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Abstract: In a healthy heart, the mechano-electric feedback (MEF) process acts as an
intrinsic regulatory mechanism of the myocardium which allows the normal cardiac contraction
by damping mechanical perturbations in order to generate a new healthy electromechanical
situation. However, under certain conditions, the MEF can be a generator of dramatic
arrhythmias by inducing local electrical depolarizations as a result of abnormal cardiac tissue
deformations, via stretch-activated channels (SACs). Then, these perturbations can propagate
in the whole heart and lead to global cardiac dysfunctions. In the present study, we examine
the spatio-temporal behavior of the autonomous electrical activity induced by the MEF when
the heart is subject to temperature variations. For instance, such a situation can occur during
a therapeutic hypothermia. This technique is usually used to prevent neuronal injuries after a
cardiac resuscitation. From this perspective, we introduce a one-dimensional time-dependent
model containing all the key ingredients that allow accounting for excitation-contraction
coupling, MEF and thermoelectric coupling. Our simulations show that an autonomous electrical
activity can be induced by cardiac deformations, but only inside a certain temperature interval.
In addition, in some cases, the autonomous electrical activity takes place in a periodic way like
a pacemaker. We also highlight that some properties of the action potentials that are generated
by the MEF, are significantly influenced by temperature. Moreover, in the situation where a
pacemaker activity occurs, we also show that the period is heavily temperature-dependent.

Keywords: Biomedical systems, Electrical activity, Finite element analysis, Mechanical
properties, Nonlinear models, Numerical simulation, Partial differential equations,
Physiological models.

1. INTRODUCTION

In a healthy heart, cardiac beats, i.e. cardiac tissue con-
tractions, are induced by a depolarization wave initiated
by the sino-atrial (SA) node, which is located in the upper
region of the right atrium. The SA node actually consists
in a set of specialized cells which own the property to
generate action potentials (APs) in a spontaneous and
periodic way. After the SA node fires the electrical impulse,
i.e. the AP, this signal spreads in a orderly fashion through
the whole heart to allow normal cardiac tissue contraction
and the resulting effective blood pumping. The contraction
of cardiomyocytes due to electrical activity is known as the
excitation-contraction coupling (ECC). When the SA node
controls the cardiac contraction rhythm, the latter is called
normal sinus rhythm. In turn, cardiac tissue mechanics
also influences the electrical activity, via stretch-activated
channels (SACs). This process is known as the mechano-
electric feedback (MEF). In a healthy heart, the MEF acts
as an intrinsic regulatory mechanism of the myocardium
that allows the normal cardiac contraction by damping me-
chanical perturbations in order to generate a new healthy
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electromechanical situation. However, under certain condi-
tions, the MEF can be a generator of dramatic arrhythmias
by inducing local electrical depolarizations as a result of
local abnormal cardiac tissue deformations. For instance,
the MEF can induce atrial fibrillation (AF) (Nazir and
Lab, 1996a,b; Ravelli, 2003; Kuijpers et al., 2007), one of
the most common arrhythmias, characterized by rapid and
irregular activation of the atrium, e.g. 400-600 pulses of the
atrium muscular wall per minute in humans (Nattel, 2002).
Instead of the SA node directing the cardiac electrical
activity, many different electrical impulses are triggered in
different regions of the atrium at once, following abnormal
deformations, causing a very fast and chaotic rhythm.
In the present study, we qualitatively address the question
of the role of thermal effects on the electromechanical
behavior of the heart. More precisely, we examine the influ-
ence of temperature on the autonomous electrical activity,
including pacemaker activity, induced by the MEF. In-
deed, several studies have previously shown that the MEF
can generate an autonomous electrical activity, sometimes
in a periodic way like a pacemaker (Panfilov et al., 2005;
Alvarez-Lacalle and Echebarria, 2009). In order to do
this, we develop a one-dimensional time-dependent model
taking into account three couplings: ECC, MEF and ther-
moelectric coupling (TEC), that is, the influence of tem-



perature on cardiac electrophysiology.
The clinical interest of our study is notably connected with
therapeutic hypothermia, performed on a patient after a
cardiac resuscitation for example. It consists in decreasing
the body temperature in a significant way (typically 32oC-
34oC) for 12-24 hours (Lee et al., 2011). The main objec-
tive of this procedure is to avoid neuronal injuries, i.e., the
therapeutic hypothermia has a neuroprotective effect.
The paper is organized in the following way. First, we
introduce the model equations with the different assump-
tions in order to develop the computational model. Second,
we briefly present the numerical methods used to de-
velop the one-dimensional time-dependent model. Third,
we show solutions obtained from numerical simulations
and discuss them. Finally, we draw some conclusions.

2. ONE-DIMENSIONAL TIME-DEPENDENT MODEL

The main goal of the present study is to qualitatively and
numerically investigate the influence of temperature on the
properties of the pacemaker activity induced by the MEF
by solving the equations of the system in a very simplified
geometry. This model is not a quantitatively realistic
description of the thermo-electro-mechanical behavior of
the heart, but it can be considered as a numerical tool
to examine from a qualitative point of view how the
thermal effects influence the electromechanical behavior
of the heart.

2.1 Modeling of cardiac electrical activity

Electrical activity at the cell level is due to ionic and
capacitive currents across the cell membrane. Two main
types of cell models are used to describe ionic flows through
the membrane: qualitative and quantitative models. Quali-
tative models such as the Fitzhugh (FH) model (Fitzhugh,
1961), using a phenomenological approach, aim to glob-
ally describe the main features of the time course of the
membrane potential Vm such as action potential dura-
tion (APD), action potential amplitude (APA) and refrac-
toriness of cardiomyocytes. In turn, quantitative models,
based on direct experimental observations derived from
voltage clamp and patch clamp studies, generally include
many Hodgkin–Huxley type equations to describe individ-
ual ionic currents that cross the cell membrane (Hodgkin
and Huxley, 1952), resulting in a more accurate description
of the time course of the membrane potential.
The total transmembrane current per unit area, Im, can be
split into two contributions as mentioned in the beginning
of the present section. Mathematically, Im can be written
as (Hodgkin and Huxley, 1952; Keener and Sneyd, 2009):

Im = Cm

dVm

dt
+ Iion , (1)

where Cm is the capacitance per unit area of the cell
membrane and Iion is the total ionic current per unit
area, which can be described either by a qualitative or
a quantitive model. When no external current is applied
to a unique cell, not in contact with neighboring cells,
then, the conservation of the total electric current implies
that Im = 0. Eq. (1) actually means that the current can
be carried through the membrane either by charging the
membrane capacitor or by movement of ions through the

ionic channels in parallel with the capacitor (Hodgkin and
Huxley, 1952). Given that the purpose of the present study
is to examine a global behavior at a macroscopic level,
accurate description of ionic currents is not needed and
therefore, we have adopted a qualitative FH type model,
called initially by Fitzhugh, the Boenhoeffer–van der Pol
(BVP) model. It consists in a two-variable model. This
model allows to reproduce key properties of the AP in a
qualitative way. Moreover, a very interesting characteristic
of this kind of simple model is that it can be studied not
only numerically but also theoretically in order to predict
its dynamical behavior for given parameter values. We
discuss here the case of the FH model which consists in
the following two ordinary differential equations (ODEs)
(Keener and Sneyd, 2009):

τm
du

dt
= f (u, v) , (2)

τm
dv

dt
= g (u, v) , (3)

where the right hand sides of (2) and (3) are given by:

f (u, v) = k u (a− u) (u− 1)− v , (4)

g (u, v) = ε (u) (b u− γ v − δ) . (5)

Note that the functions f and g described by (4) and (5)
can be written in another way depending on the scaling of
the constants and variables (Courtemanche et al., 1990).
u and v are the two dependent variables of the FH system,
the parameter a is a positive number representing the
threshold value for excitation, while k, b, γ and δ are
positive parameters that can modulate the dynamics of
the system. Parameters τm and ε are, respectively, the
membrane time constant classically introduced in the cable
equation and the ratio between the two time scales, τu and
τv, of the variables u and v (Keener and Sneyd, 2009).
These times scales are such that τu << τv, which allows
to assume ε << 1. From a physiological point of view, u
represents the non-dimensional membrane potential, i.e.,
the non-dimensional equivalent of Vm in (1). The variable
t represents the time and (2) expresses the vanishing of Im,
while f (u, v) represents the total ionic current. This ionic
current depends on the variable v, known as the gating
variable (non-dimensional) due to its original meaning in
the HH model (Hodgkin and Huxley, 1952). This variable
allows to account for accommodation and refractoriness
(Fitzhugh, 1961) and influences the time evolution of the
non-dimensional membrane potential u. Note that ε is a
function of u in (5). This dependence has been introduced
to better match the AP shape (Panfilov et al., 2005). In
the present analysis, ε = 0.025 if u > a and ε = 0.75 if
u ≤ a.
The model (2)-(5) can take account for two different
dynamical regimes, namely, the excitable regime and the
oscillatory regime (Keener and Sneyd, 2009). Given that
cardiomyocytes are excitable and not self-oscillating, we
have chosen in our study parameter values in such a way
that the system (2)-(5) describes an excitable regime.
In order to describe the propagation of the cardiac electri-
cal activity through the whole heart, we have to consider
ohmic coupling between neighboring cells. In that situa-
tion, the Kirchhoff’s current law leads to the well-known
monodomain model (Keener and Sneyd, 2009) whose equa-
tion can be written:



τm
∂u

∂t
= λ2

m ∇
2 u+ k u (a− u) (u− 1)− v , (6)

where λm is the so-called cable space constant (Keener and
Sneyd, 2009). In addition, by writting the monodomain
equation as (6), we assume that cardiac tissue behaves like
a homogeneous medium. In literature, (6) combined with
(3) and (5) consist in the Fitzhugh–Nagumo (FHN) model
(Keener and Sneyd, 2009; Bini et al., 2006). Moreover, it is
interesting to note that using a qualitative model allows to
save a huge computational cost in comparison with most
quantitative models (Luo and Rudy, 1994; Noble et al.,
1998) implying a large number of ODEs to solve.
Now, in order to take into account the stretch-activated
currents across the SACs, i.e., the currents due to the
MEF, we have to introduce an additional term, and
rewrite (6) as:

τm
∂u

∂t
= λ2

m ∇
2 u+ k u (a− u) (u− 1)− v − Isac , (7)

where Isac is given by (Panfilov et al., 2005; Alvarez-
Lacalle and Echebarria, 2009):

Isac = gsac (F − 1) (u− Esac) Θ (F − 1) . (8)

In (8), gsac and Esac are the non-dimensional maximal
conductance and non-dimensional reversal potential of the
SACs. F = ∂x

∂X
where x and X are the spatial coordinates

in the deformed and undeformed configurations, respec-
tively (further explained in the next section). As for Θ, it is
the Heaviside function. As a result, there is no additional
currents when there is no stretching in the cardiac fiber
(Isac = 0 when F ≤ 1).

2.2 Temperature dependence of cardiac electrophysiology

The influence of temperature on electrophysiology has
been extensively studied for many years by using exper-
imental approaches (Collins and Rojas, 1982; Sitsapesan
et al., 1991) as well as modeling works (Fitzhugh and Cole,
1964; Fitzhugh, 1966; Bini et al., 2006). In the present
study, two different influences of temperature on cardiac
electrophysiology are taken into account, as suggested by
Fitzhugh (Fitzhugh, 1966).
First, the gating kinetics of ion channels is assumed to be
temperature dependent, via temperature-dependent rates
for the conformational transitions of the subunits con-
stituting the ion channels. By using a FH type model
to describe cardiac electrical activity at a cell level, this
dependence is taken into account by multiplying the right
hand side of (5) by the following nonlinear temperature-
dependent function (Fitzhugh, 1966; Bini et al., 2006):

ϕ (T ) = Q
(T−T0

10 )
10

, (9)

where T is the absolute temperature, T0 is a reference
temperature and Q10 represents the well-known 10-degree
temperature coefficient which measures the change of rates
due to a temperature increase of ten degrees. Actually, this
coefficient can be linked to the Arrhenius activation energy
which allows a more physical description of temperature
effects on rates. In this study, we have chosen T0 =
33oC because the target temperature of the therapeutic
hypothermia is between 32oC and 34oC (Lee et al., 2011).

The second thermoelectric effect taken into account is the
temperature dependence of ionic conductances. To model
this influence, k u (a− u) (u− 1) − v − Isac, in the right
hand side of (7), is multiplied by the following linear
temperature-dependent function (Fitzhugh, 1966):

η (T ) = A [(1 +B (T − T0)] , (10)

where A and B are constants. A is actually a scale
factor that has been historically introduced in order to
update the ionic conductances values initially measured
by Hodgkin and Huxley (Hodgkin and Huxley, 1952)
following more accurate measures and B determines the
rate of change of conductance with temperature (Fitzhugh,
1966; Bini et al., 2006).

2.3 Mechanical behavior of cardiac tissue

To describe the mechanical behavior of cardiac tissue,
we need to solve the conservation of linear momentum
and choose a constitutive law to account for the intrinsic
mechanical properties of cardiac tissue. Given that the car-
diac tissue has both active and passive behaviors, we split
the constitutive law into two parts as explained further in
this section (Nash and Hunter, 2000; Panfilov et al., 2005;
Alvarez-Lacalle and Echebarria, 2009).
Although we study a one-dimensional case, we introduce
cardiac mechanical equations in a more general way (three-
dimensional case). The reduction of the equations to a one-
dimensional configuration is trivial.
Assume that XM and xm (M = 1, 2, 3 and m = 1, 2, 3)
represent two systems of coordinates relative to the un-
deformed and deformed configurations, respectively. Co-
variant base vectors GM, relative to the XM -coordinate
system, are chosen orthogonal and aligned with certain
structural features of the material. Indeed, G1 is iden-
tified with the muscle fiber direction and, G2 and G3

are both perpendicular to G1 and between them. As for
the covariant base vectors gm, which are relative to the
xm-coordinate system, they are generally not orthogonal
anymore due to the deformation. Given that we solve the
equations in order to obtain a one-dimensional dependence
of the computed variables, we can choose to work with
Cartesian coordinates for both undeformed and deformed
configurations.
The passive behavior of cardiac tissue has been modeled
by considering the cardiac tissue as a quasi-incompressible
isotropic hyperelastic material. Therefore, for such a ma-
terial, the components of the passive part of the second
Piola–Kirchhoff (PK2) stress tensor S can be directly
derived from a strain energy density function W in the
following way (Malvern, 1969):

SMN
p = 2

∂W

∂CMN

− pCMN , (11)

where SMN
p and CMN are the contravariant components of

the passive part of the PK2 stress tensor and the covariant
components of the right Cauchy–Green deformation tensor
C, respectively. As for p, it represents the hydrostatic pres-
sure in the deformed configuration. Under the assumption
of isotropy and quasi-incompressibility, W is a function of
the first and second invariants of C, namely I1 and I2.
In addition, assuming that the cardiac tissue behaves like
a hyperelastic material, a Mooney–Rivlin type model can



be used. Therefore, one has W = c1 (I1 − 3) + c2 (I2 − 3)
where c1 and c2 are constant material-dependent parame-
ters (Panfilov et al., 2005; Alvarez-Lacalle and Echebarria,
2009).
In order to account for the active behavior of cardiac tis-
sue, namely ECC, active stress components SMN

a are lin-
early superimposed to the passive ones (Nash and Hunter,
2000; Panfilov et al., 2005; Alvarez-Lacalle and Echebar-
ria, 2009) and assumed to act in the muscle fiber direc-
tion (aligned with the X1-coordinate) (Nash and Hunter,
2000). The total stress components are consequently given
by:

SMN = SMN
p (CMN ) + SMN

a (CMN , Ta) , (12)

where the second term of the right hand side of (12) is
given by (Nash and Hunter, 2000; Panfilov et al., 2005;
Alvarez-Lacalle and Echebarria, 2009):

SMN
a (CMN , Ta) = Ta C

11 δM
1

δN
1

. (13)

In literature, the variable Ta is called the active tension
and represents the active stresses generated by the sar-
comeric units due to the electrical activation in cardiomy-
ocytes. In our study, Ta is assumed to depend directly on
the membrane potential with a time delay. As mentioned in
Alvarez-Lacalle and Echebarria (2009), the generation of
the active tension from the raise in the membrane potential
is a rather strong simplification of the intracellular calcium
dynamics, but it allows to take into account the basic delay
between the initial fast inward currents and the final actin-
myosin interactions resulting in the contraction. The time
evolution of Ta is assumed to be governed by the following
ODE:

τm
dTa

dt
= ε (u) (kTa

u− Ta) , (14)

where kTa
is a parameter which controls the rate of

active tension in cardiomyocytes and ε is the same small
parameter as that introduced in (5).
Neglecting both body forces in the cardiac tissue and the
inertial term, the conservation of the linear momentum
can be written in terms of the PK2 stress tensor in the
following way (Malvern, 1969):

∂

∂XM

(

SMN F i
N

)

= 0 , (15)

where F i
N = ∂xi

∂XN are the mixed components of the matrix
accounting for the gradient deformation tensor F.

3. NUMERICAL METHOD

The model introduced above has been numerically imple-
mented by using the COMSOL Multiphysics R© environ-
ment which uses the finite element method (FEM). The
one-dimensional cardiac fiber of length L is modeled by
a rectangular solving domain, Ω = [0, L] × [0, l], with
a ratio L/l >> 1, where l represents the width in the
perpendicular direction (X2) to the cardiac fiber direction
(X1). Note that only the cardiac fiber direction is relevant
from a physical point of view. In order to mimic a one-
dimensional study case with our two-dimensional solving
domain Ω, the boundary and initial conditions have to be

choosen in such a way that the results areX2-independent,
i.e., all computed variables are homogeneous with regards
to the X2-coordinate.

3.1 Boundary and initial conditions

In order to fix the left and right boundaries of the cardiac
fiber, we have applied a no-displacement condition on
the left and right boundaries, labelled ∂Ω1 and ∂Ω3,
respectively. Mathematically, we can write:

on ∂Ω1 ∪ ∂Ω3 : x = X . (16)

In addition, it has been assumed that the cardiac fiber
is surrounded by an electrical insulator. Consequently,
we have applied a no-flux boundary condition for the
membrane potential u as follows:

on ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω4 : n · (∇u) = 0 , (17)

where n is the outward unit normal to the considered
boundary and ∇ is the gradient operator; ∂Ω2 and ∂Ω4

are the labels relative to the “upper” and the “lower”
boundaries of the solving domain, respectively. Moreover,
in order to prevent rigid body motions in the X2-direction,
we have introduced an additional displacement constraint:

on ∂Ω2 ∪ ∂Ω4 : x2 = X2 . (18)

With regards to the initial conditions, we have imposed a
spatial distribution for u such as u = 0 in the whole cardiac
fiber (i.e., in the whole solving domain) excluding a small
region, defined as (L/2)− ǫ⋆ ≤ X1 ≤ (L/2) + ǫ⋆, wherein
u = u0, where u0 is a scalar value that represents the
initial depolarization and ǫ⋆ represents a very small value
in comparison with L (ǫ⋆ << L). In addition, we have
assumed that the cardiac fiber is initially undeformed.
Mathematically, these conditions write, respectively:

inΩ : u (X, t0) = u0

[

Θ

{

X1
−

(

L

2
− ǫ⋆

)}

−Θ

{

X1
−

(

L

2
+ ǫ⋆

)}]

,
(19)

inΩ : x (t0) = X (t0) , (20)

with t0 that represents the initial time of the study.
In order to examine the role played by the temperature
on the electromechanical behavior of the heart, we have
performed several numerical simulations by changing the
temperature value, all the other parameter values being
identical in all simulations and given in Table 1.

4. SIMULATIONS AND DISCUSSION OF THE
RESULTS

In order to characterize the influence of temperature on
the pacemaker activity induced by cardiac tissue defor-
mations, via the MEF, we have observed the spatio-
temporal behavior of the membrane potential and repre-
sented space-time plots of this quantity.
First, the role of the MEF is illustrated in Fig. 1, which
describes the behavior of the system when this effect is not
taken into account (we have fixed gsac = 0). The initial
depolarization applied to the center of the fiber generates
a local AP that then propagates in both directions in a



Fig. 1. Spatio-temporal behavior of the membrane po-
tential u when the influence of the cardiac tissue
deformations is not taken into account.

symmetric way (given that the electrical properties are
homogeneous in the whole solving domain). As a result
of this propagation, the fiber is deformed via the ECC
but the electrical consequences of these deformations is
absent as the MEF is not considered in this simulation.
The electrical activity vanishes when the AP reaches the
boundaries of the fiber.
In turn, in the situation where the MEF is incorporated in
the model, the behavior is completely different (Fig. 2). In
this case, the deformations of the fiber generate additional
currents where there is a local stretching. In this way,
an autonomous electrical activity can be triggered. This
activity can occur in a periodic way and an endlessly
sustainable fashion. That is the reason for which this
activity is described as a pacemaker. Now, we can examine
the effect of temperature on the mechanism highlighted in
Fig. 2. In this perspective, we have plotted in Fig. 3 the
time behavior of the membrane potential in a particular
spatial position in the cardiac fiber, at the four fifths from
one of the two boundaries, during a moderate hypothermia
(T = 35oC) and an acute hyperthermia (T = 43oC).
Fig. 3 shows that a temperature increase induces a signifi-
cantly decrease of the APD. Moreover, we can also observe
(Fig. 4) that the period of the pacemaker activity (i.e.,
the interval between two successive maxima of the mem-
brane potential) notably drops when the temperature is
raised. Finally, we have also observed that the autonomous
electrical activity occurs only inside a certain temperature
interval. With the set of parameters listed in Table 1, this
interval goes from 29oC to 50.5oC. Obviously, these values

Table 1. Parameters of the model (Fitzhugh,
1966; Panfilov et al., 2005; Keener and Sneyd,
2009; Alvarez-Lacalle and Echebarria, 2009).
Parameters without units are non-dimensional.

Parameter τm (s) λm (m) u0 a k

Value 8.4 10−3 0.15 10−2 0.9 0.05 16

Parameter b δ γ kTa
(Pa) gsac

Value 16 0 1 45 103 0.45

Parameter Esac Q10 A B (1/oC) c1 (Pa)

Value 1.2 3 1.14 0.06 2 103

Parameter c2 (Pa) L (m) l (m) p (Pa) T0 (oC)

Value 6 103 0.105 0.003 0 33

Fig. 2. Spatio-temporal behavior of the membrane po-
tential u when the influence of the cardiac tissue
deformations is taken into account via the MEF.

Fig. 3. APD (double full-line arrow) and period of the
pacemaker activity (double dashed-line arrow) as
functions of temperature.

32 34 36 38 40 42

0.04

0.06

0.08

0.1

Temperature (°C)

T
im

e 
pe

rio
d 

(s
)

Fig. 4. Period of the pacemaker as a function of tempera-
ture.

are not completely physiological but given that our study
is generic and not species-specific oriented, it is not really
surprising. In the case of a more species-oriented modeling,
an autonomous electrical activity would also be induced by
cardiac tissue deformations only inside a certain tempera-
ture interval, whose precise boundaries would be fixed by
the model.

5. CONCLUSION

We have developed a one-dimensional time-dependent
thermo-electro-mechanical model of a cardiac fiber which
allows to describe ECC, MEF and TEC. Our model must
be considered as a numerical tool allowing to characterize
the qualitative effect of temperature on the electromechan-



ical behavior of the heart.
We have shown that the autonomous electrical activity,
induced by cardiac tissue deformations via the MEF, takes
place only inside a given interval of temperature. Fur-
thermore, we have also found that for temperature values
inside this interval but far from the boundaries, the tissue
deformations generate an autonomous electrical activity in
a periodic way (Fig. 2), i.e., a pacemaker activity.
In addition, our numerical simulations have underlined
that some properties of APs are heavily affected. For
instance, we have shown that the APDs are dramatically
shortened when the temperature increases.
Moreover, we have also highlighted that the period of the
pacemaker activity notably drops when the temperature
is raised.
It is important to note that this study consists in a first ap-
proach of the thermo-electro-mechanical cardiac process.
In the present study, the cardiac excitation is modeled
using a FH-type model and therefore, we do not expect to
obtain a model that perfectly fits the electrophysiological
properties.
In further modeling works, the cardiac excitation should
be described by a more quantitative model so as to better
match with the electrophysiological reality.
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