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Abstract. We study the min max optimization problem introduced in [22] for computing policies for batch
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1. Introduction. Research in Reinforcement Learning (RL) [48] aims at designing com-
putational agents able to learn by themselves how to interact with their environment to max-
imize a numerical reward signal. The techniques developed in this field have appealed re-
searchers trying to solve sequential decision making problems in many fields such as Finance
[26], Medicine [34, 35] or Engineering [42]. Since the end of the nineties, several researchers
have focused on the resolution of a subproblem of RL: computing a high-performance policy
when the only information available on the environment is contained in a batch collection of
trajectories of the agent [10, 17, 28, 38, 42, 19]. This subfield of RL is known as “batch mode
RL”.

Batch mode RL (BMRL) algorithms are challenged when dealing with large or continu-
ous state spaces. Indeed, in such cases they have to generalize the information contained in
a generally sparse sample of trajectories. The dominant approach for generalizing this infor-
mation is to combine BMRL algorithms with function approximators [6, 28, 17, 11]. Usually,
these approximators generalize the information contained in the sample to areas poorly cov-
ered by the sample by implicitly assuming that the properties of the system in those areas
are similar to the properties of the system in the nearby areas well covered by the sample.
This in turn often leads to low performance guarantees on the inferred policy when large state
space areas are poorly covered by the sample. This can be explained by the fact that when
computing the performance guarantees of these policies, one needs to take into account that
they may actually drive the system into the poorly visited areas to which the generalization
strategy associates a favorable environment behavior, while the environment may actually be
particularly adversarial in those areas. This is corroborated by theoretical results which show
that the performance guarantees of the policies inferred by these algorithms degrade with the
sample dispersion where, loosely speaking, the dispersion can be seen as the radius of the
largest non-visited state space area.

To overcome this problem, [22] propose a min max-type strategy for generalizing in
deterministic, Lipschitz continuous environments with continuous state spaces, finite action
spaces, and finite time-horizon. The min max approach works by determining a sequence
of actions that maximizes the worst return that could possibly be obtained considering any
system compatible with the sample of trajectories, and a weak prior knowledge given in the
form of upper bounds on the Lipschitz constants related to the environment (dynamics, reward

†Department of Electrical Engineering and Computer Science, University of Liège, Belgium
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function). However, they show that finding an exact solution of the min max problem is far
from trivial, even after reformulating the problem so as to avoid the search in the space of
all compatible functions. To circumvent these difficulties, they propose to replace, inside this
min max problem, the search for the worst environment given a sequence of actions by an
expression that lower-bounds the worst possible return which leads to their so called CGRL
algorithm (the acronym stands for “Cautious approach to Generalization in Reinforcement
Learning”). This lower bound is derived from their previous work [20, 21] and has a tightness
that depends on the sample dispersion. However, in some configurations where areas of the
the state space are not well covered by the sample of trajectories, the CGRL bound turns to
be very conservative.

In this paper, we propose to further investigate the min max generalization optimization
problem that was initially proposed in [22]. We first show that this optimization problem
is NP-hard. We then focus on the two-stage case, which is still NP-hard. Since it seems
hopeless to exactly solve the problem, we propose two relaxation schemes that preserve the
nature of the min max generalization problem by targetting policies leading to high perfor-
mance guarantees. The first relaxation scheme works by dropping some constraints in order
to obtain a problem that is solvable in polynomial time. This results into a well known con-
figuration called the trust-region subproblem [13]. The second relaxation scheme, based on a
Lagrangian relaxation where all constraints are dualized, can be solved using conic quadratic
programming in polynomial time. We prove that both relaxation schemes always provide
bounds that are greater or equal to the CGRL bound. We also show that these bounds are
tight in a sense that they converge towards the actual return when the sample dispersion con-
verges towards zero, and that the sequences of actions that maximize these bounds converge
towards optimal ones.

The paper is organized as follows:

• in Section 2, we give a short summary of the literature related to this work,
• Section 3 formalizes the min max generalization problem in a Lipschitz continuous,

deterministic BMRL context,
• in Section 4, we focus on the particular two-stage case, for which we prove that it

can be decoupled into two independent problems corresponding respectively to the
first stage and the second stage (Theorem 4.2):

– the first stage problem leads to a trivial optimization problem that can be solved
in closed-form (Corollary 4.3),

– we prove in Section 4.2 that the second stage problem is NP-hard (Corollary
4.7), which consequently proves the NP-hardness of the general min max gen-
eralization problem (Theorem 4.8),

• we then describe in Section 5 the two relaxation schemes that we propose for the
second stage problem:

– the trust-region relaxation scheme (Section 5.1),
– the Lagrangian relaxation scheme (Section 5.2), which is shown to be a conic-

quadratic problem (Theorem 5.4),
• we prove in Section 5.3.1 that the first relaxation scheme gives better results than

CGRL (Theorem 5.9),
• we show in Section 5.3.2 that the second relaxation scheme povides better results

than the first relaxation scheme (Theorem 5.13), and consequently better results than
CGRL (Theorem 5.14),

• we analyze in Section 5.4 the asymptotic behavior of the relaxation schemes as a
function of the sample dispersion:

– we show that the the bounds provided by the relaxtion schemes converge to-
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FIG. 1.1. Main results of the paper.

wards the actual return when the sample dispersion decreases towards zero
(Theorem 5.17),

– we show that the sequences of actions maximizing such bounds converge to-
wards optimal sequences of actions when the sample dispersion decreases to-
wards zero (Theorem 5.20),

• Section 6 illustrates the relaxation schemes on an academic benchmark,
• Section 7 concludes.

We provide in Figure 1.1 an illustration of the roadmap of the main results of this paper.

2. Related Work. Several works have already been built upon min max paradigms for
computing policies in a RL setting. In stochastic frameworks, min max approaches are often
successful for deriving robust solutions with respect to uncertainties in the (parametric) repre-
sentation of the probability distributions associated with the environment [16]. In the context
where several agents interact with each other in the same environment, min max approaches
appear to be efficient strategies for designing policies that maximize one agent’s reward given
the worst adversarial behavior of the other agents. [29, 43]. They have also received some
attention for solving partially observable Markov decision processes [30, 27].

The min max approach towards generalization, originally introduced in [22], implicitly
relies on a methodology for computing lower bounds on the worst possible return (consid-
ering any compatible environment) in a deterministic setting with a mostly unknown actual
environment. In this respect, it is related to other approaches that aim at computing perfor-
mance guarantees on the returns of inferred policies [33, 41, 39].

Other fields of research have proposed min max-type strategies for computing control
policies. This includes Robust Control theory [24] with H∞ methods [2], but also Model
Predictive Control (MPC) theory - where usually the environment is supposed to be fully
known [12, 18] - for which min max approaches have been used to determine an optimal
sequence of actions with respect to the “worst case” disturbance sequence occurring [44, 4].
Finally, there is a broad stream of works in the field of Stochastic Programming [7] that
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have addressed the problem of safely planning under uncertainties, mainly known as “robust
stochastic programming” or “risk-averse stochastic programming” [15, 45, 46, 36]. In this
field, the two-stage case has also been particularly well-studied [23, 14].

3. Problem Formalization. We first formalize the BMRL setting in Section 3.1, and
we state the min max generalization problem in Section 3.2.

3.1. Batch Mode Reinforcement Learning. We consider a deterministic discrete-time
system whose dynamics over T stages is described by a time-invariant equation

xt+1 = f (xt, ut) t = 0, . . . , T − 1,

where for all t, the state xt is an element of the state space X ⊂ Rd where Rd denotes
the d−dimensional Euclidean space and ut is an element of the finite (discrete) action space
U =

{
u(1), . . . , u(m)

}
that we abusively identify with {1, . . . ,m}. T ∈ N \ {0} is referred

to as the (finite) optimization horizon. An instantaneous reward

rt = ρ (xt, ut) ∈ R

is associated with the action ut taken while being in state xt. For a given initial state x0 ∈ X
and for every sequence of actions (u0, . . . , uT−1) ∈ UT , the cumulated reward over T stages
(also named T−stage return) is defined as follows:

DEFINITION 3.1 (T−stage Return).

∀ (u0, . . . , uT−1) ∈ UT , J
(u0,...,uT−1)
T ,

T−1∑
t=0

ρ (xt, ut) ,

where

xt+1 = f (xt, ut) , ∀t ∈ {0, . . . , T − 1} .

An optimal sequence of actions is a sequence that leads to the maximization of the T−stage
return:

DEFINITION 3.2 (Optimal T−stage Return).

J∗T , max
(u0,...,uT−1)∈UT

J
(u0,...,uT−1)
T .

We further make the following assumptions that characterize the batch mode setting:
1. The system dynamics f and the reward function ρ are unknown;
2. For each action u ∈ U , a set of n(u) ∈ N one-step system transitions

F (u) =
{(
x(u),k, r(u),k, y(u),k

)}n(u)

k=1

is known where each one-step transition is such that:

y(u),k = f
(
x(u),k, u

)
and r(u),k = ρ

(
x(u),k, u

)
.

3. We assume that every set F (u) contains at least one element:

∀u ∈ U , n(u) > 0 .
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In the following, we denote by F the collection of all system transitions:

F = F (1) ∪ . . . ∪ F (m)

Under those assumptions, batch mode reinforcement learning (BMRL) techniques propose
to infer from the sample of one-step system transitions F a high-performance sequence of
actions, i.e. a sequence of actions

(
ũ∗0, . . . , ũ

∗
T−1

)
∈ UT such that J

(ũ∗0 ,...,ũ
∗
T−1)

T is as close
as possible to J∗T .

3.2. Min max Generalization under Lipschitz Continuity Assumptions. In this sec-
tion, we state the min max generalization problem that we study in this paper. The formal-
ization was originally proposed in [22].

We first assume that the system dynamics f and the reward function ρ are assumed to be
Lipschitz continuous. There exist finite constants Lf , Lρ ∈ R such that:

∀(x, x′) ∈ X 2,∀u ∈ U , ‖f (x, u)− f (x′, u)‖ ≤ Lf ‖x− x′‖ ,
|ρ (x, u)− ρ (x′, u)| ≤ Lρ ‖x− x′‖ ,

where ‖.‖ denotes the Euclidean norm over the space X . We also assume that two constants
Lf and Lρ satisfying the above-written inequalities are known.

For a given sequence of actions, one can define the worst possible return that can be ob-
tained by any system whose dynamics f ′ and ρ′ would satisfy the Lipschitz inequalities and
that would coincide with the values of the functions f and ρ given by the sample of system
transitions F . As shown in [22], this worst possible return can be computed by solving a
finite-dimensional optimization problem over X T−1 × RT . Intuitively, solving such an op-
timization problem amounts in determining a most pessimistic trajectory of the system that
is still compliant with the sample of data and the Lipschitz continuity assumptions. More
specifically, for a given sequence of actions (u0, . . . , uT−1) ∈ UT , some given constants Lf
and Lρ, a given initial state x0 ∈ X and a given sample of transitions F , this optimization
problem writes:

(PT (F , Lf , Lρ, x0, u0, . . . , uT−1)) :

min
r̂0 . . . r̂T−1 ∈ R
x̂0 . . . x̂T−1 ∈ X

T−1∑
t=0

r̂t,

subject to∣∣∣̂rt − r(ut),kt∣∣∣2 ≤ L2
ρ

∥∥∥x̂t − x(ut),kt
∥∥∥2 ,∀(t, kt) ∈ {0, . . . , T − 1} ×

{
1, . . . , n(ut)

}
,∥∥∥x̂t+1 − y(ut),kt

∥∥∥2 ≤ L2
f

∥∥∥x̂t − x(ut),kt
∥∥∥2,∀(t, kt) ∈ {0, . . . , T − 1} ×

{
1, . . . , n(ut)

}
,

|̂rt − r̂t′ |2 ≤ L2
ρ ‖x̂t − x̂t′‖2 ,∀t, t′ ∈ {0, . . . , T − 1|ut = ut′} ,

‖x̂t+1 − x̂t′+1‖2 ≤ L2
f ‖x̂t − x̂t′‖2 ,∀t, t′ ∈ {0, . . . , T − 2|ut = ut′} ,

x̂0 = x0 .

Note that, throughout the paper, optimization variables will be written in bold.
The min max approach to generalization aims at identifying which sequence of actions

maximizes its worst possible return, that is which sequence of actions leads to the highest
value of (PT (F , Lf , Lρ, x0, u0, . . . , uT−1)).
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We focus in this paper on the design of resolution schemes for solving the program
(PT (F , Lf , Lρ, x0, u0, . . . , uT−1)). These schemes can afterwards be used for solving the
min max problem through exhaustive search over the set of all sequences of actions.

Later in this paper, we will also analyze the computational complexity of this min max
generalization problem. When carrying out this analysis, we will assume that all the data of
the problem (i.e., T,F , Lf , Lρ, x0, u0, . . . , uT−1) are given in the form of rational numbers.

4. The Two-stage Case. In this section, we restrict ourselves to the case where the
time horizon contains only two steps, i.e. T = 2, which is an important particular case
of
(
PT (F , Lf , Lρ, x0, u0, . . . , uT−1)

)
. Many works in optimal sequential decision making

have considered the two-stage case [23, 14], which relates to many applications, such as for
instance medical applications where one wants to infer “safe” clinical decision rules from
batch collections of clinical data [1, 31, 32, 49].

In Section 4.1, we show that this problem can be decoupled into two subproblems. While
the first subproblem is straightforward to solve, we prove in Section 4.2 that the second one
is NP-hard, which proves that the two-stage problem as well as the generalized T−stage
problem (PT (F , Lf , Lρ, x0, u0, . . . , uT−1)) are also NP-hard.

Given a two-stage sequence of actions (u0, u1) ∈ U2, the two-stage version of the prob-
lem

(
PT (F , Lf , Lρ, x0, u0, . . . , uT−1)

)
writes as follows:(

P2(F , Lf , Lρ, x0, u0, u1)
)

:

min
r̂0, r̂1 ∈ R
x̂0, x̂1 ∈ X

r̂0 + r̂1,

subject to∣∣∣̂r0 − r(u0),k0
∣∣∣2 ≤ L2

ρ

∥∥∥x̂0 − x(u0),k0
∥∥∥2 ,∀k0 ∈ {1, . . . , n(u0)

}
, (4.1)∣∣∣̂r1 − r(u1),k1

∣∣∣2 ≤ L2
ρ

∥∥∥x̂1 − x(u1),k1
∥∥∥2 ,∀k1 ∈ {1, . . . , n(u1)

}
, (4.2)∥∥∥x̂1 − y(u0),k0

∥∥∥2 ≤ L2
f

∥∥∥x̂0 − x(u0),k0
∥∥∥2 ,∀k0 ∈ {1, . . . , n(u0)

}
, (4.3)

|̂r0 − r̂1|2 ≤ L2
ρ ‖x̂0 − x̂1‖2 if u0 = u1 , (4.4)

x̂0 = x0 . (4.5)

For a matter of simplicity, we will often drop the arguments in the definition of the
optimization problem and refer

(
P2(F , Lf , Lρ, x0, u0, u1)

)
as (P(u0,u1)

2 ). We denote by
B

(u0,u1)
2 (F) the lower bound associated with an optimal solution of (P(u0,u1)

2 ):

DEFINITION 4.1 (Optimal ValueB(u0,u1)
2 (F)). Let (u0, u1) ∈ U2, and let (r̂∗0, r̂

∗
1, x̂
∗
0, x̂
∗
1)

be an optimal solution to
(
P(u0,u1)
2

)
. Then,

B
(u0,u1)
2 (F) , r̂∗0 + r̂∗1 .

4.1. Decoupling Stages. Let (P ′(u0,u1)
2 ) and (P ′′(u0,u1)

2 ) be the two following subprob-
lems:
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P ′(u0,u1)
2

)
:

min
r̂0 ∈ R
x̂0 ∈ X

r̂0

subject to ∣∣∣̂r0 − r(u0),k0
∣∣∣2 ≤ L2

ρ

∥∥∥x̂0 − x(u0),k0
∥∥∥2 ,∀k0 ∈ {1, . . . , n(u0)

}
,

x̂0 = x0 .

(
P ′′(u0,u1)
2

)
:

min
r̂1 ∈ R
x̂1 ∈ X

r̂1 (4.6)

subject to ∣∣∣̂r1 − r(u1),k1
∣∣∣2 ≤ L2

ρ

∥∥∥x̂1 − x(u1),k1
∥∥∥2 ,∀k1 ∈

{
1, . . . , n(u1)

}
, (4.7)∥∥∥x̂1 − y(u0),k0

∥∥∥2 ≤ L2
f

∥∥∥x0 − x(u0),k0
∥∥∥2 ,∀k0 ∈ {1, . . . , n(u0)

}
. (4.8)

We show in this section that an optimal solution to (P(u0,u1)
2 ) can be obtained by solving

the two subproblems (P ′(u0,u1)
2 ) and (P ′′(u0,u1)

2 ) corresponding to the first stage and the
second stage. Indeed, one can see that the stages t = 0 and t = 1 are theoretically coupled
by constraint (4.4), except in the case where the two actions u0 and u1 are different for which
(P(u0,u1)

2 ) is trivially decoupled. We prove in the following that, even in the case u0 = u1,
optimal solutions to the two decoupled problems (P ′(u0,u1)

2 ) and (P ′′(u0,u1)
2 ) also satisfy

constraint (4.4). Additionally, we provide the solution of (P ′(u0,u1)
2 ).

THEOREM 4.2. Let (u0, u1) ∈ U2. If (r̂∗0, x̂
∗
0) is an optimal solution to

(
P ′(u0,u1)
2

)
and

(r̂∗1, x̂
∗
1) is an optimal solution to

(
P ′′(u0,u1)
2

)
, then (r̂∗0, r̂

∗
1, x̂
∗
0, x̂
∗
1) is an optimal solution to(

P(u0,u1)
2

)
.

Proof.
• First case: u0 6= u1 .

The constraint (4.4) drops and the theorem is trivial.
• Second case: u0 = u1 .

The rationale of the proof is the following. We first relax constraint (4.4), and consider the two
problems (P ′(u0,u1)

2 ) and (P ′′(u0,u1)
2 ). Then, we show that optimal solutions of (P ′(u0,u1)

2 )

and (P ′′(u0,u1)
2 ) also satisfy constraint (4.4).

About (P ′(u0,u1)
2 ). The problem (P ′(u0,u1)

2 ) consists in the minimization of r̂0 under
the intersection of interval constraints. It is therefore straightforward to solve. In particular
the optimal solution r̂∗0 lies at the lower value of one of the intervals. Therefore there exists
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x(u0),k

∗
0 , r(u0),k

∗
0 , y(u0),k

∗
0

)
∈ F (u0) such that

r̂∗0 = r(u0),k
∗
0 − Lρ

∥∥∥x0 − x(u0),k
∗
0

∥∥∥ . (4.9)

Furthermore r̂∗0 must belong to all intervals. We therefore have that

r̂∗0 ≥ r(u0),k0 − Lρ
∥∥∥x0 − x(u0),k0

∥∥∥ , ∀k0 ∈
{

1, . . . , n(u0)
}
. (4.10)

In other words,

r̂∗0 = max
k0∈{1,...,n(u0)}

r(u0),k0 − Lρ
∥∥∥x0 − x(u0),k0

∥∥∥ .
About (P ′′(u0,u1)

2 ). Again we observe that it is the minimization of r̂1 under the inter-
section of interval constraints as well. The sizes of the intervals are however not fixed but
determined by the variable x̂1. If we denote the optimal solution of (P ′′(u0,u1)

2 ) by r̂∗1 and
x̂∗1, we know that r̂∗1 also lies at the lower value of one of the intervals. Hence there exists(
x(u),k

∗
1 , r(u),k

∗
1 , y(u),k

∗
1

)
∈ F (u) such that

r̂∗1 = r(u),k
∗
1 − Lρ

∥∥∥x̂∗1 − x(u),k∗1∥∥∥ . (4.11)

Furthermore r̂∗1 must belong to all intervals. We therefore have that

r̂∗1 ≥ r(u),k1 − Lρ
∥∥∥x̂∗1 − x(u),k1∥∥∥ , ∀k1 ∈

{
1, . . . , n(u)

}
. (4.12)

We now discuss two cases depending on the sign of r̂∗0 − r̂∗1.

− If r̂∗0 − r̂∗1 ≥ 0
Using (4.9) and (4.12) with index k∗0 , we have

r̂∗0 − r̂∗1 ≤ Lρ
(∥∥∥x̂∗1 − x(u),k∗0∥∥∥− ∥∥∥x0 − x(u),k∗0∥∥∥) (4.13)

Since r̂∗0 − r̂∗1 ≥ 0, we therefore have

|̂r∗0 − r̂∗1| ≤ Lρ
(∥∥∥x̂∗1 − x(u),k∗0∥∥∥− ∥∥∥x0 − x(u),k∗0∥∥∥) . (4.14)

Using the triangle inequality we can write∥∥∥x̂∗1 − x(u),k∗0∥∥∥ ≤ ‖x̂∗1 − x0‖+
∥∥∥x0 − x(u),k∗0∥∥∥ . (4.15)

Replacing (4.15) in (4.14) we obtain

|̂r∗1 − r̂∗0| ≤ Lρ ‖x̂∗1 − x0‖

which shows that r̂∗0 and r̂∗1 satisfy constraint (4.4).

− If r̂∗0 − r̂∗1 < 0
Using (4.11) and (4.10) with index k∗1 , we have

r̂∗1 − r̂∗0 ≤ Lρ
(∥∥∥x0 − x(u),k∗1∥∥∥− ∥∥∥x̂∗1 − x(u),k∗1∥∥∥)
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and since r̂∗0 − r̂∗1 < 0,

|̂r∗1 − r̂∗0| ≤ Lρ
(∥∥∥x0 − x(u),k∗1∥∥∥− ∥∥∥x̂∗1 − x(u),k∗1∥∥∥) . (4.16)

Using the triangle inequality we can write∥∥∥x0 − x(u),k∗1∥∥∥ ≤ ‖x0 − x̂∗1‖+
∥∥∥x̂∗1 − x(u),k∗1∥∥∥ . (4.17)

Replacing (4.17) in (4.16) yields

|̂r∗1 − r̂∗0| ≤ Lρ ‖x0 − x̂∗1‖ ,

which again shows that r̂∗0 and r̂∗1 satisfy constraint (4.4).
In both cases r̂∗0− r̂∗1 ≥ 0 and r̂∗0− r̂∗1 < 0, we have shown that constraint (4.4) is satisfied.

In the following of the paper, we focus on the two subproblems (P ′(u0,u1)
2 ) and (P ′′(u0,u1)

2 )

rather than on (P(u0,u1)
2 ). From the proof of Theorem 4.2 given above, we can directly obtain

the solution of (P ′(u0,u1)
2 ):

COROLLARY 4.3. The solution of the problem (P ′(u0,u1)
2 ) is

r̂∗0 = max
k0∈{1,...,n(u0)}

r(u0),k0 − Lρ
∥∥∥x0 − x(u0),k0

∥∥∥ .
4.2. Complexity of (P ′′(u0,u1)

2 ). The problem (P ′(u0,u1)
2 ) being solved, we now fo-

cus in this section on the resolution of (P ′′(u0,u1)
2 ). In particular, we show that it is NP-

hard, even in the particular case where there is only one element in the sample F (u1) ={(
x(u1),1, r(u1),1, y(u1),1

)}
. In this particular case, the problem (P ′′(u0,u1)

2 ) amounts to max-
imizing of the distance

∥∥x̂1 − x(u1),1
∥∥ under an intersection of balls as we show in the fol-

lowing lemma.
LEMMA 4.4. If the cardinality of F (u1) is equal to 1:

F (u1) =
{(
x(u1),1, r(u1),1, y(u1),1

)}
,

then the optimal solution to
(
P ′′(u0,u1)
2

)
satisfies

r̂∗1 = r(u1),1 − Lρ
∥∥∥x̂∗1 − x(u1),1

∥∥∥
where x̂∗1 maximizes

∥∥x̂1 − x(u1),1
∥∥ subject to∥∥∥x̂1 − y(u0),k0

∥∥∥2 ≤ L2
f

∥∥∥x0 − x(u0),k0
∥∥∥2 , ∀

(
x(u0),k0 , r(u0),k0 , y(u0),k0

)
∈ F (u0) .

Proof. The unique constraint concerning r̂1 is an interval. Therefore r̂∗1 takes the value of
the lower bound of the interval. In order to obtain the lowest such value, the right-hand-side
of (4.7) must be maximized under the other constraints.

Note that if the cardinality n(u0) ofF (u0) is also equal to 1, then (P(u0,u1)
2 ) can be solved

exactly, as we will later show in Corollary 5.3. But, in the general case where n(u0) > 1, this
problem of maximizing a distance under a set of ball-constraints is NP-hard as we now prove.
To do it, we introduce the MNBC (for “Max Norm with Ball Constraints”) decision problem:
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DEFINITION 4.5 (MNBC Decision Problem). Given x(0) ∈ Qd, yi ∈ Qd, γi ∈ Q, i ∈
{1, . . . , I}, C ∈ Q, the MNBC problem is to determine whether there exists x ∈ Rd such that∥∥∥x− x(0)∥∥∥2 ≥ C
and ∥∥x− yi∥∥2 ≤ γi , ∀i ∈ {1, . . . , I} .

LEMMA 4.6. MNBC is NP-hard.
Proof. To prove it, we will do a reduction from the {0, 1}−programming feasibility

problem [40]. More precisely, we consider in this proof the {0, 2}−programming feasibility
problem, which is equivalent. The problem is, given p ∈ N, A ∈ Zp×d, b ∈ Zp to find
whether there exists x ∈ {0, 2}d that satisfies Ax ≤ b. This problem is known to be NP-hard
and we now provide a polynomial reduction to MNBC.

The dimension d is kept the same in both problems. The first step is to define a set of
constraints for MNBC such that the only potential feasible solutions are exactly x ∈ {0, 2}d.
We define

x(0) , (1, . . . , 1)

and

C , d.

For i = 1, . . . , d, we define

y2i ,
(
y2i1 , . . . , y

2i
d

)
with y2ii , 0 and y2ij , 1 for all j 6= i and γi , d+ 3.
Similarly for i = 1, . . . , d, we define

y2i+1 , (y2i+1
1 , . . . , y2i+1

d )

with y2i+1
i , 2 and y2i+1

j , 1 for all j 6= i and γi , d+ 3.

Claim

{
x ∈ Rd | ‖x− x(0)‖2 ≥ d

}
∩

(
2d+1⋂
i=2

{
x ∈ Rd | ‖x− yi‖2 ≤ γi

})
= {0, 2}d

It is readily verified that any x ∈ {0, 2}d belongs to the 2d+ 1 above sets.
Consider x ∈ Rd that belongs to the 2d + 1 above sets. Consider an index k ∈ {1, . . . , d}.
Using the constraints defining the sets, we can in particular write

‖(x1, . . . , xk−1, xk, xk+1, . . . , xd)− (1, . . . , 1)‖2 ≥ d
‖(x1, . . . , xk−1, xk, xk+1, . . . , xd)− (1, . . . , 1, 0, 1, . . . , 1)‖2 ≤ d+ 3

‖(x1, . . . , xk−1, xk, xk+1, . . . , xd)− (1, . . . , 1, 2, 1, . . . , 1)‖2 ≤ d+ 3
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that we can write algebraically∑
j 6=k

(xj − 1)2 + (xk − 1)2 ≥ d (4.18)

∑
j 6=k

(xj − 1)2 + x2k ≤ d+ 3 (4.19)

∑
j 6=k

(xj − 1)2 + (xk − 2)2 ≤ d+ 3. (4.20)

By computing (4.19)− (4.18) and (4.20)− (4.18), we obtain xk ≤ 2 and xk ≥ 0 respectively.
This implies that

d∑
k=1

(xk − 1)
2 ≤ d

and the equality is obtained if and only if we have that xk ∈ {0, 2} for all k which proves the
claim.

It remains to prove that we can encode any linear inequality through a ball constraint. Con-
sider an inequality of the type

∑d
j=1 ajxj ≤ b. We assume that a 6= 0 and that b is even and

therefore that there exists no x ∈ {0, 2}d such that aTx = b+ 1. We want to show that there
exists y ∈ Qd and γ ∈ Q such that{

x ∈ {0, 2}d | aTx ≤ b
}

=
{
x ∈ {0, 2}d | ‖x− y‖2 ≤ γ

}
. (4.21)

Let ȳ ∈ Rd be the intersection point of the hyperplane aTx = b+1 and the line (1 · · · 1)T +
λ(a1 · · · ad)T , λ ∈ R. Let r be defined as follows:

r =

d2
√√√√ d∑

j=1

a2j + 1

 .
We claim that choosing γ , r2 and y , ȳ − ra allows us to obtain (4.21). To prove it,
we need to show that x ∈ {0, 2}d belongs to the ball if and only if it satisfies the constraint
aTx ≤ b. Let x̄ ∈ {0, 2}d. There are two cases to consider:

• Suppose first that aT x̄ ≥ b+ 2.
Since ȳ is the closest point to y that satisfies aT y = b + 1, it also implies that any point x
such that aTx > b+ 1 is such that ‖x− y‖2 > r2 proving that:

x̄ /∈
{
x ∈ Rd | ‖x− y‖2 ≤ r2

}
.

• Suppose now that aT x̄ ≤ b and in particular that aT x̄ = b − k with k ∈ N (see
Figure 4.1).

Let ỹ ∈ Rd be the intersection point of the hyperplane aTx = b−k and the line (1 · · · 1)T +
λ(a1 · · · ad)T , λ ∈ R. Since

(
(1 · · · 1)T , ỹ, x̄

)
form a right triangle with the right angle in ỹ

and since ‖(1 · · · 1)T − x̄‖2 ≤ d, we have

‖ỹ − x̄‖2 ≤ d. (4.22)

By definition of y, we have:

‖y − ȳ‖ = r ,
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FIG. 4.1. The case when aT x̄ ≤ b.

and by definition of ȳ and ỹ, we have:

‖ȳ − ỹ‖ ≥ 1√∑d
j=1 a

2
j

.

Since ȳ, ỹ and y belong to the same line, we have

‖y − ỹ‖ ≤ r − 1√∑d
j=1 a

2
j

. (4.23)

As (y, ỹ, x̄) form a right triangle with the right angle in ỹ, we have that

‖x̄− y‖2 = ‖y − ỹ‖2 + ‖x̄− ỹ‖2

≤

r − 1√∑d
j=1 a

2
j

2

+ d using (4.22), (4.23)

= r2 − 2r√∑d
j=1 a

2
j

+
1∑d
j=1 a

2
j

+ d.

Since by definition, r ≥ d
2

√∑d
j=1 a

2
j + 1, we can write

‖x̄− y‖2 ≤ r2 − d− 2√∑d
j=1 a

2
j

+
1∑d
j=1 a

2
j

+ d

= r2 − 1∑d
j=1 a

2
j

≤ r2.

This proves that the chosen ball
{
x ∈ Rd | ‖x− y‖2 ≤ r2

}
includes the same points from

{0, 2}d as the linear inequality aTx ≤ b.
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The encoding length of all data is furthermore polynomial in the encoding length of the
initial inequalities. This completes the reduction and proves the NP-hardness of MNBC.

Note that the NP-hardness of MNBC is independent from the choice of the norm used
over the state space X . The two results follow:

COROLLARY 4.7.
(
P ′′(u0,u1)
2

)
is NP-hard.

THEOREM 4.8. The two-stage problem
(
P(u0,u1)
2

)
and the generalized T−stage prob-

lem (PT (F , Lf , Lρ, x0, u0, . . . , uT−1)) are NP-hard.

5. Relaxation Schemes for the Two-stage Case. The two-stage case with only one
element in the set F (u1) was proven to be NP-hard in the previous section (except if the car-
dinality of n(u0) of F (u0) is also equal to 1, in this case (P(u0,u1)

2 ) is solvable in polynomial
time as we will see later in Corollary 5.3). It is therefore unlikely that one can design an
algorithm that optimally solves the general two-stage case in polynomial time (unless P =
NP). The aim of the min max optimization problem is to obtain a sequence of actions that
has a performance guarantee. Therefore solving the optimization problem approximately or
obtaining an upper bound would be irrelevant. Instead we want to propose some relaxation
schemes that are computationally more tractable, and that are still leading to lower bounds on
the actual return of the sequences of actions.

The first relaxation scheme works by dropping some constraints in order to obtain a
problem that is solvable in polynomial time. We show that this scheme provides bounds that
are greater or equal to the CGRL bound introduced in [22]. The second relaxation scheme is
based on a Lagrangian relaxation where all constraints are dualized. Solving the Lagrangian
dual is shown to be a conic-quadratic problem that can be solved in polynomial time using
interior-point methods. We also prove that this relaxation scheme always gives better bounds
than the first relaxation scheme mentioned above, and consequently, better bounds than [22].
We also prove that the bounds computed from these relaxation schemes converge towards the
actual return of the sequence (u0, u1) when the sample dispersion converges towards zero.
As a consequence, the sequences of actions that maximize those bounds also become optimal
when the dispersion decreases towards zero.

From the previous section, we know that the two-stage problem (P(u0,u1)
2 ) can be de-

coupled into two subproblems (P ′(u0,u1)
2 ) and (P ′′(u0,u1)

2 ), where (P ′(u0,u1)
2 ) can be solved

straightforwardly (cf Theorem 4.2). We therefore only focus on relaxing the subproblem
(P ′′(u0,u1)

2 ):

(
P ′′(u0,u1)
2

)
: min
r̂1 ∈ R
x̂1 ∈ X

r̂1

subject to
∣∣∣̂r1 − r(u1),k1

∣∣∣2 ≤ L2
ρ

∥∥∥x̂1 − x(u1),k1
∥∥∥2 ∀k1 ∈ {1, . . . , n(u1)

}
(5.1)∥∥∥x̂1 − y(u0),k0

∥∥∥2 ≤ L2
f

∥∥∥x0 − x(u0),k0
∥∥∥2 ∀k0 ∈

{
1, . . . , n(u0)

}
(5.2)

5.1. The Trust-region Subproblem Relaxation Scheme. An easy way to obtain a re-
laxation from an optimization problem is to drop some constraints. We therefore suggest to
drop all constraints (5.1) but one, indexed by k1. Similarly we drop all constraints (5.2) but
one, indexed by k0. The following problem is therefore a relaxation of (P ′′(u0,u1)

2 ):
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P ′′(u0,u1)
TR (k0, k1)

)
:

min
r̂1 ∈ R
x̂1 ∈ X

r̂1

subject to ∣∣∣̂r1 − r(u1),k1
∣∣∣2 ≤ L2

ρ

∥∥∥x̂1 − x(u1),k1
∥∥∥2 , (5.3)∥∥∥x̂1 − y(u0),k0

∥∥∥2 ≤ L2
f

∥∥∥x0 − x(u0),k0
∥∥∥2 . (5.4)

We then have the following theorem:
THEOREM 5.1. Let us denote by B′′(u0,u1),k0,k1

TR (F) the bound given by the resolution
of (P ′′(u0,u1)

TR (k0, k1)). We have:

B
′′(u0,u1),k0,k1
TR (F) = r(u1),k1 − Lρ

∥∥∥x̂∗1(k0, k1)− x(u1),k1
∥∥∥ ,

where

x̂∗1(k0, k1)
.
= y(u0),k0 + Lf

∥∥x0 − x(u0),k0
∥∥∥∥y(u0),k0 − x(u1),k1
∥∥ (y(u0),k0 − x(u1),k1

)
if y(u0),k0 6= x(u1),k1

and, if y(u0),k0 = x(u1),k1 , x̂∗1(k0, k1) can be any point of the sphere centered in y(u0),k0 =
x(u1),k1 with radius Lf‖x0 − x(u0),k0‖.

Proof. Observe that it consists in the minimization of r̂1 under one interval constraint for
r̂1 where the size of the interval is determined through the constraint (5.4). The problem is
therefore equivalent to finding the largest right-hand-side of (5.3) under constraint (5.4). An
equivalent problem is therefore

max
x̂1∈X

∥∥∥x̂1 − x(u1),k1
∥∥∥2

subject to
∥∥∥x̂1 − y(u0),k0

∥∥∥ ≤ Lf ∥∥∥x0 − x(u0),k0
∥∥∥ .

This is the maximization of a quadratic function under a norm constraint. This problem is
referred to in the literature as the trust-region subproblem [13]. In our case, the optimal value
for x̂1 - denoted by x̂∗1(k0, k1) - lies on the same line as x(u1),k1 and y(u0),k0 , with y(u0),k0

lying in between x(u1),k1 and x̂∗1(k0, k1), the distance between y(u0),k0 and x̂∗1(k0, k1) being
exactly equal to the distance between x0 and x(u0),k0 . An illustration is given in Figure 5.1.

Solving (P ′′(u0,u1)
TR (k0, k1)) provides us with a family of relaxations for our initial prob-

lem by considering any combination (k0, k1) of two non-relaxed constraints. Taking the
maximum out of these lower bounds yields the best possible bound out of this family of re-
laxations. Finally, if we denote by B(u0,u1)

TR (F) the bound made of the sum of the solution
of (P ′(u0,u1)

2 ) and the maximal Trust-region relaxation of the problem (P ′′(u0,u1)
2 ) over all

possible couples of constraints, we have:
DEFINITION 5.2 (Trust-region Bound B(u0,u1)

TR (F)).

∀(u0, u1) ∈ U2, B
(u0,u1)
TR (F) , r̂∗0 + max

k1 ∈ {1, . . . , n(u1)}
k0 ∈ {1, . . . , n(u0)}

B
′′(u0,u1),k0,k1
TR (F).
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FIG. 5.1. A simple geometric algorithm to solve (P ′′TR(k0, k1)).

Notice that in the case where n(u0) and n(u1) are both equal to 1, then the trust-region
relaxation scheme provides an exact solution of the original optimization problem (P(u0,u1)

2 ):
COROLLARY 5.3.

∀(u0, u1) ∈ U2,

({
n(u0) = 1
n(u1) = 1

)
=⇒ B

(u0,u1)
TR (F) = B

(u0,u1)
2 (F).

5.2. The Lagrangian Relaxation. Another way to obtain a lower bound on the value of
a minimization problem is to consider a Lagrangian relaxation. In this section, we show that
the Lagrangian relaxation of the second stage problem is a conic quadratic optimization pro-
gram. Consider again the optimization problem (P ′′(u0,u1)

2 ). If we multiply the constraints
(5.1) by dual variables µ1, . . . , µk1 , . . . , µn(u1) ≥ 0 and the constraints (5.2) by dual variables
λ1, . . . , λk0 , . . . , λn(u0) ≥ 0, we obtain the Lagrangian dual:(
P ′′(u0,u1)
LD

)
:

max
λ1, . . . , λn(u0) ∈ R+

µ1, . . . , µn(u1) ∈ R+

min
r̂1 ∈ R
x̂1 ∈ X

r̂1

+

n(u1)∑
k1=1

µk1

((
r̂1 − r(u1),k1

)2
− L2

ρ

∥∥∥x̂1 − x(u1),k1
∥∥∥2)

+

n(u0)∑
k0=1

λk0

(∥∥∥x̂1 − y(u0),k0
∥∥∥2 − L2

f

∥∥∥x0 − x(u0),k0
∥∥∥2) .

(5.5)

Observe that the optimal value of (P ′′(u0,u1)
LD ) is known to provide a lower bound on the

optimal value of (P ′′(u0,u1)
2 ) [25].

THEOREM 5.4.
(
P ′′(u0,u1)
LD

)
is a conic quadratic program.
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Proof. In (5.5), we can decompose the squared norms and obtain(
P ′′(u0,u1)
LD

)
:

max
λ1, . . . , λn(u0) ∈ R+

µ1, . . . , µn(u1) ∈ R+

min
r̂1 ∈ R
x̂1 ∈ X

r̂21

n(u1)∑
k1=1

µk1

+ ‖x̂1‖2
−L2

ρ

n(u1)∑
k1=1

µk1 +

n(u0)∑
k0=1

λk0


(5.6)

+ r̂1

1− 2

n(u1)∑
k1=1

r(u1),k1

+

n(u1)∑
k1=1

2L2
ρµk1

〈
x̂1, x

(u1),k1
〉
−
n(u0)∑
k0=1

2λk0

〈
x̂1, y

(u0),k0
〉

(5.7)

+

n(u1)∑
k1=1

µk1

((
r(u1),k1

)2
− L2

ρ

∥∥∥x(u1),k1
∥∥∥2)

+

n(u0)∑
k0=1

λk0

(∥∥∥y(u0),k0
∥∥∥2 − L2

f

∥∥∥x(u0),k0 − x0
∥∥∥2) , (5.8)

where 〈a, b〉 denotes the inner product of a and b. We observe that the minimization problem
in r̂1 and x̂1 contains a quadratic part (5.6), a linear part (5.7) and a constant part (5.8)
once we fix λk0 and µk1 . In particular, observe that the optimal solution of the minimization
problem is −∞ as soon as the quadratic term is negative, i.e. if :

n(u1)∑
k1=1

µk1 ≤ 0 (5.9)

or −L2
ρ

n(u1)∑
k1=1

µk1 +

n(u0)∑
k0=1

λk0

 ≤ 0. (5.10)

Since we want to find the maximum of this series of optimization problems, we are only
interested in the problems for which the solution is finite. Observe that, since µk1 ≥ 0 for
all k1, the inequality (5.9) is never satisfied, unless if µk1 = 0 for all k1. Therefore in the
following, we will constraint λk0 and µk1 to be such that inequalities (5.9) and (5.10) are
never satisfied, i.e.:

n(u1)∑
k1=1

µk1 > 0

−L2
ρ

n(u1)∑
k1=1

µk1 +

n(u0)∑
k0=1

λk0 > 0.

Once that constraint is enforced, we observe that the minimization program is the minimiza-
tion of a convex quadratic function for which the optimum can be found as a closed form
formula. In order to simplify the rest of the proof, we introduce some useful notations:
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DEFINITION 5.5 (Additional Notations).

M ,
n(u1)∑
k1=1

µk1 , L ,
n(u0)∑
k0=1

λk0 ,

X ,
(
x(u1),1 · · ·x(u1),n

(u1)
)

, Y ,
(
y(u0),1 · · · y(u0),n

(u0)
)
,

λ ,
(
λ1 . . . λn(u0)

)T
, µ ,

(
µ1 . . . µn(u1)

)T
, r̄ ,

(
r(1) . . . r(n

(u1))
)T

,

∀p ∈ N0, Ip is an identity matrix of size p.

The quadratic form coming from (5.6), (5.7) and (5.8) can be written in the form

zTQz + lT z + c

with

z ,

(
x̂1

r̂1

)
∈ Rd+1, Q ,

( (
−ML2

ρ + L
)
Id

M

)
, l ,

(
2L2

ρXµ− 2Y λ
1− 2r̄Tµ

)

and the constant term is given by (5.8). The minimum of a convex quadratic form zTQz +
lT z + c is known to take the value − 1

4 l
TQ−1l+ c. In our case, the inverse of the matrix Q is

trivial to compute and we obtain finally that (P ′′(u0,u1)
LD ) can be written as

(
P ′′(u0,u1)
LD

)
: max
λ∈Rn(u0)

+ ,µ∈Rn(u1)

+

−‖L2
ρXµ− Y λ‖2

−ML2
ρ + L

−
(
1− 2r̄Tµ

)2
4M

(5.11)

+

n(u0)∑
k0=1

λk0

(∥∥∥y(u0),k0
∥∥∥2 − L2

f

∥∥∥x(u0),k0 − x0
∥∥∥2)

+

n(u1)∑
k1=1

µk1

((
r(u1),k1

)2
− L2

ρ

∥∥∥x(u1),k1
∥∥∥2)

subject to M > 0

L > ML2
ρ

The optimization problem (5.11) is in variables λ1, . . . , λn(u0) and µ1, . . . , µn(u1) . Ob-
serve that, with our notation, M and L are linear functions of the variables. The objective
function contains linear terms in λ1, . . . , λn(u0) and µ1, . . . , µn(u1) as well as a fractional-
quadratic function ([5]), i.e. the quotient of a concave quadratic function with a linear func-
tion. The constraint is linear. This type of problem is known as a rotated quadratic conic
problem and can be formulated as a conic quadratic optimization problem ([5]) that can be
solved in polynomial time using interior point methods [5, 37, 9].

From there, we have the following corollary:
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COROLLARY 5.6. ∀(u0, u1) ∈ U2,

B
′′(u0,u1)
LD (F) , max

λ∈Rn(u0)

+ ,µ∈Rn(u1)

+

−‖L2
ρXµ− Y λ‖2

−ML2
ρ + L

−
(
1− 2r̄Tµ

)2
4M

(5.12)

+

n(u0)∑
k0=1

λk0

(∥∥∥y(u0),k0
∥∥∥2 − L2

f

∥∥∥x(u0),k0 − x0
∥∥∥2) (5.13)

+

n(u1)∑
k1=1

µk1

((
r(u1),k1

)2
− L2

ρ

∥∥∥x(u1),k1
∥∥∥2)

subject to M > 0

L > ML2
ρ

In the following, we denote by B(u0,u1)
LD (F) the lower bound made of the sum of the solution

of (P ′(u0,u1)
2 ) and the relaxation of (P ′′(u0,u1)

2 ) computed from the Lagrangian relaxation:
DEFINITION 5.7 (Lagrangian Relaxation Bound B(u0,u1)

LD (F)).

∀(u0, u1) ∈ U2, B
(u0,u1)
LD (F) , r̂∗0 +B

′′(u0,u1)
LD (F) (5.14)

5.3. Comparing the Bounds. The CGRL algorithm proposed in [21, 22] for addressing
the min max problem uses the procedure described in [20] for computing a lower bound on
the return of a policy given a sample of trajectories. More specifically, for a given sequence
(u0, u1) ∈ U2, the program (PT (F , Lf , Lρ, x0, u0, . . . , uT−1)) is replaced by a lower bound
B

(u0,u1)
CGRL (F). We may now wonder how this bound compares in the two-stage case with

the two new bounds of
(
P(u0,u1)
2

)
that we have proposed: the trust-region bound and the

Lagrangian relaxation bound.

5.3.1. Trust-region Versus CGRL. We first recall the definition of the CGRL bound in
the two-stage case.

DEFINITION 5.8 (CGRL Bound B(u0,u1)
CGRL (F)). ∀(u0, u1) ∈ U2,

B
(u0,u1)
CGRL (F) , max

k1 ∈ {1, . . . , n(u1)}
k0 ∈ {1, . . . , n(u0)}

r(u0),k0 − Lρ(1 + Lf )
∥∥∥x(u0),k0 − x0

∥∥∥
+r(u1),k1 − Lρ

∥∥∥y(u0),k0 − x(u1),k1
∥∥∥ .

The following theorem shows that the Trust-region bound is always greater than or equal to
the CGRL bound.

THEOREM 5.9.

∀(u0, u1) ∈ U2, B
(u0,u1)
CGRL (F) ≤ B(u0,u1)

TR (F) .
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Proof. Let k∗0 ∈
{

1, . . . , n(u0)
}

and k∗1 ∈
{

1, . . . , n(u1)
}

be such that

B
(u0,u1)
CGRL (F) = r(u0),k

∗
0 − Lρ(1 + Lf )

∥∥∥x(u0),k
∗
0 − x0

∥∥∥+ r(u1),k
∗
1 − Lρ

∥∥∥y(u0),k
∗
0 − x(u1),k

∗
1

∥∥∥ .
Now, let us consider the solution B′′(u0,u1),k

∗
0 ,k
∗
1

TR (F) of the problem (P ′′(u0,u1)
TR (k∗0 , k

∗
1)), and

let us denote byB(u0,u1),k
∗
0 ,k
∗
1 the bound obtained if, in the definition of the value of r̂∗0 given

in Corollary 4.3, we fix the value of k′0 to k∗0 instead of maximizing over all possible k′0:

B(u0,u1),k
∗
0 ,k
∗
1 = r(u0),k

∗
0 − Lρ

∥∥∥x0 − x(u0),k
∗
0

∥∥∥+B
′′(u0,u1),k

∗
0 ,k
∗
1

TR (F)

Since r(u0),k
∗
0 −Lρ

∥∥x0 − x(u0),k
∗
0

∥∥ is smaller or equal to the solution r̂∗0 of (P ′(u0,u1)
2 ), one

has:

B
(u0,u1),k

∗
0 ,k
∗
1

TR (F) ≥ B(u0,u1),k
∗
0 ,k
∗
1 . (5.15)

Now, observe that:

B(u0,u1),k
∗
0 ,k
∗
1 −B(u0,u1)

CGRL (F) = LρLf

∥∥∥x(u0),k
∗
0 − x0

∥∥∥+ Lρ

∥∥∥y(u0),k
∗
0 − x(u1),k

∗
1

∥∥∥
− Lρ

∥∥∥x̂∗1(k∗0 , k
∗
1)− x(u1),k

∗
1

∥∥∥ . (5.16)

By construction, x̂∗1(k∗0 , k
∗
1) lies on the same line as y(u0),k

∗
0 and x(u1),k

∗
1 (see Figure 5.1).

Furthermore∥∥∥x̂∗1(k∗0 , k
∗
1)− x(u1),k

∗
1

∥∥∥ =
∥∥∥x̂∗1(k∗0 , k

∗
1)− y(u0),k

∗
0

∥∥∥+
∥∥∥y(u0),k

∗
0 − x(u1),k

∗
1

∥∥∥ . (5.17)

Using (5.17) in (5.16) yields

B(u0,u1),k
∗
0 ,k
∗
1 −B(u0,u1),k

∗
0 ,k
∗
1

CGRL (F) = LρLf

∥∥∥x(u0),k
∗
0 − x0

∥∥∥
+Lρ

(∥∥∥y(u0),k
∗
0 − x(u1),k

∗
1

∥∥∥− ∥∥∥x̂∗1(k∗0 , k
∗
1)− y(u0),k

∗
0

∥∥∥− ∥∥∥y(u0),k
∗
0 − x(u1),k

∗
1

∥∥∥)
= Lρ

(
Lf

∥∥∥x(u0),k
∗
0 − x0

∥∥∥− ∥∥∥x̂∗1(k∗0 , k
∗
1)− y(u0),k

∗
0

∥∥∥) . (5.18)

By construction, Equation (5.18) is equal to 0 (see Figure 5.1), which proves the equality of
the two bounds:

B(u0,u1),k
∗
0 ,k
∗
1 = B

(u0,u1)
CGRL (F) . (5.19)

The final result is given by combining Equations (5.15) and (5.19).
From the proof, one can observe that the gap between the CGRL bound and the Trust-

region bound is only due to the resolution of (P ′(u0,u1)
2 ). Note that in the case where k∗0 also

belongs to the set arg max
k0∈{1,...,n(u0)}

r(u0),k0 − Lρ
∥∥x(u0),k0 − x0

∥∥, then the bounds are equal.

The two corollaries follow:
COROLLARY 5.10. Let (u0, u1) ∈ U2. Let k∗0 ∈

{
1, . . . , n(u0)

}
and k∗1 ∈

{
1, . . . , n(u1)

}
be such that:

B
(u0,u1)
CGRL (F) = r(u0),k

∗
0 − Lρ(1 + Lf )

∥∥∥x(u0),k
∗
0 − x0

∥∥∥+ r(u1),k
∗
1 − Lρ

∥∥∥y(u0),k
∗
0 − x(u1),k

∗
1

∥∥∥ .
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Then,(
k∗0 ∈ arg max

k0∈{1,...,n(u0)}
r(u0),k0 − Lρ

∥∥∥x(u0),k0 − x0
∥∥∥) =⇒ B

(u0,u1)
CGRL (F) = B

(u0,u1)
TR (F) .

COROLLARY 5.11.

∀(u0, u1) ∈ U2,
(
n(u0) = 1

)
=⇒ B

(u0,u1)
CGRL (F) = B

(u0,u1)
TR (F) .

5.3.2. Lagrangian Relaxation Versus Trust-region. In this section, we prove that the
lower bound obtained with the Lagrangian relaxation is always greater than or equal to the
Trust-region bound. To prove this result, we give a preliminary lemma:

LEMMA 5.12. Let (u0, u1) ∈ U2 and (k0, k1) ∈
{

1, . . . , n(u0)
}
×
{

1, . . . , n(u1)
}

.

Consider again the problem
(
P ′′(u0,u1)
TR (k0, k1)

)
where all constraints are dropped except

the two defined by (k0, k1):(
P ′′(u0,u1)
TR (k0, k1)

)
: min

r̂1 ∈ R
x̂1 ∈ X

r̂1

subject to
∣∣∣̂r1 − r(u1),k1

∣∣∣2 ≤ L2
ρ

∥∥∥x̂1 − x(u1),k1
∥∥∥2∥∥∥x̂1 − y(u0),k0

∥∥∥2 ≤ L2
f

∥∥∥x0 − x(u0),k0
∥∥∥2 .

Then, the Lagrangian relaxation of
(
P ′′(u0,u1)
TR (k0, k1)

)
leads to a bound denoted by

B
′′(u0,u1),k0,k1
LD (F) which is equal to the Trust-region bound B′′(u0,u1),k0,k1

TR (F), i.e.

B
′′(u0,u1),k0,k1
LD (F) = B

′′(u0,u1),k0,k1
TR (F) .

Proofs of this lemma can be found in [3] and [8], but we also provide in Appendix A a
proof in our particular case. We then have the following theorem:

THEOREM 5.13.

∀ (u0, u1) ∈ U2, B
(u0,u1)
TR (F) ≤ B(u0,u1)

LD (F).

Proof. Let (u0, u1) ∈ U2. Let (k∗0 , k
∗
1) ∈

{
1, . . . , n(u0)

}
×
{

1, . . . , n(u1)
}

be such that:

B
(u0,u1)
TR (F) = r̂∗0 +B

′′(u0,u1),k
∗
0 ,k
∗
1

TR (F).

Considering (k0, k1) = (k∗0 , k
∗
1) in Lemma 5.12, we have:

B
(u0,u1)
TR (F) = r̂∗0 +B

′′(u0,u1),k
∗
0 ,k
∗
1

LD (F) (5.20)

Then, one can observe that the Lagrangian relaxation of the problem (P ′′(u0,u1)
TR (k∗0 , k

∗
1))

- from whichB′′(u0,u1),k
∗
0 ,k
∗
1

LD (F) is computed - is also a relaxation of the problem (P ′′(u0,u1)
LD )
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for which all the dual variables corresponding to constraints that are not related with the sys-
tem transitions

(
x(u0),k

∗
0 , r(u0),k

∗
0 , y(u0),k

∗
0

)
and

(
x(u1),k

∗
1 , r(u1),k

∗
1 , y(u1),k

∗
1

)
would be forced

to zero, i.e.

B
′′(u0,u1),k

∗
0 ,k
∗
1

LD (F) = max
λ∈Rn(u0)

+ ,µ∈Rn(u1)

+

−‖L2
ρXµ− Y λ‖2

−ML2
ρ + L

−
(
1− 2r̄Tµ

)2
4M

+

n(u0)∑
k0=1

λk0

(∥∥∥y(u0),k0
∥∥∥2 − L2

f

∥∥∥x(u0),k0 − x̂0
∥∥∥2)

+

n(u1)∑
k1=1

µk1

((
r(u1),k1

)2
− L2

ρ

∥∥∥x(u1),k1
∥∥∥2)

subject to M > 0 ,

L > ML2
ρ ,

λk0 = 0 if k0 6= k∗0 ,∀k0 ∈
{

1, . . . , n(u0)
}
,

µk1 = 0 if k1 6= k∗1 ,∀k1 ∈
{

1, . . . , n(u1)
}
.

We therefore have:

B
′′(u0,u1),k

∗
0 ,k
∗
1

LD (F) ≤ B′′(u0,u1)
LD (F) . (5.21)

By definition of the Lagrangian relaxation bound B(u0,u1)
LD (F), we have:

B
(u0,u1)
LD (F) = r̂∗0 +B

′′(u0,u1)
LD (F) (5.22)

Equations (5.20), (5.21) and (5.22) finally give:

B
(u0,u1)
TR (F ′) = B

(u0,u1)
LD (F) .

5.3.3. Bounds Inequalities: Summary. We summarize in the following theorem all the
results that were obtained in the previous sections.

THEOREM 5.14. ∀ (u0, u1) ∈ U2,

B
(u0,u1)
CGRL (F) ≤ B(u0,u1)

TR (F) ≤ B(u0,u1)
LD (F) ≤ B(u0,u1)

2 (F) ≤ J (u0,u1)
2 .

Proof. Let (u0, u1) ∈ U2. The inequality

B
(u0,u1)
CGRL (F) ≤ B(u0,u1)

TR (F) ≤ B(u0,u1)
LD (F) (5.23)

is a straightforward consequence of Theorems 5.9 and 5.13. The inequality

B
(u0,u1)
LD (F) ≤ B(u0,u1)

2 (F) (5.24)

is a property of the Lagrangian relaxation, and the inequality

B
(u0,u1)
2 (F) ≤ J (u0,u1)

2

is derived from the formalization of the min max generalization problem introduced in [22].
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5.4. Convergence Properties. We finally propose to analyze the convergence of the
bounds, as well as the sequences of actions that lead to the maximization of the bounds, when
the sample dispersion decreases towards zero. We assume in this section that the state space
X is bounded:

∃CX > 0 : ∀(x, x′) ∈ X 2, ‖x− x′‖ ≤ CX .

Let us now introduce the sample dispersion:
DEFINITION 5.15 (Sample Dispersion). Since X is bounded, one has:

∃ α > 0 : ∀u ∈ U , sup
x∈X

min
k∈{1,...,n(u)}

∥∥∥x(u),k − x∥∥∥ ≤ α . (5.25)

The smallest α which satisfies equation (5.25) is named the sample dispersion and is denoted
by α∗(F). Intuitively, the sample dispersion α∗(F) can be seen as the radius of the largest
non-visited state space area.

5.4.1. Bounds. We analyze in this subsection the tightness of the Trust-region and the
Lagrangian relaxation lower bounds as a function of the sample dispersion.

LEMMA 5.16.
∃ C > 0 : ∀(u0, u1) ∈ U2,∀B(u0,u1)(F) ∈

{
B

(u0,u1)
CGRL (F), B

(u0,u1)
TR (F), B

(u0,u1)
LD (F)

}
,

J
(u0,u1)
2 −B(u0,u1)(F) ≤ Cα∗(F).

Proof. The proof for the case where B(u0,u1)(F) = B
(u0,u1)
CGRL (F) is given in [21]. Ac-

cording to Theorem 5.14, one has:

∀ (u0, u1) ∈ U2, B
(u0,u1)
CGRL (F) ≤ B(u0,u1)

TR (F) ≤ B(u0,u1)
LD (F) ≤ J (u0,u1)

2 ,

which ends the proof.
We therefore have the following theorem:
THEOREM 5.17.

∀(u0, u1) ∈ U2,∀B(u0,u1)(F) ∈
{
B

(u0,u1)
CGRL (F), B

(u0,u1)
TR (F), B

(u0,u1)
LD (F)

}
,

lim
α∗(F)→0

J
(u0,u1)
2 −B(u0,u1)(F) = 0 .

5.4.2. Bound-optimal Sequences of Actions. In the following, we denote byB(∗)
CGRL (F)

(resp. B(∗)
TR (F) and B(∗)

LD (F) ) the maximal CGRL bound (resp. the maximal Trust-region
bound and maximal Lagrangian relaxation bound) over the set of all possible sequences of
actions, i.e.,

DEFINITION 5.18 (Maximal Bounds).

B
(∗)
CGRL (F) , max

(u0,u1)∈U2
B

(u0,u1)
CGRL (F) ,

B
(∗)
TR (F) , max

(u0,u1)∈U2
B

(u0,u1)
TR (F) ,

B
(∗)
LD (F) , max

(u0,u1)∈U2
B

(u0,u1)
LD (F) .
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We also denote by (u0, u1)
CGRL
F (resp. (u0, u1)

TR
F and (u0, u1)

LD
F ) three sequences of

actions that maximize the bounds:
DEFINITION 5.19 (Bound-optimal Sequences of Actions).

(u0, u1)
CGRL
F ∈

{
(u0, u1) ∈ U2|B(u0,u1)

CGRL (F) = B
(∗)
CGRL (F)

}
(u0, u1)

TR
F ∈

{
(u0, u1) ∈ U2|B(u0,u1)

TR (F) = B
(∗)
TR (F)

}
(u0, u1)

LD
F ∈

{
(u0, u1) ∈ U2|B(u0,u1)

LD (F) = B
(∗)
LD (F)

}
We finally give in this section a last theorem that shows the convergence of the sequences

of actions (u0, u1)
CGRL
F , (u0, u1)

TR
F and (u0, u1)

LD
F towards optimal sequences of actions

- i.e. sequences of actions that lead to an optimal return J∗2 - when the sample dispersion
α∗(F) decreases towards zero.

THEOREM 5.20. Let J∗ be the set of optimal two-stage sequences of actions:

J∗2 ,
{

(u0, u1) ∈ U2|J (u0,u1)
2 = J∗2

}
,

and let us suppose that J∗2 6= U2 (if J∗2 = U2, the search for an optimal sequence of actions
is indeed trivial). We define

ε , min
(u0,u1)∈U2\J∗2

{
J∗2 − J

(u0,u1)
2

}
.

Then, ∀ (ũ0, ũ1)F ∈
{

(u0, u1)
CGRL
F , (u0, u1)

TR
F , (u0, u1)

LD
F

}
,(

Cα∗(F) < ε
)

=⇒ (ũ0, ũ1)F ∈ J∗2 . (5.26)

Proof. Let us prove the theorem by contradiction. Let us assume that Cα∗(F) < ε. Let
B(u0,u1)(F) ∈

{
B

(u0,u1)
CGRL (F), B

(u0,u1)
TR (F), B

(u0,u1)
LD (F)

}
, and let (ũ0, ũ1)F be a sequence

such that

(ũ0, ũ1)F ∈ arg max
(u0,u1)∈U2

B(u0,u1)(F)

and let us assume that (ũ0, ũ1)F is not optimal. This implies that

J
(ũ0,ũ1)F
2 ≤ J∗2 − ε .

Now, let us consider a sequence (u∗0, u
∗
1) ∈ J∗2. Then

J
(u∗0 ,u

∗
1)

2 = J∗2 .

The lower bound B(u∗0 ,u
∗
1)(F) satisfies the relationship

J∗2 −B(u∗0 ,u
∗
1)(F) ≤ Cα∗(F).

Knowing that Cα∗(F) < ε, we have

B(u∗0 ,u
∗
1)(F) > J∗2 − ε.
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Since

J
(ũ0,ũ1)F
2 ≥ B(ũ0,ũ1)F (F),

we have

B(u∗0 ,u
∗
1)(F) > B(ũ0,ũ1)F (F)

which contradicts the fact that (ũ0, ũ1)F belongs to the set arg max
(u0,u1)∈U2

B(u0,u1)(F). This ends

the proof.

5.4.3. Remark. It is important to notice that the tightness of the bounds resulting from
the relaxation schemes proposed in this paper does not depend explicitly on the sample dis-
persion (which suffers from the curse of dimensionality), but depends rather on the initial
state for which the sequence of actions is computed and on the local concentration of samples
around the actual (unknown) trajectories of the system. Therefore, this may lead to cases
where the bounds are tight for some specific initial states, even if the sample does not cover
every area of the state space well enough.

6. Experimental Results. We provide some experimental results to illustrate the theo-
retical properties of the CGRL, Trust-region and Lagrangian relaxation bounds given below.
We compare the tightness of the bounds, as well as the performances of the bound-optimal
sequences of actions, on an academic benchmark.

6.1. Benchmark. We consider a linear benchmark whose dynamics is defined as fol-
lows :

∀(x, u) ∈ X × U , f(x, u) = x+ 3.1416× u× 1d,

where 1d ∈ Rd denotes a d−dimensional vector for which each component is equal to 1. The
reward function is defined as follows:

∀(x, u) ∈ X × U , ρ(x, u) =

d∑
i=1

x(i) ,

where x(i) denotes the i−th component of x. The state space X is included in Rd and
the finite action space is equal to U = {0, 0.1}. The system dynamics f is 1−Lipschitz
continuous and the reward function is

√
d−Lipschitz continuous. The initial state of the

system is set to

x0 = 0.5772× 1d .

The dimension d of the state space is set to d = 2. In all our experiments, the computation
of the Lagrangian relaxations, which requires to solve a conic-quadratic program, are done
using SeDuMi [47].

6.2. Protocol and Results.

6.2.1. Typical Run. For different cardinalities ci = 2i2, i = 1, . . . , 15, we generate a
sample of transitions Fci using a grid over [0, 1]d × U , as follows: ∀u ∈ U ,

F (u)
ci =

{([
i1
i

;
i2
i

]
, u, ρ

([
i1
i

;
i2
i

]
, u

)
, f

([
i1
i

;
i2
i

]
, u

)) ∣∣∣∣(i1, i2) ∈ {1, . . . , i}2
}
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FIG. 6.1. Bounds B
(∗)
CGRL (Fci ), B(∗)

TR (Fci ) and B
(∗)
LD (Fci ) computed from all samples of transitions

Fci i ∈ {1, . . . , 15} of cardinality ci = 2i2.

FIG. 6.2. Returns of the sequences (u0, u1)CGRL
Fci

, (u0, u1)TR
Fci

and (u0, u1)LD
Fci

computed from all samples

of transitions Fci i ∈ {1, . . . , 15} of cardinality ci = 2i2.

and

Fci = F (0)
ci ∪ F

(.1)
ci
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We report in Figure 6.1 the values of the maximal CGRL bound B(∗)
CGRL (Fci), the maximal

Trust-region bound B(∗)
TR (Fci) and the maximal Lagrangian relaxation bound B(∗)

LD (Fci) as
a function of the cardinality ci of the samples of transitions Fci . We also report in Figure

6.2 the returns J
(u0,u1)

CGRL
Fci

2 , J
(u0,u1)

TR
Fci

2 and J
(u0,u1)

LD
Fci

2 of the bound-optimal sequences of
actions (u0, u1)

CGRL
Fci

, (u0, u1)
TR
Fci

and (u0, u1)
LD
Fci

.

As expected, we observe that the bound computed with the Lagrangian relaxation is
always greater or equal to the Trust-region bound, which is also greater or equal to the CGRL
bound as predicted by Theorem 5.14. On the other hand, no difference were observed in
terms of return of the bound-optimal sequences of actions.

FIG. 6.3. Average values ACGRL(ci), ATR(ci) and ALD(ci) of the bounds computed from all samples of
transitions Fci,k k ∈ {1, . . . , 100} of cardinality ci = 2i2.

6.2.2. Uniformly Drawn Samples of Transitions. In order to observe the influence of
the dispersion of the state-action points of the transitions on the quality of the bounds, we
propose the following protocol. For each cardinality ci = 2i2, i = 1, . . . , 15, we generate
100 samples of transitionsFci,1, . . . ,Fci,100 using a uniform probability distribution over the
space [0, 1]d × U . For each sample of transition Fci,k i ∈ {1, . . . , 15}, k ∈ {1, . . . , 100},
we compute the maximal CGRL bound B

(∗)
CGRL (Fci,k), the maximal Trust-region bound

B
(∗)
TR (Fci,k) and the maximal Lagrangian relaxation bound B(∗)

LD (Fci,k). We then compute
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FIG. 6.4. Average values JCGRL, JTR and JLD of the return of the bound-optimal sequences of actions
computed from all samples of transitions Fci,k k ∈ {1, . . . , 100} of cardinality ci = 2i2.

the average values of the maximal CGRL, Trust-region and Lagrangian relaxation bounds :

∀i ∈ {1, . . . , 15}, ACGRL(ci) =
1

100

100∑
k=1

B
(∗)
CGRL (Fci,k)

ATR(ci) =
1

100

100∑
k=1

B
(∗)
TR (Fci,k)

ALD(ci) =
1

100

100∑
k=1

B
(∗)
LD (Fci,k)

and we report in Figure 6.3 the values ACGRL(ci) (resp. ATR(ci) and ALD(ci)) as a func-
tion of the cardinality ci of the samples of transitions. We also report in Figure 6.4 the
average returns of the bound-optimal sequences of actions (u0, u1)

CGRL
Fci,k

, (u0, u1)
TR
Fci,k

and

(u0, u1)
LD
Fci,k

:

∀i ∈ {1, . . . , 15}, JCGRL(ci) =
1

100

100∑
k=1

J
(u0,u1)

CGRL
Fci,k

2

JTR(ci) =
1

100

100∑
k=1

J
(u0,u1)

TR
Fci,k

2

JLD(ci) =
1

100

100∑
k=1

J
(u0,u1)

LD
Fci,k

2 .

as a function of the cardinality ci of the samples of transitions.
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We observe that, on average, the Lagrangian relaxation bound is much tighter that the
Trust-region and the CGRL bounds. The CGRL bound and the Trust-region bound remain
very close on average, which illustrates, in a sense, Corollary 5.10. Moreover, we also observe
that the bound-optimal sequences of actions (u0, u1)

LD
Fci,k

better perform on average.

7. Conclusions. We have considered in this paper the problem of computing min max
policies for deterministic, Lipschitz continuous batch mode reinforcement learning. First,
we have shown that this min max problem is NP-hard. Afterwards, we have proposed for the
two-stage case two relaxation schemes. Both have been extensively studied and, in particular,
they have been shown to perform better than the CGRL algorithm that has been introduced
earlier to address this min-max generalization problem.

A natural extension of this work would be to investigate how the proposed relaxation
schemes could be extended to the T -stage (T ≥ 3) framework. Lipschitz continuity as-
sumptions are common in a batch mode reinforcement learning setting, but one could imag-
ine developing min max strategies in other types of environments that are not necessarily
Lipschitzian, or even not continuous. Additionnaly, it would also be interesting to extend
the resolution schemes proposed in this paper to problems with very large/continuous action
spaces.
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Appendix A. Proof of Lemma 5.12.
Proof. For conciseness, we denote

(
x(u0),k0 , r(u0),k0 , y(u0),k0

)
( resp.(

x(u1),k1 , r(u1),k1 , y(u1),k1
)
) by

(
x0, r0, y0

)
(resp.

(
x1, r1, y1

)
), and λ1 (resp. µ1) by λ

(resp. µ). We assume that x0 6= x0 and x1 6= y0 otherwise the problem is trivial.
• Trust-region solution.

According to Definition 5.2, we have:

B
′′(u0,u1),k0,k1
TR (F) = r1 − Lρ

∥∥x̂∗1(k0, k1)− x1
∥∥ ,

where

x̂∗1(k0, k1) = y0 + Lf

∥∥x0 − x0∥∥
‖y0 − x1‖

(
y0 − x1

)
,

which writes

B
′′(u0,u1),k0,k1
TR (F) = r1 − Lρ

∥∥∥∥∥y0 + Lf

∥∥x0 − x0∥∥
‖y0 − x1‖

(
y0 − x1

)
− x1

∥∥∥∥∥ ,
= r1 − Lρ

∥∥y0 − x1∥∥(1 + Lf

∥∥x0 − x0∥∥
‖y0 − x1‖

)
= r1 − Lρ

∥∥y0 − x1∥∥− LρLf ∥∥x0 − x0∥∥
• Lagrangian relaxation based solution.
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According to Equation (5.11), we can write:

B
′′(u0,u1),k0,k1
LD (F) = max

λ∈R+,µ∈R+

−
∥∥L2

ρx
1µ− y0λ

∥∥2
−µL2

ρ + λ
−
(
1− 2r1µ

)2
4µ

+λ
(∥∥y0∥∥2 − L2

f

∥∥x0 − x0∥∥2) + µ
((
r1
)2 − L2

ρ

∥∥x1∥∥2)
subject to

µ > 0

λ > µL2
ρ

We denote by L(λ, µ) the quantity:

L(λ, µ) =
−
∥∥L2

ρx
1µ− y0λ

∥∥2
−µL2

ρ + λ
−
(
1− 2r1µ

)2
4µ

+ λ
(∥∥y0∥∥2 − L2

f

∥∥x0 − x0∥∥2)
+µ
((
r1
)2 − L2

ρ

∥∥x1∥∥2)
Let λ and µ be such that λ > µL2

ρ. Since the Trust-region solution to (P ′′(u0,u1)
TR (k0, k1)) is

optimal, and by property of the Lagrangian relaxation [25], one has:

L(λ, µ) ≤ B′′(u0,u1),k0,k1
TR (F) . (A.1)

In order to prove the lemma, it is therefore sufficient to determine two values λ0 and µ0 such
that the inequality (A.1) is an equality. By differentiating L(λ, µ), we obtain, after a long
calculation (that we omit here):


∂L(λ,µ)
∂λ = 0

∂L(λ,µ)
∂µ = 0

λ > µL2
ρ

 =⇒

{
λ =

Lρ
2Lf‖x0−x0‖ ,

µ = 1
2Lρ(‖y0−x1‖+Lf‖x0−x0‖) .

We denote by λ0 and µ0 the following values for the dual variables:

λ0 ,
Lρ

2Lf ‖x0 − x0‖
,

µ0 ,
1

2Lρ (‖y0 − x1‖+ Lf ‖x0 − x0‖)
.

We have:

µ0 =
1

2Lρ (‖y0 − x1‖+ Lf ‖x0 − x0‖)
> 0

λ0
µ0

= L2
ρ

(
1 +

∥∥y0 − x1∥∥
Lf ‖x0 − x0‖

)
> L2

ρ .
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In the following, we denote
(

1 +
‖y0−x1‖
Lf‖x0−x0‖

)
byK. We now give the expression ofL(λ0, µ0)

using only µ0 and K:

L(λ0, µ0) = −
L4
ρµ

2
0

∥∥x1 −Ky0∥∥2
µ0L2

ρ(−1 +K)
− 1

4µ0
+ r1 −

(
r1
)2
µ0

+µ0KL
2
ρ

(∥∥y0∥∥2 − L2
f

∥∥x0 − x0∥∥2)+ µ0

((
r1
)2 − L2

ρ

∥∥x1∥∥2)
= −

L2
ρµ0

∥∥x1 −Ky0∥∥2
K − 1

− 1

4µ0
+ r1

+L2
ρµ0K

(∥∥y0∥∥2 − L2
f

∥∥x0 − x0∥∥2)− L2
ρµ0

∥∥x1∥∥2 .
Using the fact that x1 −Ky0 = x1 − y0 − (K − 1)y0, we can write:

L(λ0, µ0) = −
L2
ρµ0

K − 1

(∥∥x1 − y0∥∥2 + (K − 1)2
∥∥y0∥∥2 − 2(K − 1)(x1 − y0)T y0

)
− 1

4µ0
+ r1 + L2

ρµ0K
(∥∥y0∥∥2 − L2

f

∥∥x0 − x0∥∥2)− L2
ρ

∥∥x1∥∥2
and

L(λ0, µ0) = −
L2
ρµ0

K − 1

∥∥x1 − y0∥∥2 − L2
ρµ0(K − 1)

∥∥y0∥∥2 + 2L2
ρµ0(x1 − y0)T y0

− 1

4µ0
+ r1 + L2

ρµ0K
(∥∥y0∥∥2 − L2

f

∥∥x0 − x0∥∥2)− L2
ρ

∥∥x1∥∥2 .
From there,

L(λ0, µ0) = −
L2
ρµ0

K − 1

∥∥x1 − y0∥∥2 +
∥∥y0∥∥2 (−L2

ρµ0(K − 1)− 2L2
ρµ0 + L2

ρµ0K
)

−2L2
ρµ0(x1)T y0 − 1

4µ0
+ r1 + L2

ρµ0K
(
−L2

f

∥∥x0 − x0∥∥2)− L2
ρ

∥∥x1∥∥2
and, since

(
−L2

ρµ0(K − 1)− 2L2
ρµ0 + L2

ρµ0K
)

= −L2
ρµ0, we have that

L(λ0, µ0) = −
L2
ρµ0

K − 1

∥∥x1 − y0∥∥2 − L2
ρµ0

∥∥y0∥∥2 − 2L2
ρµ0(x1)T y0

− 1

4µ0
+ r1 + L2

ρµ0K
(
−L2

f

∥∥x0 − x0∥∥2)− L2
ρ

∥∥x1∥∥2
and

L(λ0, µ0) = −
L2
ρµ0

K − 1

∥∥x1 − y0∥∥2 − L2
ρµ0

(∥∥y0∥∥2 +
∥∥x1∥∥2 − 2(x1)T y0

)
− 1

4µ0
+ r1 + L2

ρµ0K
(
−L2

f

∥∥x0 − x0∥∥2) .
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Since
(∥∥y0∥∥2 +

∥∥x1∥∥2 − 2(x1)T y0
)

=
∥∥x1 − y0∥∥2, we have:

L(λ0, µ0) = −
L2
ρµ0

K − 1

∥∥x1 − y0∥∥2 − L2
ρµ0

∥∥x1 − y0∥∥2
− 1

4µ0
+ r1 + L2

ρµ0K
(
−L2

f

∥∥x0 − x0∥∥2)
= −L2

ρµ0

∥∥x1 − y0∥∥2 K

K − 1

− 1

4µ0
+ r1 + L2

ρµ0K
(
−L2

f

∥∥x0 − x0∥∥2)
= −KL2

ρµ0

(∥∥x1 − y0∥∥2
K − 1

+ L2
f

∥∥x0 − x0∥∥2)− 1

4µ0
+ r1 .

Since K ,

(
1 +

‖y0−x1‖
Lf‖x0−x0‖

)
, we have:

L(λ0, µ0) = −

(
1 +

∥∥y0 − x1∥∥
Lf ‖x0 − x̂0‖

)
L2
ρµ0

 ∥∥x1 − y0∥∥2(
1 + ‖y0−x1‖

Lf‖x0−x0‖

)
− 1

+ L2
f

∥∥x0 − x0∥∥2


− 1

4µ0
+ r1

= −
L2
ρµ0

(
Lf
∥∥x0 − x0∥∥+

∥∥y0 − x1∥∥)
Lf ‖x0 − x0‖

(
Lf
∥∥x0 − x0∥∥∥∥x1 − y0∥∥2
‖x1 − y0‖

+ L2
f

∥∥x0 − x0∥∥2)

− 1

4µ0
+ r1

= − L2
ρµ0

(
Lf
∥∥x0 − x0∥∥+

∥∥y0 − x1∥∥) (∥∥x1 − y0∥∥+ Lf
∥∥x0 − x0∥∥)− 1

4µ0
+ r1 .

Since µ0 = 1
2Lρ(‖y0−x1‖+Lf‖x0−x0‖) , we finally obtain:

L(λ0, µ0) = −Lρ
2

(∥∥y0 − x1∥∥+ Lf
∥∥x0 − x0∥∥)− Lρ

2

(∥∥y0 − x1∥∥+ Lf
∥∥x0 − x0∥∥)+ r1

= r1 − Lρ
∥∥y0 − x1∥∥− LρLf ∥∥x0 − x0∥∥

= B
′′(u0,u1),k0,k1
TR (F) ,

which ends the proof.

REFERENCES

[1] A. BANERJEE AND A.A. TSIATIS, Adaptive two-stage designs in phase ii clinical trials, Statistics in
medicine, 25 (2006), pp. 3382–3395.
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2011.

[20] R. FONTENEAU, S. MURPHY, L. WEHENKEL, AND D. ERNST, Inferring bounds on the performance of a
control policy from a sample of trajectories, in Proceedings of the 2009 IEEE Symposium on Adaptive
Dynamic Programming and Reinforcement Learning (IEEE ADPRL 09), Nashville, TN, USA, 2009.

[21] R. FONTENEAU, S.A. MURPHY, L. WEHENKEL, AND D. ERNST, A cautious approach to generalization in
reinforcement learning, in Proceedings of the Second International Conference on Agents and Artificial
Intelligence (ICAART 2010), Valencia, Spain, 2010.

[22] R. FONTENEAU, S. A. MURPHY, L. WEHENKEL, AND D. ERNST, Towards min max generalization in re-
inforcement learning, in Agents and Artificial Intelligence: International Conference, ICAART 2010,
Valencia, Spain, January 2010, Revised Selected Papers. Series: Communications in Computer and In-
formation Science (CCIS), vol. 129, Springer, Heidelberg, 2011, pp. 61–77.

[23] K. FRAUENDORFER, Stochastic Two-stage Programming, Springer, 1992.
[24] L.P. HANSEN AND T.J. SARGENT, Robust Control and Model Uncertainty, American Economic Review,

(2001), pp. 60–66.
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