηλ)xi + η

n∑

j=1

sign(dij − xiyTj)wi
jyj , (26)

yi = (1− ηλ)yi + η

n∑

j=1

sign(dji − xjyTi)wi
jxj , (27)

Comparing eqs. 26 and 27 with eqs. 20 and 21, the only
difference is that for the L2 loss function, the magnitudes of
the updates are proportional to the fitting errors (d − xyT),
whereas for the L1 loss function, only the signs of the fitting
errors are taken into consideration and decide the directions
of the updates.

B. NonNegativity Constraint

Conventional matrix factorization techniques do not pre-
serve the nonnegativity of the distances. Empirically, only
a very small portion of the predicted distances were found
negative by our DMFSGD algorithm, and a direct solution is
to turn d̂ij into a small positive value if d̂ij = xiy

T
j < 0.

A systematic solution is to incorporate the nonnegativity
constraint in matrix factorization, leading to the nonnegative
matrix factorization (NMF) that optimizes

n∑

i,j=1

wij l(dij , xiy
T
j) + λ

n∑

i=1

xix
T
i + λ

n∑

i=1

yiy
T
i , (28)

subject to xi > 0, yi > 0, i = 1, . . . , n.

The optimization of NMF is not fundamentally different from
that of the unconstrained matrix factorization, adding only one
projection step that turns the negative entries in xi and yi into
zero after each SGD update which causes no noticeable impact
on the speed of the algorithm. The technique is also known
as projected gradient descent [39].

Note that the nonnegativity constraint has been previously
studied in [10], [28], both of which adopted a more heavy-
weight nonnegative least-squares solver.

C. Symmetric Distance Matrix Factorization

Also note that network distances are symmetric if repre-
sented by RTT and that this symmetry is not preserved either.
A direct solution is to turn the predicted distances symmetric
by defining a symmetric distance function as

d̂sij =
d̂ij + d̂ji

2
=
xiy

T
j + xjy

T
i

2
. (29)

1Analogously, the subgradient-based technique that optimizes non-
differentiable functions is called subgradient descent [35]. Following the
convention in [25], we use the term SGD to refer to both Stochastic Gradient
and SubGradient Descent.

Algorithm 3 Extended DMFSGD(i, j)
1: node i retrieves dij , dji, xj , yj actively or passively;
2: node i updates the weights of its neighbors by eq. 22;
3: if use L2 loss function then
4: update xi by eq. 20 with η set by line search;
5: update yi by eq. 21 with η set by line search;
6: else // use L1 loss function
7: update xi by eq. 26 with η set by line search;
8: update yi by eq. 27 with η set by line search;
9: end if

10: if force nonnegativity then
11: turn the negative entries in xi and yi into 0;
12: end if

As distances are defined as in eq. 29, a systematic solution
is to factorize D by optimizing

n∑

i=1

n∑

j=1

wij l(dij , d̂
s
ij) + λ

n∑

i=1

xix
T
i + λ

n∑

i=1

yiy
T
i . (30)

Similar SGD update rules can be derived.

D. Height Model
The height model in Vivaldi [9] can also be incorporated.

This model augments the x and y coordinates of a node
with a height. Similarly, the x and y coordinates model the
high-speed Internet core, while the height models the time
packets take to travel the access link from the node to the
Internet core. The cause of the access link distance includes
queuing delay and low bandwidth [9]. The height augmented
symmetric distance is defined as

d̂hsij =
xiy

T
j + xjy

T
i

2
+ hi + hj . (31)

Correspondingly, the loss function to be optimized becomes
n∑

i=1

n∑

j=1

wi
j l(dij , d̂

hs
ij) + λ

n∑

i=1

xix
T
i + λ

n∑

i=1

yiy
T
i . (32)

Similar SGD update rules can be derived.

E. Extended DMFSGD Algorithm
Empirically, we found no or little improvements by incorpo-

rating the symmetric or height-augmented symmetric distance
function in eq. 29 or 31, thus include neither of them in
our system. However, the incorporation of the nonnegativity
constraint and the robust loss function not only improved
the accuracy but also made the results more stable and less
sensitive to parameter settings, which will be demonstrated
in Section VI. The extended DMFSGD algorithm is given in
Algorithm 3. Note that as the basic version in Algorithm 2 is
a special case of the extended version in Algorithm 3, we will
refer to Algorithm 3 simply as DMFSGD in the sequel.

VI. EXPERIMENTS AND EVALUATIONS

In this section, we evaluate our DMFSGD algorithm2 and
compare it with state-of-the-art approaches.

2The source code of the algorithm will be publicly available soon.

LIAO et al.: DMFSGD: A DECENTRALIZED MATRIX FACTORIZATION ALGORITHM FOR NETWORK DISTANCE PREDICTION 8

A. Evaluation Methodology

The evaluations were performed under the following criteria
and on the following datasets.

1) Evaluation Criteria:
• Cumulative Distribution of Relative Estimation Error

Relative Estimation Error (REE) is defined as

REE =
|d̂ij − dij |

dij
.

• Stress Stress measures the overall fitness and is used to
illustrate the convergence of the algorithm, defined as

stress =

√√√√
∑n

i,j=1 (dij − d̂ij)2∑n
i,j=1 dij

2 .

• Median Absolute Error Median Absolute Error (MAE)
is defined as

MAE = medianij(|dij − d̂ij |).

2) Datasets:
• Harvard226 contains dynamic and passive measure-

ments of application-level RTTs, with timestamps, be-
tween 226 Azureus clients collected in 4 hours [13].

• P2PSim1740 was obtained from the P2PSim project that
contains static RTT measurements between 1740 Internet
DNS servers [40], [41].

• Meridian2500 was obtained from the Cornell Meridian
project that contains static RTT measurements between
2500 nodes [30].

• P2PSim525 is a complete submatrix between 525 nodes
derived from P2psim1740.

• Meridian2255 is a complete submatrix between 2255
nodes derived from Meridian2500.

• Synthetic1000 contains the pairwise distances between
1000 nodes that are randomly generated in a 10-
dimensional Euclidean space.

The first five datasets were obtained from real-world networks
and contain a large percentage of TIV edges, whereas the last
one was synthesized and is TIV free. Here, an edge AB is
claimed to be a TIV if there exists a triangle 4ABC where
AB > BC + AC. The last three datasets were only used
in section VI-B for the purpose of comparing the models of
Euclidean embedding and matrix factorization.

Table I summarizes these datasets. Note that we can neither
tell the symmetry nor calculate the TIV percentage of the
Harvard226 dataset, as the measurements between network
nodes vary over time largely, sometimes in several orders of
magnitudes. The Harvard226 dataset is rather dense with about
3.9% pairwise paths unmeasured in 4 hours. The other paths
are measured in uneven frequencies with one measured the
maximal 662 times and one the minimal 2 times. About 94.0%
of the paths are measured between 40 and 60 times.

3) Implementations for Different Datasets: As mentioned
earlier, the DMFSGD algorithm adopts the conventional ran-
dom neighbor selection procedure in the scenarios where mea-
surements are probed actively and maintains dynamically an

TABLE I
PROPERTIES OF THE DATASETS

Dataset Nodes Symmetry TIV percentage Dynamic
Harvard226 226 / / Yes
P2PSim1740 1740 Yes 85.53% No
Meridian2500 2500 Yes 96.55% No
P2PSim525 525 Yes 76.17% No

Meridian2255 2255 Yes 96.25% No
Synthetic1000 1000 Yes No No

active neighbor set for each node in the scenarios where mea-
surements are obtained passively. Thus, for the Harvard226
dataset, we let each node maintain an active neighbor set
containing the nodes it has contacted within the past 30
minutes and the timestamped measurements are processed
in time order. For the other datasets, the random neighbor
selection is used and the measurements are processed in
random order with no neighbor decay (Line 2 in Algorithm 3)
as they are static.

To handle the dynamics of the measurements in Harvard226,
the distance filter in [13] is adopted that smooths the streams
of measurements within a moving time window, 30 minutes
in this paper, by a median filter. In the evaluation, we built a
static distance matrix by extracting the median values of the
streams of measurements between each pair of nodes and used
it as the ground truth.

B. Euclidean Embedding vs. Matrix Factorization

Euclidean embedding and matrix factorization both solve
the same problem in eq. 1 but subject to different constraints.
Euclidean embedding requires D̂ to be symmetric and to
satisfy the triangle inequality, whereas matrix factorization
only requires D̂ to be low rank. Below, we compare em-
pirically Euclidean embedding and matrix factorization to
show whether this difference in constraints makes matrix
factorization more suitable for network distance prediction.

1) Algorithms: To make the model comparison fair, we
chose the state-of-the-art algorithms to solve the Euclidean
embedding and matrix factorization problems so that both
are solved to their limits. For Euclidean embedding, Multi-
Dimensional Scaling (MDS) is the most popular technique
that searches the optimal embedding using an iterative algo-
rithm. We adopted the MDS implementation, mdscale, in the
statistical toolbox of matlab [42].

For matrix factorization, SVD provides the analytic solution
which is globally optimal [31]. Generally, SVD factorizes a
given matrix D into three matrices of the form

D = USV T ,

where U and V are unitary matrices, and S is a diagonal
matrix with nonnegative real numbers on the diagonal. The
positive diagonal entries are called the singular values and
their number is equal to the rank of D.

To obtain a low-rank factorization, we keep only the r large
singular values in S and replace the other small ones by zero.
Let Sr be the new S, X = US

1
2
r and Y T = S

1
2
r V T , where

LIAO et al.: DMFSGD: A DECENTRALIZED MATRIX FACTORIZATION ALGORITHM FOR NETWORK DISTANCE PREDICTION 9

Synthetic1000 P2PSim525 Meridian2255

3 5 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3
S

tr
e
s
s

r

SVD

MDS

3 10 50 100
0.05

0.1

0.15

0.2

S
tr

e
s
s

r

SVD

MDS

3 10 50 100
0.1

0.15

0.2

0.25

0.3

S
tr

e
s
s

r

SVD

MDS

3 5 8 10
0

50

100

150

200

250

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

r

SVD

MDS

3 10 50 100
6

8

10

12

14

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

r

SVD

MDS

3 10 50 100
4

5

6

7

8

9

10

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

r

SVD

MDS

Fig. 5. Comparison of MDS-based Euclidean embedding and SVD-based matrix factorization on synthetic1000, P2psim525 and Meridian2255. The stresses
and the median absolute errors by both methods in different dimensions/ranks are shown on the first and second rows respectively. Note that a perfect
embedding with no errors was generated for Synthetic1000 in the 10 dimensional Euclidean space by MDS.

TABLE II
MATRIX FACTORIZATION VS. EUCLIDEAN EMBEDDING

Matrix Factorization Euclidean Embedding

node coordinate
xi = (xi1, · · · , xir) xi = (xi1, · · · , xir)
yi = (yi1, · · · , yir)

distance function d̂ij = xiy
T
j d̂ij =

√
(xi − xj)T (xi − xj)

constraints low rank
Symmetry: d̂ij = d̂ji

Triangle Inequality: d̂ij < d̂ik + dkj

Sr(i, i)
1
2 =

√
Sr(i, i). Then, D̂ = XY T is the optimal low-

rank approximation to D.
2) Evaluations: Since SVD cannot handle missing data, we

only compare MDS and SVD on the three complete datasets
including Synthetic1000, P2psim525 and Meridian2255. On
each dataset, we ran MDS and SVD in different dimensions
and ranks and computed the stresses and MAE, shown in
figure 5. It can be seen that the accuracies by SVD mono-
tonically improve on all three datasets as the rank increases,
whereas consistent improvements by MDS are only found
on Synthetic1000 which is TIV-free. On P2psim525 and
Meridian2255 where severe TIVs exist, MDS achieves no or
little visible improvement after 10 dimensions.

These evaluations demonstrate the influences of different
constraints imposed on the two techniques. For Euclidean em-
bedding, the symmetry constraint doesn’t cause any problem
as the RTTs in all datasets are symmetric. However, the con-
straint of triangle inequality is strong and can’t be relieved by
increasing dimensions. In contrast, matrix factorization makes
no assumptions of triangle inequality, thus is not affected by
the TIVs in the data. Note that the accuracy improvement
by increasing the rank is guaranteed for SVD-based matrix
factorization. However, this conclusion cannot be extended to

the cases where missing data is present. We will show later that
increasing the rank beyond some value in matrix factorization
for a large amount of missing data will not further improve
the accuracy.

This comparative study reveals the model advantages of
Matrix Factorization over Euclidean embedding. Overall, Eu-
clidean embedding has a geometric interpretation which is
useful for visualization. However, due to the existence of TIVs
and the possible asymmetry in network distance spaces, low-
rank matrix factorization is more suitable for modeling the
network distance spaces. Table II compares the main features
of matrix factorization and Euclidean embedding.

C. Impact of Parameters

This section discusses and demonstrates the impact of the
parameters of our DMFSGD algorithm.

1) k, r and λ: Our DMFSGD algorithm has two main pa-
rameters, the regularization coefficient λ and the rank r. Active
probing introduces one additional parameter, the number of
neighbors k that are selected for each node. Intuitively, r is
the number of unknown variables in each coordinate and k
is the amount of known data that is used to estimate each
unknown variable in a coordinate. λ controls the extent of the

LIAO et al.: DMFSGD: A DECENTRALIZED MATRIX FACTORIZATION ALGORITHM FOR NETWORK DISTANCE PREDICTION 10

regularization which avoids both overfitting and drift of the
coordinates.

Clearly, increasing k is equivalent to adding more data
and thus always helps improve the accuracy. However, a
larger k also means more probe traffic and consequently
higher overheads. On the other hand, only a certain number
of unknown variables can be accurately calculated from a
certain amount of known data. Thus, increasing r beyond some
value for a fixed k will only lead to severe overfitting and
consequently, a large λ is needed to address it.

In practice, k should be fixed according to the require-
ments of the applications by trading off between accura-
cies and measurement overheads. Following the suggestion
in Vivaldi [9], we set k = 32 for P2psim1740 and for
Meridian2500 in the rest of the paper. Note that k = 32
makes the available measurements considerably sparse. For
instance, 32/1740 = 1.84% measurements are available for
each node in P2PSim1740 and 32/2500 = 1.28% for each
node in Meridian2500. Recall that no k is set for Harvard226.

2) Experiments under Different Configurations: We then
experimented with different configurations of r = {3, 10, 100}
and λ = {0.01, 0.1, 1, 10}, with different loss functions and
whether to incorporate the nonnegativity constraint, shown in
Figure 6. η is adapted by the line search, with the initial value
of 10−3 for the L2 loss function and of 10−2 for the L1 loss
function.

In particular, we made the following observations. First,
the DMFSGD algorithm is generally more accurate when the
robust L1 loss function and the nonnegativity constraint are
incorporated. The likely reasons are that the L1 loss function is
insensitive to large fitting errors some of which are introduced
by measurement outliers and that the nonnegativity constraint
reduces the searching space which makes it easier to find
a stable solution. Thus, the robust L1 loss function and the
nonnegativity constraint are incorporated in the DMFSGD
algorithm by default.

Second, λ = 1 seems to be a good choice under most
configurations and is thus adopted by default. Third, the impact
of r depends on the properties of the dataset. In Harvard226
where available measurements are dense, the prediction ac-
curacy improves monotonically with r, whereas in the other
two datasets where available measurements are sparse due to
the setting of a small k, better performance is achieved with
r 6 10 and a large λ is needed to overcome the overfitting
caused by larger r’s, which confirms our analysis in the
previous section. Thus, by trading off between the performance
on all three datasets, r = 10 is adopted by default.

3) η: As mentioned earlier, SGD is sensitive to the learning
rate η where a too large η leads to the overflow of the solutions
and a too small η slows down the convergence. Although this
sensitivity is reduced by minibatch SGD, it is still difficult to
find an appropriate constant that works for all datasets and in
all situations. We experimented with different constant η’s and
with the line search to adapt η dynamically. Results are shown
in Figure 7. It can be seen that the line search strategy performs
best in terms of both accuracy and convergence speed. Note
that the convergence speed is illustrated by the stress and
MAE improvements with respect to the average measurement

number per node, i.e. the total number of measurements used
by all nodes divided by the number of nodes3. It can be seen
that the DMFSGD algorithm converges fast after each node
probe, on average, 10×k measurements from its k neighbors.
Although no k is set for Harvard226, we treat it as k = 226.

4) Discussions: By incorporating the line search strategy,
the L1 loss function and the nonnegativity constraint, our
DMFSGD algorithm is left with two tunable parameters: the
rank r and the regularization coefficient λ. The default config-
uration of λ = 1 and r = 10 is not guaranteed to be optimal
in different situations and on different datasets. However,
fine tuning of parameters is difficult, if not impossible, for
network applications due to the measurement dynamics and
the decentralized processing where local measurements are
processed locally at each node with no central nodes gathering
information of the entire network. Empirically, the default
parameter setting leads to good, though not the best, prediction
accuracy to a large variety of data.

The setting of k = 32 has been commonly adopted in
many systems such as Vivaldi. However, most systems contain
network nodes of a few thousands or less. For large systems
of more nodes, k has to be scaled with the number of nodes
n. According to the theory of matrix completion [19]–[21],
one can recover an unknown n×n matrix of low rank r from
just about O(nrlogn) noisy entries with an error which is
proportional to the noise level. Thus, k ∝ rlogn to guarantee
a decent prediction accuracy.

D. Comparisons with Vivaldi

Among numerous approaches on network distance pre-
diction, we consider Vivaldi [9] as the state of the art be-
cause of its accuracy and its practicability. To the best of
our knowledge, Vivaldi is the only system that has been
actually adopted in a real application, namely Azureus [2].
Other approaches such as GNP [8] and IDES [9] are less
convenient due to the usage of landmarks, which makes their
application impossible in the context of passive probing of
distance measurements (thus impossible to be evaluated on the
Harvard226 dataset). Due to the insights in Section III-D, we
consider these landmark-based systems as a special variation
of a generic decentralized model.

In this paper, we only compare our DMFSGD algorithm
with Vivaldi. To address the measurement dynamics and the
skewed neighbor updates, we adopted the Vivaldi implemen-
tation in [13] 4 when dealing with the Harvard226 dataset.
The conventional Vivaldi in [9] was adopted to deal with the
other two datasets. We refer to the former as Harvard Vivaldi
to make the distinction. In addition, despite the impracticality,
we also demonstrate the flexibility of the DMFSGD algorithm
in dealing with the landmark-based architecture, referred to
as DMFSGD Landmark, by forcing each node to only select

3For P2PSim1740 and Meridian2500, at any time, the number of mea-
surements used by each node is statistically the same for all nodes due to
the random selections of the source and the target nodes in the updates. For
Harvard226, this number is significantly different for different nodes because
the paths were passively probed with uneven frequencies.

4The source code was downloaded from http://www.eecs.harvard.edu/
∼syrah/nc/.

http://www.eecs.harvard.edu/~syrah/nc/
http://www.eecs.harvard.edu/~syrah/nc/

LIAO et al.: DMFSGD: A DECENTRALIZED MATRIX FACTORIZATION ALGORITHM FOR NETWORK DISTANCE PREDICTION 11

Harvard226 P2PSim1740 Meridian2500
r
=

3 0.01 0.1 1 10
0.095

0.1

0.105

0.11

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10

0.22

0.24

0.26

0.28

0.3

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
0.35

0.4

0.45

0.5

0.55

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
4

5

6

7

8

9

10

λ

M
e

d
ia

n
 A

b
s
o

lu
te

 E
rr

o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
10

11

12

13

14

15

16

λ

M
e

d
ia

n
 A

b
s
o

lu
te

 E
rr

o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10

9

10

11

12

λ

M
e

d
ia

n
 A

b
s
o

lu
te

 E
rr

o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

r
=

10

0.01 0.1 1 10
0.05

0.06

0.07

0.08

0.09

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
0.2

0.25

0.3

0.35

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10

0.4

0.45

0.5

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
0

1

2

3

4

λ

M
e

d
ia

n
 A

b
s
o

lu
te

 E
rr

o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
10

12

14

16

18

λ

M
e

d
ia

n
 A

b
s
o

lu
te

 E
rr

o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
8

9

10

11

12

λ

M
e

d
ia

n
 A

b
s
o

lu
te

 E
rr

o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

r
=

10
0 0.01 0.1 1 10

0.03

0.04

0.05

0.06

0.07

0.08

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
0.2

0.3

0.4

0.5

0.6

0.7

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10

0.4

0.5

0.6

0.7

0.8

0.9

λ

S
tr

e
s
s

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ

M
e

d
ia

n
 A

b
s
o

lu
te

 E
rr

o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10
10

20

30

40

50

60

70

λ

M
e

d
ia

n
 A

b
s
o

lu
te

 E
rr

o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

0.01 0.1 1 10

10

15

20

25

30

λ

M
e

d
ia

n
 A

b
s
o

lu
te

 E
rr

o
r

(m
s
)

L
2

L
1

L
2
+nonneg

L
1
+nonneg

Fig. 6. Impact of parameters. η is adapted by the line search.

LIAO et al.: DMFSGD: A DECENTRALIZED MATRIX FACTORIZATION ALGORITHM FOR NETWORK DISTANCE PREDICTION 12

Harvard226 P2PSim1740 Meridian2500

10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

measurement number (× k)

S
tr

e
s
s

1e−3

1e−2

line search

10 20 30 40 50
0.2

0.4

0.6

0.8

1

measurement number (× k)

S
tr

e
s
s

1e−3

1e−2

line search

10 20 30 40 50
0.2

0.4

0.6

0.8

1

measurement number (× k)

S
tr

e
s
s

1e−3

1e−2

line search

10 20 30 40 50
0

50

100

150

200

measurement number (× k)

M
e

d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

1e−3

1e−2

line search

10 20 30 40 50
0

50

100

150

200

measurement number (× k)

M
e

d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

1e−3

1e−2

line search

10 20 30 40 50
0

10

20

30

40

50

60

measurement number (× k)

M
e

d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

1e−3

1e−2

line search

Fig. 7. Impact of η under λ = 1 and r = 10 with the L1 loss function and the nonnegativity constraint. k is treated as 226 for Harvard226 and k = 32
for P2PSim1740 and Meridian2500.

the landmarks as neighbors. Note that we only ran DMFSGD
Landmark on P2PSim1740 and Meridian2500 because the
dynamic measurements in Harvard226 were obtained passively
and thus we cannot select landmarks and force each node to
only communicate with them. To make the comparison fair,
32 landmarks were randomly selected.

Figure 8 shows the comparisons between DMFSGD, Vi-
valdi/Harvard Vivaldi and DMFSGD Landmark. It can be
seen that on different criteria, our DMFSGD algorithm either
outperforms or is competitive with Vivaldi. On Harvard226,
DMFSGD is significantly better on all criteria, especially
on the MAE where DMFSGD achieved the 1ms MAE, in
contrast to the 5ms by Harvard Vivaldi, meaning that half
of the estimated distances have an error of less than 1ms.
On P2PSim1740, DMFSGD is better on the MAE and the
cumulative distributions of REE, whereas on Meridian2500,
DMFSGD achieved similar performance as Vivaldi on all cri-
teria. Note that DMFSGD and DMFSGD Landmark performed
similarly on P2PSim1740 and Meridian2500.

As Harvard226 contains real dynamic data collected from a
real application, Azureus, the superiority on it shows clearly
the usability of our DMFSGD algorithm.

VII. CONCLUSIONS AND FUTURE WORKS

This paper presents a novel approach to network distance
prediction by low-rank matrix factorization. The success of the
approach roots both in the exploitation of the dependencies
across distance measurements between network nodes and in
the stochastic optimization which enables a fully decentralized
architecture. A so-called Decentralized Matrix Factorization
by Stochastic Gradient Descent (DMFSGD) algorithm is pro-
posed to solve the distance prediction problem. The algorithm
is simple, with no infrastructure, scalable, able to deal with

dynamic measurements in large-scale networks, and accurate,
generally superior to Vivaldi.

Extensive experiments on various RTT datasets, particularly
on one with real data from Azureus, demonstrate the poten-
tial of the algorithm being utilized by Internet applications,
which we would like to study in the future. Our approach is
flexible and can easily be extended to other network metrics
such as available bandwidth [43]. An interesting topic is to
study which metrics are suitable for our matrix completion
framework.

ACKNOWLEDGMENTS

This work was partially supported by the EU under project
FP7-Fire ECODE, by the European Network of Excellence
PASCAL2 and by the Belgian network DYSCO (Dynamical
Systems, Control, and Optimization), funded by the Interuni-
versity Attraction Poles Programme, initiated by the Belgian
State, Science Policy Office. The scientific responsibility rests
with its authors.

REFERENCES

[1] M. Crovella and B. Krishnamurthy, Internet Measurement: Infrastruc-
ture, Traffic and Applications. New York, NY, USA: John Wiley &
Sons, Inc., 2006.

[2] Vuze Bittorrent, http://www.vuze.com/.
[3] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A

scalable content-addressable network,” in Proc. of ACM SIGCOMM, San
Diego, CA, USA, Aug. 2001.

[4] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-
aware overlay construction and server selection,” in Proc. of IEEE
INFOCOM, Jun. 2002.

[5] R. Zhang, C. Tang, Y. C. Hu, S. Fahmy, and X. Lin, “Impact of the
inaccuracy of distance prediction algorithms on Internet applications:
an analytical and comparative study,” in Proc. of IEEE INFOCOM,
Barcelona, Spain, Apr. 2006.

[6] F. Dabek, “A distributed hash table,” Ph.D. dissertation, Massachusetts
Institute of Technology, Nov. 2005.

http://www.vuze.com/

LIAO et al.: DMFSGD: A DECENTRALIZED MATRIX FACTORIZATION ALGORITHM FOR NETWORK DISTANCE PREDICTION 13

Harvard226 P2PSim1740 Meridian2500

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

S
tr

e
s
s

measurement number (× k)

DMFSGD

Harvard Vivaldi

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

S
tr

e
s
s

measurement number (× k)

DMFSGD

Vivaldi

DMFSGD Landmark

10 20 30 40 50
0.2

0.4

0.6

0.8

1

S
tr

e
s
s

measurement number (× k)

DMFSGD

Vivaldi

DMFSGD Landmark

10 20 30 40 50
0

10

20

30

40

50

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

measurement number (× k)

DMFSGD

Harvard Vivaldi

10 20 30 40 50
0

10

20

30

40

50

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

measurement number (× k)

DMFSGD

Vivaldi

DMFSGD Landmark

10 20 30 40 50
0

10

20

30

40

50

M
e
d
ia

n
 A

b
s
o
lu

te
 E

rr
o
r

(m
s
)

measurement number (× k)

DMFSGD

Vivaldi

DMFSGD Landmark

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

REE

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

DMFSGD

Harvard Vivaldi

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

REE

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

DMFSGD

Vivaldi

DMFSGD Landmark

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

REE

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti
o
n

DMFSGD

Vivaldi

DMFSGD Landmark

Fig. 8. Comparison of DMFSGD and Vivaldi. The default configuration of λ = 1 and r = 10 with η adapted by the line search, the L1 loss function and
the nonnegativity constraint is used in DMFSGD and DMFSGD Landmark. The 10 dimensional Euclidean space with the Height model is used in Vivaldi
and Harvard Vivaldi. Note that as the implementation of Harvard Vivaldi only outputs the results in the end of the simulation, the final stress and the final
MAE are plotted as a constant.

[7] M. J. Freedman, K. Laskhminarayanan, and D. Mazières, “OASIS:
Anycast for any service,” in POT3rd Symposium on Networked Systems
Design and Implementation, San Jose, CA, May 2006.

[8] T. S. E. Ng and H. Zhang, “Predicting Internet network distance with
coordinates-based approaches,” in Proc. of IEEE INFOCOM, New York,
NY, USA, Jun. 2002.

[9] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” in Proc. of ACM SIGCOMM, Portland, OR,
USA, Aug. 2004.

[10] Y. Mao, L. Saul, and J. M. Smith, “IDES: An Internet distance
estimation service for large networks,” IEEE Journal On Selected Areas
in Communications, vol. 24, no. 12, pp. 2273–2284, Dec. 2006.

[11] Y. Liao, P. Geurts, and G. Leduc, “Network distance prediction based
on decentralized matrix factorization,” in Proc. of IFIP Networking
Conference, Chennai, India, May 2010.

[12] B. Donnet, B. Gueye, and M. A. Kaafar, “A survey on network coordi-
nates systems, design, and security,” IEEE Communication Surveys and
Tutorial, vol. 12, no. 4, pp. 488–503, 2010.

[13] J. Ledlie, P. Gardner, and M. I. Seltzer, “Network coordinates in the
wild,” in Proc. of USENIX NSDI, Cambridge, Apr. 2007.

[14] H. Zheng, E. K. Lua, M. Pias, and T. Griffin, “Internet Routing
Policies and Round-Trip-Times,” in Proc. of the Passive and Active
Measurement, Boston, MA, USA, Apr. 2005.

[15] S. Lee, Z. Zhang, S. Sahu, and D. Saha, “On suitability of Euclidean
embedding of Internet hosts,” SIGMETRICS, vol. 34, no. 1, pp. 157–168,
2006.

[16] G. Wang, B. Zhang, and T. S. E. Ng, “Towards network triangle
inequality violation aware distributed systems,” in Proc. the ACM/IMC
Conference, San Diego, CA, USA, Oct. 2007, pp. 175–188.

[17] S. Banerjee, T. G. Griffin, and M. Pias, “The interdomain connectivity
of PlanetLab nodes,” in Proc. of the Passive and Active Measurement,
Antibes Juan-les-Pins, France, Apr. 2004.

[18] E. K. Lua, T. Griffin, M. Pias, H. Zheng, and J. Crowcroft, “On the
accuracy of embeddings for Internet coordinate systems,” in Proc the
IMC Conference. New York, NY, USA: ACM, 2005, pp. 1–14.

[19] E. J. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Foundations of Computational Mathematics, vol. 9, no. 6,
pp. 717–772, 2009.

[20] E. J. Candès and Y. Plan, “Matrix completion with noise,” Proc. of the
IEEE, vol. 98, no. 6, 2010.

[21] R. H. Keshavan, S. Oh, and A. Montanari, “Matrix completion from a
few entries,” CoRR, vol. abs/0901.3150, 2009.

[22] N. S. Nati and T. Jaakkola, “Weighted low-rank approximations,” in
International Conference on Machine Learning, 2003, pp. 720–727.

[23] Z. Wen, W. Yin, and Y. Zhang, “Solving a low-rank factorization
model for matrix completion by a non-linear successive over-relaxation
algorithm,” Department of Computational and Applied Mathematics,
Rice University, Tech. Rep. TR10-07, 2010.

[24] S. Shalev-Shwartz, A. Gonen, and O. Shamir, “Large-Scale Convex
Minimization with a Low-Rank Constraint,” in International Conference
on Machine Learning, 2011.

[25] L. Bottou, “Online algorithms and stochastic approximations,” in Online
Learning and Neural Networks, D. Saad, Ed. Cambridge University
Press, 1998.

[26] A. Pathak, H. Pucha, Y. Zhang, Y. C. Hu, and Z. M. Mao, “A
measurement study of Internet delay asymmetry,” in Proc. of the Passive
and Active Measurement, Cleveland, OH, USA, Apr. 2008.

[27] Y. He, M. Faloutsos, S. Krishnamurthy, B. Huffaker, Y. He, M. Faloutsos,

LIAO et al.: DMFSGD: A DECENTRALIZED MATRIX FACTORIZATION ALGORITHM FOR NETWORK DISTANCE PREDICTION 14

S. Krishnamurthy, and B. Huffaker, “On routing asymmetry in the
Internet,” in Proc. of IEEE Globecom, 2005.

[28] Y. Chen, X. Wang, X. Song, E. K. Lua, C. Shi, X. Zhao, B. Deng,
and X. Li, “Phoenix: Towards an accurate, practical and decentralized
network coordinate system,” in Proc. of IFIP Networking Conference,
Aachen, Germany, May 2009.

[29] L. Tang and M. Crovella, “Virtual landmarks for the Internet,” in Proc.
of ACM/SIGCOMM Internet Measurement Conference, Oct. 2003.

[30] B. Wong, A. Slivkins, and E. Sirer, “Meridian: A lightweight network lo-
cation service without virtual coordinates,” in Proc. of ACM SIGCOMM,
Aug. 2005.

[31] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed. Johns
Hopkins University Press, 1996.

[32] A. M. Buchanan and A. W. Fitzgibbon, “Damped newton algorithms for
matrix factorization with missing data,” in Computer Vision and Pattern
Recognition, 2005.

[33] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Advances in Neural Information Processing Systems.
MIT Press, 2001, pp. 556–562.

[34] G. Takcs, I. Pilszy, B. Nmeth, and D. Tikk, “Scalable collaborative fil-
tering approaches for large recommender systems,” Journal of Machine
Learning Research, vol. 10, pp. 623–656, Jun. 2009.

[35] D. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
[36] S. Boyd, A. Ghosh, S. Member, B. Prabhakar, and D. Shah, “Ran-

domized gossip algorithms,” IEEE Transactions on Information Theory,
vol. 52, pp. 2508–2530, 2006.

[37] C. Hennig and M. Kutlukaya, “Some thoughts about the design of loss
functions,” REVSTAT–Statistical Journal, vol. 5, no. 1, 2007.

[38] Q. Ke and T. Kanade, “Robust L1 norm factorization in the presence
of outliers and missing data by alternative convex programming,” in
Computer Vision and Pattern Recognition, 2005, pp. 592–599.

[39] C.-J. Lin, “Projected gradient methods for nonnegative matrix factoriza-
tion,” Neural Computation, vol. 19, pp. 2756–2779, Oct 2007.

[40] A simulator for peer-to-peer protocols, http://www.pdos.lcs.mit.edu/
p2psim/index.html.

[41] K. P. Gummadi, S. Saroiu, and S. D. Gribble, “King: Estimating latency
between arbitrary Internet end hosts,” in Proc. of the ACM/SIGCOMM
Internet Measurement Workshop, Marseille, France, Nov. 2002.

[42] matlab mdscale function, http://www.mathworks.de/access/helpdesk/
help/toolbox/stats/mdscale.html.

[43] Y. Liao, W. Du, P. Geurts, and G. Leduc, “Decentralized prediction of
end-to-end network performance classes,” in Proc. of CoNEXT, Tokyo,
Japan, Dec. 2011.

Yongjun Liao is a PhD student at Department
of Electrical Engineering and Computer Science,
University of Liège, Belgium. She received her B.S.
in 1999 and M.S. in 2002, both from Department of
Computer Science, Guangxi University, China. Be-
fore joining the networking group RUN in University
of Liège in 2007, she had worked as a software engi-
neer in a small computer company in Beijing, China.
Her main research interests are the applications of
machine learning techniques to computer networking
problems, specifically the prediction of end-to-end

network performance in large-scale networks.

Wei Du is a senior Postdoctoral researcher at Intel-
ligent and Interactive Systems (IIS), University of
Innsbruck, Austria. He received his B.S. in 1997
from Tianjin University, China, and PhD in 2002
from Institute of Computing Technology, Chinese
Academy of Sciences, China. Since graduation, he
has been working as postdoctoral researcher at IN-
RIA, France, Hamburg University, Germany, Univer-
sity of Liège, Belgium, and University of Innsbruck,
Austria. His main research interests are computer
vision and machine learning.

Pierre Geurts is an assistant professor in the EECS
department of the University of Liège, Belgium.
He graduated as an electrical (computer science)
engineer in 1998 and received the PhD degree in
applied sciences in 2002. From 2006 to 2011, he
was research associate of the FNRS (Belgium). His
research interests concern the design of, compu-
tationally and statistically efficient, supervised and
semi-supervised learning algorithms in order to ex-
ploit structured input and output spaces (sequences,
images, time-series, graphs), with applications in

bioinformatics, computer vision, and computer networks.

Guy Leduc is a full professor in the EECS de-
partment of the University of Liège, Belgium, and
is since 1997 the head of the Research Unit in
Networking (RUN). He graduated as an electrical
(electronics) engineer in 1983 and got his PhD in
computer science in 1991.

His research field is computer networks, and
his main research interests are Network Coor-
dinate Systems, overlays, traffic engineering, re-
silience, multimedia, congestion control, and auto-
nomic/active/programmable networks. His research

unit is or has been involved in European projects such as ECODE on cog-
nitive networking, ResumeNet on Resilient Networking, ANA on autonomic
networking, TOTEM on an open-source toolbox for traffic engineering, and
the E-NEXT European network of excellence.

Since 2007 he has been the chairman of the IFIP Technical Committee
(TC6) on Communications Systems. He is an area editor of the Elsevier
Computer Communications journal, and a steering committee member of the
IFIP Networking Conference.

http://www.pdos.lcs.mit.edu/p2psim/index.html
http://www.pdos.lcs.mit.edu/p2psim/index.html
http://www.mathworks.de/access/helpdesk/help/toolbox/stats/mdscale.html
http://www.mathworks.de/access/helpdesk/help/toolbox/stats/mdscale.html

	I Introduction
	II Related Work
	II-A Euclidean Embedding
	II-B Matrix Factorization

	III Network Distance Prediction by Matrix Factorization
	III-A Problem Formulation
	III-B Low-Rank Approximation and Matrix Factorization
	III-C Incorporation of the Regularization
	III-D A Unified View of Approaches to Network Distance Prediction

	IV Decentralized Matrix Factorization for Network Distance Prediction
	IV-A Problem Formulation
	IV-B Stochastic Gradient Descent (SGD)
	IV-B1 Stochastic Updates
	IV-B2 Minibatch and Line Search

	IV-C Neighbor Decay and Neighbor Selection
	IV-D Algorithm

	V Extended Matrix Factorization Models
	V-A Robust Matrix Factorization
	V-B NonNegativity Constraint
	V-C Symmetric Distance Matrix Factorization
	V-D Height Model
	V-E Extended DMFSGD Algorithm

	VI Experiments and Evaluations
	VI-A Evaluation Methodology
	VI-A1 Evaluation Criteria
	VI-A2 Datasets
	VI-A3 Implementations for Different Datasets

	VI-B Euclidean Embedding vs. Matrix Factorization
	VI-B1 Algorithms
	VI-B2 Evaluations

	VI-C Impact of Parameters
	VI-C1 k, r and
	VI-C2 Experiments under Different Configurations
	VI-C3
	VI-C4 Discussions

	VI-D Comparisons with Vivaldi

	VII Conclusions and Future Works
	References
	Biographies
	Yongjun Liao
	Wei Du
	Pierre Geurts
	Guy Leduc

