## Astrochemistry: a (very) brief introduction

Michaël De Becker Department of Astrophysics, Geophysics & Oceanography (AGO) Faculty of Sciences University of Liège (Belgium)

## Astrochemistry: a (very) brief introduction

1. Introduction: astrochemistry in a few words

- 2. Chemical processes in astronomical conditions
- 3. What do we need to feed astrochemical studies?

## **1.Introduction: astrochemistry** in a few words

### 1.Introduction: astrochemistry in a few words

It is difficult to admit the existence of molecules in interstellar space, because once a molecule is dissociated there seems to be no chance for the atoms to join together again. – Arthur Stanley Eddington (1926)

#### **Chemical diversity and complexity:**

about <u>170 molecules identified</u> in astronomical environments: including neutral species (1st identification: CH, Swings & Rosenfeld 1937), cationic species, anionic species (6 discovered quite recently)
 <u>efficient processes</u> are at work in space environments

#### The challenges of astrochemistry:

- unfamiliar physico-chemical conditions,
- the "laboratory" is inaccessible,

 exploration of scientific questions at the <u>crossroad of several</u> <u>disciplines</u>

#### Astrochemistry in a wider scientific context:

#### Astrophysics

#### Astrochemistry

#### Chemistry

## Molecular spectroscopy

- Progress in the exploration of molecular complexity
- Extension of the application fields of chemistry
- Significant input for astrophysics

## 2.Chemical processes in astronomical conditions



#### (a) molecular cloud

(b) proto-stellar object (Class 0)

(c) proto-stellar object (Class 1 or 2)

(d) planetary system

#### **Molecular cloud chemistry**



#### Molecular cloud chemistry : chemical networks





#### **Collapsing cloud chemistry**

Collapse of the molecular cloud

--> density increases and becomes significantly larger than in typical molecular clouds

Gradient of physical conditions

--> chemistry depends on the location in the collapsing cloud



#### **Proto-stellar object chemistry**



#### (Inter-)Planetary system chemistry



#### **Planetary chemistry**



Building blocks for the emergence of life --> connection with Emmanuelle Javaux's talk

# 3.What do we need to feed astrochemical studies?

## 3.What do we need to feed astrochemical studies?

- For specific conditions, <u>chemical networks</u> need to be established, in order to
  - understand the mechanisms responsible for molecular transformations
  - make qualitative and quantitative predictions on the molecular content of various environments

- Identify the adequate physical conditions

   → Select appropriate elementary processes

   Collect information on the molecular content of the selected environment (interstellar, proto-stellar, cometary, planetary...)

   → Input from spectroscopic studies, or solar system exploration missions
  - Use the relevant rate coefficients for all elementary processes → Prior rate coefficient determination is necessary!!

Identify the adequate physical conditions

 → Select appropriate elementary processes

 Collect information on the molecular content of the selected environment (interstellar, proto-stellar, cometary, planetary...)

 → Input from spectroscopic studies, or solar system exploration missions

Use the relevant rate coefficients for all elementary processes → Prior rate coefficient determination is necessary!!

Potential new challenge for space exploration missions!!

## There is no better space laboratory than Space itself!

Could we imagine <u>space mission designs to determine rate</u> <u>coefficients in space environments</u>? For instance, photodissociation constants using the Solar UV radiation field

 $\rightarrow$  see for instance the LAMPS concept (M. De Becker, LiSRI) or the more ambitious VITRINE project (see Hervé Cottin's talk)

Could we envisage to develop plasmon-based devices to <u>monitor</u> <u>chemical reactions in space environments</u>?

For instance, surface reactions on dust or ice analogs, and their interaction with Solar radiation...

→ surface plasmons technology in space mission concepts (see the talk of Karl Fleury & Serge Habraken)