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to elevations in temperature as in case 
of a fire, it was necessary to analyse 
each sub-structure in terms of thermal 
action and structural behaviour. The 
results of these analyses are discussed 
in the following sections.

Description of Structure

Vertical Structures

All the vertical loads will be sup-
ported by HSS columns. The circular 
323,9 mm tubes, with a steel grade of 
S355, have wall thicknesses varying 
from 10 to 40 mm. It is important to 
note that even if an HSS column is 
40 mm thick, its temperature will a lso 
attain an untenable level (as the yield 
strength drops), even if it takes more 
time than for a tube with thinner walls 
to reach that level. Although oversiz-
ing (overdesign) could have been an 
option for a few members, in this proj-
ect, it was deemed uneconomical. The 
chosen fire design strategy was thus to 
optimise the HSSs for the small loads, 
as well as the higher loads, to switch 
to composite columns, with or without 
steel rebar reinforcement.

Truss  Girder

The other steel structure that required 
analysis was the three- dimensional 
(3D) truss girder (Fig. 2 left side and 
Fig. 3), which is also made of HSSs that 
can support the loads from six floors 
above it. The upper members of the 
truss react with the concrete slab as a 
composite  section, while the other truss 

members are normal steel sections. A 
3D structural analysis was performed 
to ana lyse the global behaviour in a 
fire situation and to optimise the weld-
ing thickness.

Fire Analysis

Thermal Actions

As the building must achieve 60 min 
of fire resistance (R60), the standard 
approach, using the ISO fire curve 
as the temperature input for thermal 
calculations, quickly showed that this 
target time cannot be reached with 
the relatively thin walls used in the 
hollow sections. Therefore, to check 
whether the steel structures could stay 
unprotected, it was necessary to use a 
performance-based approach. Several 
natural fire scenarios (with zone mod-
els), localised fires and simplified 
computational fluid (CFD) simulation 
using the Fire Dynamics Simulator 
(FDS) software1 were  used to heat the 
sections (Fig. 4).

Natural Fires

The natural fire scenarios have been 
calculated according to EN 1991-1-2, 
Annex E2 and th e Natural Fire Safety 
Concept (NFSC).3 Owing to the low 
thermal loads (quantity of combustible 
matter) present in the building that are 
estimated to a medium level, qf,k ≅ 500 
MJ/m2, and the active protection mea-
sures taken in the project (detection, 
sprinkler, smoke management, etc.), 
the expected gas temperature should 
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Introduction

Project

A new, complex-shaped, fully trans-
parent, concrete and steel building 
will be inaugurated in Geneva in 
2013 (Figs. 1  and 2). This high-quality 
work of architecture, the “Maison de 
la Paix” building, was designed by the 
Swiss architects IPAS in Neuchâtel 
and SANCHA, an engineering office 
in Yverdon-Les-Bains, to be the long-
term home for the Graduate Institute 
of International and Development 
Studies (IHEID). The building will 
have an auditorium for 600 people, 
15 classrooms, te n seminar and work-
rooms, a library with a surface of 
4500 m2 on two levels, a cafeteria and 
a terrace.

As requested by the authors of the 
project, while the slabs will be in pre-
stressed reinforced concrete, in all 
vertical structures, the facades and  the 
truss over the conference room, steel 
hollow structural sections  (HSSs) will 
be used. As the first step, the whole 
building has been designed for the 
normal “cold” ultimate limit state 
(ULS); however, this design process is 
not described here. 

Once the new building is complete, the 
structural steel will be visible. It was 
determined that passive fire protection 
for the steel would be very expensive 
and could be problematic in terms of 
durability and costs of application and 
maintenance. 

Since the steel structure that will be 
used in the new building is sensitive 

Fig. 1:  Virtual image of the four “petals” comprising the building
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be lower than that in the ISO fire 
curve. This means that the maximum 
temperature expected in the steel sec-
tions will stay relatively low. 

Figure 4 shows the significant tempera-
ture difference in the conference room 
when using the natural fir e scenario 
as opposed to the ISO fire curve. For 
example, the external steel ring heats 
up to 800°C after 30 min of exposure 
to ISO fire. With the natural fire, the 
HSSs only heat up to 450°C: the steel 
resistance is still 100% of the original 

(cold) value. At 400°C, the E-modulus 
decreases (the decrease starts at 200°C), 
thus making deformation the main con-
cern, a topic that is discussed later.

In the natural fire scenario parameters, 
the use of a double sprinkler system 
helped to reduce the impact of the fire, 
with one sprinkler directed towards the 
fire and the other directed upwards to 
cool the structure. The hypotheses that 
were discussed with and agreed on by 
the local fire authorities allowed con-
sidering the proposed active measures 

with a low factor dn = 0,44 in the design 
fire load, qf,d, calculation (according to 
Eq. (1) in Annex E.2): 

 
f,d f,k      q1    q1 nq q  m= ·  ·   ·   ·  

Fire load density formula (MJ/m2)

Finally, as the glazing behaviour is 
still a big concern in fire engineer-
ing, several scenarios were calculated 
with a two zone model,4,5 considering 
different room geometries, window- 
breaking scenarios (Fig. 5) and fire 
loads. It was observed that depending 
on the opening factor, the maximal gas 
temperature can easily raise to 800°C, 
with a d of more than 200°C between 
the extreme values. Finally, as the 
glazing constructive solution was not 
decided at the time of this study, the 
worst reasonable case was chosen for 
the office fire scenarios.

Localised Fires

In the parts of Euroc ode concerning 
fire, in particular, EN 1991-1-22 an d 
EN 1993-1-2,6 localised fire formulae 
a re given for heat flux or air tempera-
ture evolution in the fire, as a func-
tion of the height or as a function of 
the horizontal distance from the fire. 
However, the Eurocodes lack methods 
that can be used for the analysis of a 
column situated near a fire, not in the 
flame itself, but sufficiently close to be 
affected by the radiation (Fig. 6).  In 
order to take into account this fire sce-
nario, an analytical model developed 
by Vassart–Zanon7 was applied to the 
study described here.

The flame can be modelled by a geomet-
rical surface emitting a flux. The intensity 
of the flux will vary with the  temperature 
of the flame. The flux received at a 
 certain distance of the flame will vary 
with the shape of the radiative surface, 
the intensity of the radiation and the 
view factor of the impacted element.

Fig. 2:  Longitudinal view 
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Fig. 3:  Three-dimensional structural model of the truss over the conference room (SCIA 
Engineer model)
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Fig. 4:  Heating of the steel ring of the column sections in the conference room using ISO 
and natural fires (p lain lines indicate diameter and thickness of the tubes)
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Fig. 5:  Influence of the window breakage sequence on the gas 
temperatures in natural fire simulation (Ozone)
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Fig. 6:  Radiative flux from source to element
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Fig. 7:  Different shapes of the flame: (a) cylinder of flame impacting the ceiling, (b) cone 
of flame not impacting the ceiling and (c) cone of flame impacting the ceiling

(a) (b) (c)The shape of the flame can vary 
depending on the intensity of the fire 
and depending on the position of the 
ceiling (Fig . 7).

In this calculation, the fire scenario was 
a pallet of 500 kg of paper located at a 
distance of 300 mm from the column. 
This scenario is less conservative than 
the ISO curve that was applied to the 
whole building, but more severe and 
safer than when only the uniform tem-
perature in the two zones of the zone 
model is considered (that is instead 
suitable for the whole compartment 
volume). The fluxes provided to the 
vertical elements were introduced 
in the Finite Element Model (FEM) 
Software SAFIR8 to calculate the tem-
peratures inside the tubular sections. 

CFD Simulations

In addition to the simplified zone 
model or localised fires, several CFD 
simulations were performed with the 
FDS software (Fig. 8) to verify the 
hypotheses used in the previous cal-
culations. The first simulations were 
performed for the conference room, 
the others to validate  the window-
breaking scenarios and their influence 
on the maximal gas temperature inside 
the office compartments.

These simulations also showed that

• the gas temperature reached b y the 
Ozone software was of the same 
magnitude (within ±100°C); 

• the hypothesis formulated for the 
window breakage sequence had the 
same effect on the FDS simulation 
and the Ozone models;

• a highly resistant windows system 
(many layers) that can resist fi res 
without complete damage could stay 
in place even when the glass is broken, 
thereby modifying the air movement.

Structural Analysis

Conference Room

The truss girder over the confer-
ence room  supporting several storeys 
 was modelled and verified with a 3D 
SAFIR8 beam  and shell model. Figure 9 
shows the evolution of the deflection  in 
the middle of the truss girder. The first 
deflection is due to the loading of the 
structure, then the heat ing begins and 
the thermal elongations together with 
the E-modulus drop cause the deflec-
tion to increase. When the fire is con-
trolled, the temperature gets cooler and 
the thermal elongations are recovered, 
while permanent deformations stay. In 
a natural fire scenario, the deflections 
after the fire is controlled are relatively 
low and the structure will not fail within 
the first 60 min of the fire. 

It has been then showed that even if a 
fire occurs, the heating of the tubes is 
very limited, as well as the deflections, 
that could cause great collateral and 
expensive damage. 

Facades

The tubular truss facades (Fig. 10) 
were also modelled and checked with 
natural fire scenarios.

As the facade structure was overde-
signed to deflect very little in the normal 
serviceability limit state (SLS) design sit-
uation, there is a great level of inherent 
safety: the resistance is thus not a great 
concern even during fire. The deflection 
during fire was thus deemed reasonable 
and admitted as sufficient for the SLS. 
Again, the deformations were a concern 
in this part of the building, but as the 
active fire protection measures (sprin-
klers) will be installed (a 98% effec-
tiveness probability is considered for 
sprinklers in Switzerland), the residual 
risk is very low, and accepted.

Columns

Finally, the whole vertical steel column 
system was designed and optimised in 
the fire situation, using hypotheses from 
natural fires and localised fire sc enarios 
described in the section Description of 
Structure. First, verifications were con-
ducted using the NRCC method,9 which 
is mainl y based on laboratory full-scale 
tests. These calculations showed that 
with a reasonable load ratio (2000–4000 
kN), the unreinforced  concrete-filled 
HSS columns could withstand high 
loads (up to 8000 kN). This was con-
firmed by further FEM non-linear cal-
culations using SAFIR. 
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able when achieved by a well-trained 
and experimented specialist. Thanks to 
the use of the new localised fire method 
proposed by Vassard and Zanon, the 
columns have been optimised within 
a conservative safety concept. The col-
umns with lower load can stay unpro-
tected, while the columns subjected 
to higher loads will be constructed as 
reinforced steel–concrete composite 
sections. The truss girder over the con-
ference room a nd the façc ade struc-
ture will stay completely unprotected, 
thanks to the active fire protection 
measures and at the price of sophisti-
cated design verifications.
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Fig 9:  Maximal and residual deflections under a natural fire scenario
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Fig. 10:  SAFIR 3D structural model of the truss facade
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Fig. 8: FDS simulation for a typical simplified office compartment. Gas temperature 
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However, using FEM together with the 
localised-fire-heated sections, it was pos-
sible to push the optimisation to its rea-
sonable maximum (being not extreme 
as well as keeping safety in mind). An 
incremental procedure was used to 
find the critical load capacity under 
the natural and localised fire situations, 
knowing that this load is a function of 
the evolution of the section tempera-
ture that varies non-linearly with time. 
Many calculations were necessary to 
determine the critical load capacity, as 
every group of columns has a different 
load and buckling length. As a result of 
the procedure used, an optimisation of 

the  section much closer to the effective 
critical temperature of each group of 
columns was achieved as compared to 
the values obtained with the much more 
conservative ISO fire approach.

Conclusions

The performance-based design 
approach used in this project has been 
a full success. The steel structure, as 
desired by the architect, remained 
unprotected and slender. The  structural 
fire optimisation that was performed 
proves that the fire analysis and design 
process is really valuable  and sustain-
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