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ABSTRACT   

In the framework of instrument calibration, straylight issues are a critical aspect that can deteriorate the optical 
performances of instrument. To cope with this, a new facility is designed dedicated for in-field and far field straylight 
characterization: up to 10-8 for in-field and up to 10-10 for far field straylight in the visible to NIR spectral ranges. 
Moreover, from previous straylight test performed at CSL, vacuum conditions are needed for reaching the 10-10 rejection 
requirement mainly to avoid air/dust diffusion. The major constrains are to design a straylight facility either for in-field 
and out-field straylight measurements. That requires high dynamic range at source level and a high radiance point source 
allowing small diverging collimated beam. Moreover, the straylight facility has to be implemented into a limited 
envelope and has to be built with vacuum compatible materials and black coating. As checking the facility performance 
requires an instrument better than the facility itself, that is no easy to find, so that the performances have been estimated 
through a modelisation into a non sequential optical software. This modelisation is based on CAD importation of 
mechanical design, on BRDF characteristics of black coating and on statistical averaging of ray tracing at instrument 
entrance. 
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1. INTRODUCTION  
The Centre Spatial de Liege (CSL) has been involved since twenty years in the characterization and evaluation of stray 
light for space instruments (ref [1] to [5]). Today CSL is developing a new stray light facility for the stray light 
characterization of small earth observation satellites. Stray light issues are tackled in different ways. For large payloads 
deep stray light analysis is carried out, tests at subsystem are performed or partial illuminations are also envisaged. For 
small EO satellite, it is possible to perform an end to end test to evaluate the stray light characteristic of the instrument. 

2. TEST FACILITY REQUIREMENTS 
For an optical system, the stray light contributions may be summed as In-field Stray light (IFS) and Out-of-field Stray 
light (OFS). The major stray light contributions are:  

- the effects of mirror microroughness,  

- the effects of dust or defects on the mirrors, 

- the scattering induced by the aperture stop,  

- the effects of ghosts, 

- the stray light due to Sun and Moon, or any intense light source out of the FOV. 

The facility will not be able to directly identify the sources of stray light listed here above, but will verify that the stray 
light contribution for along angles (taken in absolute values) larger than 10 arc degrees or for across angles larger than 
25arc degrees are negligible, and that the dominant contributor to stray light for in field is the pupil stop. The mirror 
microroughness, dust and defects contributions are indistinguishable in practice and bear a strong angular variation from 
the incident direction. 

The test facility is designed for infield straylight characterization up to 10-8 as close as ± 250 arcsec from the incident and 
for farfield straylight characterization up to 10-10 as close as ± 10° from the incident.   
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Figure 11. MAP PU1 paint BRDF profiles 

6.3 Strayligth simulation: Nearfield performances 

The nearfield contributions are mainly: 

• Straylight induced by optical surfaces scattering (particulate contamination, microroughness contribution, dig 
contribution); 

• Straylight induced by the source assembly; 

• Straylight induced by backscattering between the payload baffle and the parabolic mirror. 

The optical surface particulate contamination impact is based on MIE scattering BRDF with typically CL100 and CL200 
level according MIL-1246C. The CL100 surface cleanliness is mandatory to fit with requirements. 

 
Figure 12. Impact of optical surfaces cleanliness on nearfield straylight. 
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The optical surface microroughness BRDF is based on Harvey function with typical parameters. Microroughness 
contributions is driven by the parabolic mirror microroughness which was not specified for this purposes. As shown in 
Figure 13, the impact of the microroughness straylight contribution is into requirements. 

Table 1: Characteristics and Harvey parameters for collimator mirrors. 

 Parabolic mirror Fold mirror 
Microroughness (RMS) 1.2 nm 0.4 nm 

TIS@805nm 0.035% 0.0038% 

Harvey function 
parameters 

b0 = 0.073 
l = 0.01 
s = -1.8 

b0 = 0.0082 
l = 0.01 
s = -1.8 

 
The scratch and dig of the optical surfaces contribution is mainly driven by the parabolic mirror digs: optical surface is 
degraded by non negligible digs density (N=5cm-2).The digs induced BRDF is based on lambertian and specular 
contributions ([8]): 

 

 
 
Where λ is the wavelength, Φ is the dig diameter and  N is the dig density. 

The impact of the optical surfaces digs straylight contribution is above the requirements as shown in Figure 13. 

The collimator source assembly straylight contribution is mainly driven by the microroughness on the pyramid. The 
straylight contribution is negligible. 

For nearfield measurements, the payload baffle is implicated in association with the diffusion onto the parabolic mirror 
(mainly the diffusion from the digs). As shown in Figure 13, this straylight contribution is one order of magnitude below 
the parabolic mirror dig diffusion. 

 
Figure 13. Impact of optical surfaces microroughness and digs and impact of FPA assembly and payload baffle on nearfield 

straylight. 
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Table 2 summarizes the nearfield performances at 4.1 arcmin from the nominal field of view. Excepted the dig straylight 
contribution, all other contributions fit with the requirement (< 10-8). 

Table 2: Straylight contribution for nearfield measurements at FOV = 4.1 arcmin (250 arcsec). 

Optical surfaces microroughness: 1.247 10-8 ± 11% @1σ 
Optical surface cleanliness (CL100): 7.55 10-9 ± 7% @1σ 

Parabolic mirror digs (N=5 cm-2) 1.52 10-7 ± 7% @1σ 
Source assembly: 5.5 10-14 ± 28% @1σ 
Payload baffle: 2.48 10-8 
Requirements: 10-8 

 

6.4 Straylight simulation: Farfield performances 

The farfield contributions are mainly: 

• Straylight induced backscattering between the payload baffle and the black tent; 

• Straylight induced backscattering between the payload baffle and the parabolic mirror; 

• Straylight induced by the air dust. 

The strayligth induced by the black tent is lower than 10-12 with MAP PU1 and one order of magnitude below by using 
Acktar® black coating on the payload baffle (Figure 14). The straylight induced by the air dust is limited or suppressed 
by using a small vacuum into the chamber. 

 

 
Figure 14. Impact of payload baffle scattering on farfield strayligth. 
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7. FACILITY STATUS 
The facility is building up: 

• Collimator source assembly is at black coating level; 

• Light source, baffling, black tent, MGSE, monitoring and collimator are available at CSL. 

Straylight test on PROBAV QM are foreseen in December 2012. Straylight test on SOLOHI are foreseen in January 
2013. 

8. CONCLUSIONS 
Stray light characterization of earth Observation satellites has become a growing necessity to guarantee the mission 
success. To fulfill this, a new stray light test facility is under development at CSL. In this paper we have demonstrated that 
the ability to measure PSFs at below 1E-10 should be possible from the visible till the NIR. The facility will be able to test 
payload of several 100 of kg with FOV of +/- 300 arc degrees across track and +/- 15° along track. The acquire data will 
not allow to identify each the stray light source mechanisms; it provides the integrated PSF taking into account all the 
contributors. Nevertheless the big advantage of this stray light test facility is its ability to measure nearfield stray light. 
The measurement will not only be used for the final acceptance of the instruments but also for removing the stray light 
contribution from the in flight data images. Simulations gives confidence on the facility performances. 
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