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Résumé 

 

Les gammaherpèsvirus sont des pathogènes persistants qui ont été identifiés chez de 

nombreuses espèces animales dont l’homme. Jusqu'à ce jour, l'étude de la transmission des 

gammaherpèsvirus n'a pu être que limitée car la communauté scientifique ne dispose d'aucun modèle 

de transmission pour aucun de ces virus. L’établissement d’un tel modèle et sa caractérisation 

constituent dès lors des éléments essentiels à la poursuite d’études visant à établir des stratégies de 

contrôle de la transmission de ces virus. La souche MHV-68 de l’herpèsvirus murin 4 (MuHV-4) a été 

isolée chez le campagnol roussâtre (Myodes glareolus). Bien que des données sérologiques indiquent 

que des virus apparentés au MuHV-4 circulent au sein des populations de mulots sylvestres 

(Apodemus sylvaticus) ou de souris domestiques (Mus musculus), aucune transmission expérimentale 

du MuHV-4 n’a pu être, jusqu’à ce jour, reproduite chez la souris de laboratoire, modèle d’étude 

classiquement utilisé. L’objectif de ce travail était donc de combler cette lacune. 

Dans une première étude, afin d’évaluer les qualités respectives des modèles « souris » et  

« campagnol », une caractérisation comparative de l’infection par le MuHV-4 de ces deux espèces a 

été réalisée. Les résultats obtenus ont montré que le processus d’infection, la pathologie et 

l’établissement de la latence sont comparables au sein des deux espèces, bien que la réplication soit 

quantitativement inférieure chez le campagnol. Il semble dès lors que la souris de laboratoire soit un 

bon modèle pour l’étude du MuHV-4 in vivo. Ces résultats ont été publiés dans la revue Journal of 

General Virology (J Gen Virol. 2010 Oct;91(Pt 10):2553-63). 

Dans une deuxième étude, grâce à l’utilisation d’une méthode d’imagerie in vivo, nous avons 

été en mesure, d’effectuer la première observation de transmission du MuHV-4 chez la souris de 

laboratoire. Nous avons d’abord montré la ré-excrétion du MuHV-4 au niveau du tractus génital de 

souris femelles après que la latence ait été établie. L’imagerie ex vivo, l’histologie et la PCR nous ont 

permis de démontrer la présence de génome viral dans les tissus vaginaux et de localiser la réplication 

virale au niveau de la bordure vaginale externe. La présence de virus infectieux dans la cavité vaginale 

a également été montée. Dans un deuxième temps, nous avons montré l’implication des stéroïdes 

sexuels dans le phénomène observé. En effet, l’analyse de l’infection de souris non traitées, 

ovariectomisées, ou encore de souris ovariectomisées traitées par des œstrogènes et/ou de la 

progestérone nous a révélé un rôle positif des œstrogènes dans le phénomène de ré-excrétion. Enfin,  

différents modes de transmission du MuHV-4 chez la souris de laboratoire ont été testés. Dans les 

conditions testées, nous n’avons pas observé de transmission verticale ou de transmission horizontale 

du virus entre individus de même sexe. Par contre, la transmission par voie sexuelle a quant à elle pu 

être observée tant par des méthodes sérologiques, que par imagerie in vivo ou par PCR quantitative.  
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L’ensemble de ce travail a donc permis d’une part de démontrer la qualité du modèle souris 

dans l’étude du MuHV-4, et d’autre part de montrer pour la première fois un site de ré-excrétion du 

MuHV-4 chez la souris de laboratoire. Cette dernière observation a par ailleurs conduit à la mise en 

place du premier modèle de transmission, par voie sexuelle, du MuHV-4 en condition de laboratoire. 

Les résultats obtenus au cours de ce travail devraient avoir, dans le futur, des implications pour l’étude 

des gammaherpesvirus en particulier, mais également plus largement pour l’étude d’infections 

sexuellement transmissibles. 
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Abstract 

 

Gammaherpesviruses are the archetype of persistent viruses that have been identified in a 

series of animals ranging from mice to man. To date the study of transmission of these viruses in 

natural condition has been limited by the fact that no experimental transmission model exists. 

Establishment and characterization of a model of transmission are therefore critical points to evaluate 

strategies of interference with the epidemiological cycle of gammaherpesviruses. We are studying 

Murid herpesvirus 4 (MuHV-4) which has originally been isolated from naturally infected bank voles 

(Myodes glareolus). Although serological data indicate that closely related strains are present in wood 

mice (Apodemus sylvaticus) and domestic mice (Mus musculus), no experimental transmission of 

MuHV-4 has been demonstrated in laboratory mice, the classically used in vivo model. The objective 

of this work was therefore to fill this gap. 

In a first study, we performed a comparative characterization of the infection by MuHV-4 in 

mice and bank voles. Our results showed that the infectious process, the pathology and the latency 

establishment are similar in the two species, even if replication is quantitatively lower in bank voles 

than in mice. It therefore appeared that, Mus musculus represents a suitable host for studying 

gammaherpesvirus pathogenesis with MuHV-4. These results have been published in Journal of 

General Virology (J Gen Virol. 2010 Oct;91(Pt 10):2553-63). 

In a second study, thanks to in vivo imaging, we have been able to observe, for the first time, 

transmission of MuHV-4 in mice. We firstly showed that MuHV-4 reexcretion occurs in the genital 

tract of female mice at a period by which latency is considered as established. Ex vivo imaging, 

histology and PCR allowed us to demonstrate the presence of viral genomes in vaginal tissues and to 

localize viral replication at the external border of the vagina. We also demonstrated the transient and 

repetitive presence of infectious viruses in the vaginal cavity. Secondly, we demonstrated the 

implication of sexual steroid hormones in this re-excretion process. Indeed, we analyzed the infection 

of untreated mice, ovariectomized mice and ovariectomized mice complemented with estrogens and/or 

progesterone. These analyses revealed a positive role of estrogens in the observed re-excretion. 

Finally, based on these results, we tested MuHV-4 transmission in mice by creating different 

epidemiological conditions. In the conditions tested, vertical transmission did not occur, nor did 

horizontal transmission between individuals of the same gender. In contrast, we were able to observe 

sexual transmission to naïve males by serology, in vivo imaging and quantitative PCR.  

In conclusion, this work has on one hand demonstrated the quality of mice as an in vivo model 

for MuHV-4 studies and, on the other, it has shown for the first time the existence of re-excretion and 



Abstract 
 

4 
 

sexual transmission of MuHV-4 amongst laboratory mice. The results of this work should therefore 

have implications for the study of gammaherpesviruses, but also more generally for the study of 

sexually transmissible infections. 
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General preamble 

 

The gammaherpesvirinae are a subfamily of the order Herpesvirales. They are ubiquist 

viruses, able to infect a wide range of hosts. Amongst gammaherpesvirinae, Epstein-Barr virus (EBV 

or HHV-4) and Kaposi’s sarcoma associated virus (KSHV or HHV-8), the two viruses infecting 

humans, are of particular interest. Seropositivity for EBV is of more than 90% around the world 

(Henle et al. 1969) and can locally reach 50% for KSHV (Butler et al. 2011). Although the infection 

by these viruses is generally asymptomatic, latency is systematically established following primo-

infection in certain subsets of cells in the host and this despite immune response. Viral reactivation 

and re-excretion of infectious viral particles can take place sporadically, leading to transmission and 

viral spread among the host population. 

The interest dedicated to these viruses is not trivial in terms of public health. Indeed, their 

persistence in the host and their capacity of escaping the immune response, associated with the 

presence of oncogenes in the viral genome, can lead to neoplasic disorder, especially 

lymphoproloferative, and through this pathway to the development of some cancers. It can therefore 

be said that the infection by gammaherpesvirus can be a major problem in every situation in which the 

host’s immune system is deficient. The major examples for this are co-infection by HIV (Human 

Immunodeficiency Virus) and treatment in the context of grafts. 

Interfering with the epidemiological cycle of these viruses is consequently a major challenge. 

However, studying EBV and KSHV is very difficult if not impossible because of their limited in vitro 

growth and the impossibility of in vivo studies in the natural host. In this context, Murid herpesvirus 4 

(MuHV-4), a gammaherpesvirus isolated in a naturally infected bank vole, is a particularly interesting 

model. For about 30 years, MuHV-4 infection of laboratory mice has been a major model for studies 

concerning pathogenicity and biology of gammaherpesviruses even though transmission and viral 

spread in mice population has never been observed. It remains, however, that having a model of 

transmission is of particular importance when thinking about testing vaccinal strategies. 

This manuscript presents, besides an introduction reviewing the current literature concerning 

gammaherpesviruses, two original studies designed to develop a transmission model of MuHV-4. The 

first one consists in a comparison of the infection in mice and bank voles, the evaluation of the quality 

of the mouse model and of an alternate model for in vivo studies. The second one is devoted to the 

characterization of the first phenomenon of re-excretion of MuHV-4 observed in infected mice. 

Finally, a general discussion and the perspectives generated by the work are presented. 
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1. The Herpesviridae 

 

1.1. Nomenclature and classification 

The order Herpesvirales contains three subfamilies: the Alloherpesviridae, the 

Malacoherpesviridae and finally the Herpesviridae. The family Herpesviridae is the largest and is 

composed of three subfamilies: the alpha-, beta- and gammaherpesvirinae. This viral family contains 

at present more than 130 species sharing common features (Ackermann 2004; Davison et al. 2005; 

Davison et al. 2009). Indeed, they are spherical viral particles sizing from 150 to 300 nm. They all 

have a linear double strand DNA (dsDNA, double strand DNA) accompanied by some rare RNA 

molecules (Bresnahan and Shenk 2000; Bechtel et al. 2005; Jochum et al. 2012). These nucleic acids 

are associated with an icosaedral nucleocapsid composed of 162 capsomers, surrounded by a tegument 

containing proteins with regulatory functions. Lastly, a lipidic viral envelope, made from cellular 

membranes and containing viral glycoproteins, surrounds this assembly (Figure 1). Besides these 

morphological properties, several biological properties (Ackermann 2004) are also shared by all the 

Herpesviridae. Assuredly, they all have their own enzymatic machinery dedicated to the synthesis of 

their nucleic acids, which occurs in the nucleus of the infected cell, as well as the assembly of viral 

capsids. In addition, all the viruses belonging to this family produce a lytic cycle, often leading to the 

death of the infected cell, before establishing latency in certain cell types (Roizman and Pellet 2007). 

The term latency is used to describe the state of infection both at cell-level and at host-level. Indeed, a 

host is considered latently infected when acute primary infection is resolved (Barton et al. 2011). 

The classification into three subfamilies was mainly established on the basis of host range, but 

also on the spectrum of cells capable of supporting viral latency in vivo (Roizman 1996), as only some 

cell types can support latency. Thus, alphaherpesvirinae are neurotropic viruses, establishing latency 

in specific neuronal populations while beta- and gammaherpesvirinae will establish latency essentially 

in lymphocytes and thus persist in lymphoid organs (Roizman and Pellet 2007). Gammaherpesvirinea 

are particular in the sense that, contrary to alpha- and betahepresvirinae, they establish early latency 

preferably to lytic infection. Moreover, gammaherpesvirinae are often associated with 

lymphoproliferative diseases and/or other non lymphoid cancers (Roizman 1996). 

The classification is now completed by more objective molecular criteria and was largely 

confirmed by phylogenetic analyses (McGeoch et al. 1995; McGeoch et al. 2000; McGeoch et al. 

2005; Davison et al. 2009). The gammaherpesvirinae subfamily classification was recently updated by 

the International Committee on Taxonomy of Viruses (ICTV; http://www.ictvonline.org), and now 

contains 4 genera (Table 1):  



Glycoprotéines 
Tégument externe

Tégument interneEnvelope proteins

External tegument

Internal tegument

Capsidp

« Portal » protein

T=16

Figure 1. Morphology of herpesviruses. The viral particle is made of a capsid containig the viral
genome, an intermediate proteic layer named tegument and a viral envelope with glycoproteins. The
capsid is made of 150 hexons (green) and 11 pentons (blue) plus the portal protein to form an isocaedral
structure (T=16) with pentons at the tops of the structure. One of the 12 tops is a pore by which DNA is
enclosed in the capsid. From http://viralzone.expasy.org/all_by_species/181.html
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• the lymphocryptovirus with EBV or human herpesvirus 4 and some viruses infecting 

primates of the Old World;  

• the rhadinovirus including KSHV or human herpesvirus 8, several viruses infecting 

primates of the Old and New Worlds but also other mammals; 

• the Percavirus (standing for perissodactyl and carnivore) with the type-species Equid 

herpesvirus 2 (EHV-2); 

• the Macavirus (standing for Malignant catarrhal fever) with the type-species 

Alcelaphine herpesvirus 1 (AlHV-1).  

The newly introduced designations, Percavirus and Macavirus, take into account the recent 

characterization and the natural host specificities (artiodactyls versus perissodactyls) of the following 

viruses: Bovine herpesvirus 6, Caprine herpesvirus 2, Suid herpesvirus 3, Suid herpesvirus 4 and Suid 

herpesvirus 5 (Chmielewicz et al. 2001; Chmielewicz et al. 2003; Davison et al. 2009). 

1.2. The viral cycle 

 

1.2.1. The lytic infection 

The multiplication cycle of herpesviruses is globally constant among members of the group 

and represented in figure 2A. The attachment of the viral particle on the cellular surface results from 

the interaction between one or more viral glycoproteins and cellular receptor(s). Frequently, primary 

interactions between the virus and the cell are of low specificity and imply the presence of 

glycosaminoglycans (GAG) at the surface of the cell. It was demonstrated that the ubiquitous presence 

of GAG at the cellular surface is an important co-factor for the entry of several herpesviruses into the 

cells, allowing the establishment of the initial contacts between the virus and the target cell (Shukla 

and Spear 2001). After these low affinity interactions, higher affinity contacts are established, 

implying one or more cellular receptors and viral envelope glycoproteins. These specific interactions 

are an important determinant of the sensitivity of the cell to infection and therefore of the viral tropism 

and host range. As shown for other viral families (Helenius 2007), herpesviruses are also able to use 

different cellular receptors and several cell surface molecules can be necessary for viral attachment. 

This has particularly been documented with HSV-1. 

When the virus is attached, the viral envelope will fuse with the cellular membrane, leading to 

the release of proteins from the tegument and from the nucleocapsid into the cytoplasm (Roizman 

1996). Two mechanisms of entry are described: on one hand, the entry can be performed by fusion of 



Order Family Subfamily Genus Species
MalacoherpesviridaeMalacoherpesviridae
Alloherpesviridae

Alphaherpesvirinae
Betaherpesvirinae

Lymphocryptovirus Callitrichine herpesvirus 3
Cercopithecine herpesvirus 14
Gorilline herpesvirus 1
Human herpesvirus 4Human herpesvirus 4
Macacine herpesvirus 4
Panine herpesvirus 1
Papiine herpesvirus 1
Pongine herpesvirus 2

Macavirus Alcelaphine herpesvirus 1
Alcelaphine herpesvirus 2ees Alcelaphine herpesvirus 2
Bovine herpesvirus 6
Caprine herpesvirus 2
Hippotragine herpesvirus 1
Ovine herpesvirus 2
Suid herpesvirus 3
Suid herpesvirus 4
Suid herpesvirus 5m
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Suid herpesvirus 5

Percavirus Equid herpesvirus 2
Equid herpesvirus 5
Mustelid herpesvirus

Ateline herpesvirus 2
At li h i 3

G
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m

Ateline herpesvirus 3
Bovine herpesvirus 4
Human herpesvirus 8
Macacine herpesvirus 5
Murid herpesvirus 4
Saimiriine herpesvirus 2

Rhadinovirus

Table 1: Nomenclature and classification of gammaherpesviruses. Murid herpesvirus-4 classification is
mentioned by grey areas and type-species are indicated in bold. From http://ictvdb.org/Ictv/index.htm.
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the viral envelope with the cellular plasmic membrane and on the other hand, an entry by endocytosis 

followed by the fusion of the endosomal membrane with the viral envelope is also possible (Roizman 

1996). Fusion is mediated by, at least, glycoproteins B, H and L that form the core entry machinery 

conserved in all the Herpesviridae. gB is the fusion protein (Pertel 2002; Sharma-Walia et al. 2004; 

Backovic et al. 2007; Vanarsdall et al. 2008; Atanasiu et al. 2010). The roles of gH and gL are less 

clear and still controversial. 

Once into the cytoplasm, free capsids follow the network of tubulin microtubules to reach a 

nuclear pore (Granzow et al. 1997; Sodeik et al. 1997). This phenomenon implies the 

« dynein/dynactin » proteic motor (Dohner et al. 2002). Once transported to the nucleus, the capsid 

releases nucleic acids at a nuclear pore (Sodeik et al. 1997; Peng et al. 2010). After its entry into the 

nucleus, the viral genome is rapidly circularized in the absence of any viral protein synthesis, 

suggesting a mechanism under dependence of cellular proteins and/or structural viral proteins 

(Poffenberger and Roizman 1985). The transcription of the herpesviruses’ genome then proceeds, 

following a series of events that are strictly regulated by viral proteins. We can distinguish three 

transcriptional phases. The first wave of transcription is initiated by the regulatory tegument proteins 

and allows the transcription of genes called "immediate-early" (IE) or α. The proteins synthesized at 

this stage essentially act as activators of transcription. Subsequently, the genes "early" (E) or β, 

including the viral DNA polymerase, are transcribed. The last phase, called late (L) or γ, allows the 

synthesis of structural proteins including the envelope glycoproteins and the capsid proteins. 

Replication of viral DNA marks the separation between early and late phases (Honess and Roizman 

1974; Honess and Roizman 1975; Jones and Roizman 1979). 

Once the circularized viral genome is inside the nucleus of the host cell, the tegument proteins 

that are present will interact with various cellular components to induce IE gene transcription. This 

first transcriptional step is carried out by the cellular RNA polymerase II. Protein synthesis occurs in 

the cytoplasm and some of these proteins are then imported into the nucleus to stimulate transcription 

of E and L genes, but also to inhibit the transcription of IE genes. E genes show a peak of expression 

4-9 hours after infection of the cell, while the L gene expression is maximal after the beginning of the 

synthesis of viral DNA. These genes can be classified into two categories: the expression of partial 

late genes (or γ1) is increased by the synthesis of viral DNA, whereas the expression of real late genes 

(or γ2) is entirely dependent on viral DNA synthesis (Roizman 1996).  Viral DNA replication is a 

critical step in the replication cycle of herpesviruses. It is placed under the control of the viral DNA 

polymerase synthesized during the early phase and starts at one or more origins of replication. The 

synthesis of viral genomes occurs through the mechanism of "rolling circles" (Jacob et al. 1979; 

Ackermann 2004), generating units consisting of concatemeric structures separated by sequences that 
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Figure 2. Representation of the general cycle of herpesviruses, comprising the lytic (A) and the latent (B)
state. From Flint et al., 2000.



Chapter 1  Introduction 
 

11 
 

are targets for enzymatic cleavage. Indeed, during the encapsidation of the viral genome, these 

enzymes recognize and cleave target sequences in order to ensure the encapsidation of one genome by 

a virus particle (McVoy et al. 2000). 

Herpesvirus morphology is highly constant, suggesting similar morphogenesis processes 

(Mettenleiter et al. 2009). The proteins of the capsids are synthesized in the cytoplasm and are 

translocated from the cytoplasm to the nucleus where the capsids are assembled by an autocatalytic 

process (Homa and Brown 1997). In the structure of the capsids, a portal complex (Chang et al. 2007) 

by which viral DNA is encapsidated is found (Newcomb et al. 2006). Mechanisms ruling the egress of 

the nucleocapsids from the nucleus to the cytoplasm are not well known. However, several 

mechanisms, presented in figure 3, were proposed: the model of nuclear pore egress, the “luminal” 

model and finally the “envelopment/deenvelopment” model (Wild et al. 2005; Mettenleiter et al. 

2006). The nuclear pore egress model was proved for Bovine herpesvirus 1 (BoHV-1) (Wild et al. 

2005). According to this model, the capsids that are present in the nucleus can attain the cytoplasm via 

a previously enlarged nuclear pore. These free cytoplasmic capsids bud in vesicles derived from the 

Golgi apparatus and the enveloped virions are released at the surface of the cell (Wild et al. 2005). The 

second model proposed, the « luminal » model, suggests the transport of the enveloped virions from 

the nucleus by a secretion pathway which maintains the integrity of the envelope acquired earlier at 

the level of the inner nuclear membrane. This model implies in situ modifications of the envelope’s 

proteins (Darlington and Moss 1968; Johnson and Spear 1982; Campadelli-Fiume et al. 1991). The 

enveloped viruses are finally released in the extracellular environment (Roizman and Taddeo 2007). 

However, the most likely model is the envelopment/deenvelopment one, first suggested by Siminoff 

and Menefee in 1966 as a part of HSV-1 (Herpes simplex 1) morphogenesis and then confirmed by 

electronic microscopy (Stackpole 1969). According to this model, viral capsids in the nucleus bud at 

the internal nuclear membrane. Pre-enveloped viruses are then localized between the inner and the 

outer nuclear membrane. It was demonstrated that nuclear actin filaments are used to mobilize HSV-1 

viral capsids (Forest et al. 2005). The primary envelope acquired during budding through the inner 

nuclear membrane is then lost because of the fusion with the external nuclear membrane. This leads to 

the release of free nude capsids into the cellular cytoplasm (reviewed in: Mettenleiter 2002; 

Mettenleiter 2004; Mettenleiter et al. 2006; Mettenleiter et al. 2009). Capsids then transit in the 

cytoplasm to acquire, on one hand, tegument proteins and, on the other hand, envelope glycoproteins, 

by budding in Golgi apparatus vesicles. Mature virions are then released at the surface of the cell by 

exocytosis (Mettenleiter 2006; Mettenleiter et al. 2006). 
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Figure 3: Models for herpesviruses egress from the host cell. 3 pathways are proposed. For the
envelopment/deenvelopment model, capsids undergo primary envelopment at the inner nuclear
membrane, are deenveloped at the outer nuclear membrane, reenveloped at cytoplamics membrane and
then transportated to plama membrane by vesicles. The vesicular memebrane fuses with the plasma
membrane to release the virion in the extracellular space. According to the luminal model, capsid is
enveloped at the inner membrane and enters a vesicle at the outer nuclear memebrane The vesicle trafficsenveloped at the inner membrane and enters a vesicle at the outer nuclear memebrane. The vesicle traffics
in the cytaplasm to reach plasma membrane where the virion is released. Finally, in the nuclear pore
egress model, capsids exit the nuclei by a nuclear pore, bud into cytoplasmic vesicles to acquire the
envelope and are released at the plasma membrane. Adapted from Roizman et al., 2007.
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1.2.2. The latent infection 

The ability to establish a latent state of infection is a fundamental and common characteristic 

of all herpesviruses (Roizman 1996). This state is described as the maintaining of the virus in the host 

cell in absence of a productive cycle (Figure 2B). During latency, the viral genome is maintained in 

the cellular nucleus in a circular form called episome. For the gammaherpesviruses, the viral episome 

is associated with the cellular genome (Vogel et al. 2010). For the rhadinoviruses, the mechanism 

implies LANA protein or orthologs (Garber et al. 2002; Fejer et al. 2003). This protein is highly 

preserved and bifunctional: the N-terminus links to cellular chromatin, whereas the C-terminus 

interacts with different sequences present in the polyrepetitive DNA (prDNA) units located at the ends 

of the viral genome (Griffiths et al. 2008). This interaction allows the initiation of the viral DNA 

replication by cellular enzymes and the anchoring of the viral episome to the cellular chromosome 

(Piolot et al. 2001; Ohsaki and Ueda 2012). When the cell is dividing, this anchoring allows the 

random distribution of episomes between daughter cells, but also avoids their loss in the cellular 

cytoplasm.  

The molecular mechanisms governing the initiation of latency are not well known (Flint et al. 

2000). However, the establishment of latency always induces a drastic limitation of viral gene 

transcription associated or not with the production of viral proteins. Thus, a low level of α or β genes 

can occur but is not sufficient to initiate a productive infection. Alphaherpesviruses only express LATs 

transcripts (latency associated transcripts)  (Jones 2003), but beta- and gammaherpesviruses express 

latency proteins (Lee et al. 1999; Ballestas and Kaye 2001; Cardin et al. 2009). Maintaining this state 

on a long term requires the existence of specific and evolved immunoevasion mechanisms allowing 

the virus to escape the host immune surveillance and persist. The mechanisms implied will be 

addressed later in this chapter. Lastly, recent studies have demonstrated the existence of miRNA 

(micro RNA), produced from latency-associated transcripts, for members of all the three subfamilies 

of herpesviruses (Pfeffer et al. 2005). Essentially, their role seems to be in the helping of the 

maintenance of latency by modulation of cellular immunity and cellular apoptotic pathways, but also 

by the restraining of the viral lytic cycle (Cai et al. 2005; Burnside et al. 2006; Lu et al. 2008; Umbach 

et al. 2008; Wang et al. 2008) 

 Following an exogenous stimulus, the latency state can be interrupted. Indeed, physiological 

changes in the cell may provide the needed permissiveness to the cell, allowing it to support a 

productive infection. The viral genome is then transcribed with more efficiency and is 

replicated leading to the production of new virions. To date, little is known about mechanisms and 

stimuli causing efficient viral reactivation of gammaherpesviruses. However, several studies suggest a 
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role for TLR (Toll-like receptor). Indeed, these receptors have a crucial role concerning innate 

immunity and are able to recognize specific patterns, named PAMP’s (pathogen associated molecular 

patterns), and to provoke a rapid immune response toward pathogens that have induced their 

activation. Several recent studies highlighted the reactivation of herpesviruses following the activation 

of TLR’s. For example, in 2009, Gargano et al. demonstrated that the stimulation of the TLR 3, 4, 5 

and 9 by their specific ligands increases the MuHV-4 viral load in mice at 42 days post infection 

(Gargano et al. 2009). In the same way, the activation of the KSHV’s lytic genes transcription was 

observed when the TLR 7 and 8 were stimulated (Gregory et al. 2009). Although this mechanism is 

probably not the only one implied, this data suggests a strong link between innate immunity 

stimulation and the reactivation of the viral lytic cycle of the gammaherpesviruses. Moreover, the final 

differentiation of B cells infected by MuHV-4 or EBV into plasmocytes seems to be a signal for the 

efficient reactivation of these two viruses (Laichalk and Thorley-Lawson 2005; Liang et al. 2009). 

 

2. The gammaherpesvirinae 

The gammaherpesvirinae are able to infect a wide range of mammals and birds. Among these 

viruses, some are particularly interesting in terms of animal health, human health or fundamental 

research. Alcephaline herpesvirus 1 (AlHV-1), Ovine herpesvirus 2 (OvHV-2), Equine herpesvirus 2 

(EHV-2), Bovine herpesvirus 4 (BoHV-4), Murid herpesvirus 4 (MuHV-4), as well as the human 

gammaherpesviruses, EBV and KSHV, are certainly the most studied. 

AlHV-1 and OvHV-2 are particularly interesting viruses in terms of host specificity. Indeed, 

even if apparently apathogenic when infecting their natural host, respectively wildebeest and sheep, 

they are able to infect species as diverse as cattle, swine, but also lagomorphs, rats and hamsters, 

inducing in these dead-end hosts profound dysregulation of the immune system. (Russell et al. 2009). 

Thus, these two viruses cause a syndrome that is often lethal, known as "MCF" or "malignant catarrhal 

fever" in sensitive species such as cattle. This clinical entity, with a mortality rate of over 50%, is 

characterized by high fever and persistent lymphoproliferative lesions reaching all the mucous 

membranes of the anterior respiratory and digestive tracts, blood vessels and lymphoid organs. 

Represented by two similar forms of the disease (the African form (AlHV-1) and the European form 

(OvHV-2)), malignant catarrhal fever has been described clinically in 33 species of domestic and wild 

ruminants (Metzler and Burri 1990) and occurs on all continents (Mushi and Rurangirwa 1981). 

EHV-2 (from the genus Percavirus) is also a very well host-adapted virus. With high 

prevalence, the infection by EHV-2 is distributed worldwide and was isolated from healthy individuals 

as well as from sick animals, raising the controversial issue of its pathogenicity. While EHV-2 may 



A.

B.

Figure 4: (A) Incidence of Burkitt’s lymphoma and nasopharygeal carcinoma associated with EBV
infection. From: http://www.cancerresearchuk.org/ (B) Seroprevalence of KSHV and incidence of the
associated Kaposi’s sarcoma. From Mesri et.al, 2010.
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play a role as reactivator of other equine herpesviruses, this virus has been associated with some upper 

respiratory diseases, hyperthermia, an overall decline of general health and some forms of 

keratoconjunctivitis (Dunowska et al. 2002; Ruszczyk et al. 2004). EHV-2 infection is not strictly 

limited to domestic horses since the virus was isolated from two other species within the genus Equus, 

the Przewalski horse and mountain zebra (Borchers et al. 1999) while the experimental infection of 

mice has highlighted the persistence of the virus in the lungs and spleen cells (Rizvi et al. 1997; 

Borchers et al. 2002). 

BoHV-4 was isolated from diverse samples from healthy cattle presenting various pathologies 

such as endometritis, abortion, respiratory or digestive troubles and mammary skin lesions (Donofrio 

et al. 2005). It was also demonstrated that African buffaloes can be infected, reflecting the possibility 

of inter-species transmission (Dewals et al. 2005). However, little studies allowed the experimental 

reproduction of the clinical disease and the role of BoHV-4 as a pathogenic agent remains, for now, 

uncertain (Thiry 1989). Although cattle have always been considered as the natural host of BoHV-4, 

the virus probably originates from African buffalo (Dewals et al. 2005). However, the virus is able to 

infect a large diversity of species such as guinea pigs and rabbits. The latter of these species is actually 

considered as the best model in experimental in vivo studies of BoHV-4 

The two important gammaherpesviruses in human health are EBV and KSHV. EBV belongs 

to the lymphocryptovirus genus and was indentified about fifty years ago in cells isolated from 

Burkitt’s lymphoma (BL) that are B cell derived tumors (Epstein et al. 1964). From an 

epidemiological point of view, it is estimated that about 90% of the adult population is infected (Henle 

et al. 1969; Andersson 2000) (Figure 4A). Primary infection can be asymptomatic, but can also lead, 

to a clinical entity named infectious mononucleosis (IM). The clinical signs and the gravity of IM can 

be highly inconstant (Thorley-Lawson and Gross 2004). The acute phase is characterized by  cervical 

lymphadenopathy, fever and pharyngitis followed by general sickness and acute fatigue that can last 

several months (Callan et al. 1996). The host immune system is then able to control the infection, 

essentially by CD4+ and CD8+ T cells. Therefore, a homeostasis state between the host and the virus is 

set up and the virus will persist in the host organism in a latent state throughout its life. During this 

period, T cell surveillance is necessary for the control of the infection as evidenced by the 

development of lymphoproliferative disorders in patients receiving immunosuppressive therapies 

(Rickinson and Kieff 2001). Moreover, in these patients, but also in those with AIDS (Aquired 

ImmunoDeficiency Syndrom), neoplasic diseases such as Burkitt’s lymphoma, Hodgkin’s lymphoma 

or nasopharyngeal carcinoma can be developed (Rickinson and Kieff 2001).  
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In vitro, EBV infects B lymphocytes and almost always causes transformation of these cells 

into proliferative lymphoblasts (LCL, lymphoblastoïd cell lines) (Diehl et al. 1968; Pope et al. 1968). 

This effect depends on the expression of viral proteins during latency. The expression profile of the 

genes responsible of malignant transformation is called the « growth program ». The study of LCL 

cells has allowed the evidencing of a limited set of genes expressed during the infection in vitro. Thus, 

six nuclear proteins are described: Epstein Barr nuclear antigen 1, (EBNA-1), EBNA-2, EBNA3A, 

EBNA3B, EBNA-3, EBNA-LP. Four membrane proteins are also described : Latent membrane 

protein 1 (LMP1), LMP2A, LMP2B, BHRF1 and a variable number of non-coding RNA (Rowe et al. 

2009). Moreover, besides the characterization of the EBV infection in LCL cells, the study of the 

expression of genes associated with latency in tumoral tissues has shown the complexity of the EBV 

cycle in vivo. Indeed, several transcription programs are used by the EBV to infect cells, but also to 

maintain a long-term infection (Thorley-Lawson and Gross 2004). These programs are characterized 

by distinct expression of viral and cellular genes.  

KSHV was identified in 1994 in very characteristic tumoral lesions, known as Kaposi’s 

sarcoma (KS) and in HIV (Human Immunodeficiency Virus) seropositive patients (Chang et al. 1994). 

Later, it was demonstrated that KSHV is also associated with the development of other 

lymphoproliferative malignancies such as Castelman’s disease and primary effusion lymphoma (PEL), 

that are rare B cell lymphomas essentially observed in patients with AIDS (Staskus et al. 1997; Ensoli 

et al. 2001; Schulz 2001). Cancerous lesions associated with KSHV are at this time the most frequent 

tumours in patients infected by HIV (Mesri et al. 2010). Seroprevalence can reach 50% (Butler et al. 

2011) in some Sub-Saharan African regions and 10 to 25% in the Mediterranean area. The rest of the 

world is at low risk with prevalence ranging from 2 to 5% (Chatlynne and Ablashi 1999) (Figure 4B). 

Historically, four forms of KS are distinguished: the classical form in the Mediterranean region, the 

epidemic form or the form associated with AIDS, the endemic form in Africa (Oettle 1962) and finally 

the iatrogenic form in patients under immunosuppressive treatment following transplant (Siegel et al. 

1969). These forms are different in terms of clinical etiology, with variations in aggressiveness, 

injured anatomical sites, mortality and morbidity. However, in all of the four forms, individuals are 

co-infected with HIV and KSHV (Dourmishev et al. 2003). In KS lesions, HHV-8 was detected at the 

level of vascular endothelial cells and in « spindle cells » constituting a histological signature of 

pathology (Staskus et al. 1997; Ensoli et al. 2001). Other characteristics of the KS lesions are the large 

diversity of cell types that can be transformed (Regezi et al. 1993; Herndier and Ganem 2001) as well 

as the early and high level of neovascularization (Hanahan and Folkman 1996). Clinical signs evolve 

from dermal flat lesions to edematous lesions, finally becoming purplish nodules. Although the virus 

is proven present in transformed endothelial cells, initial target cells are B lymphocytes (Ambroziak et 

al. 1995) as it is the case for the majority of gammaherpesviruses. 
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During latency, KSHV expresses a small number of genes: the genes coding for the latency-

associated nuclear antigen (LANA), for the proteins v-cyclin and v-FLIP (viral FLICE inhibitory 

protein), for Kaposines A, B, C and finally 18 miRNAs (Cai et al. 2005; Samols et al. 2005). The 

majority of these proteins are implied in pathogenesis and malignant transformation associated with 

the infection by KSHV through diverse mechanisms including inhibition of apoptosis, interferrence 

with the host immune system, angiogenesis and cell cycle manipulation (Moore and Chang 1998; 

Moore and Chang 2003). 

Lastly, while the oncogenic potential of both human gammaherpesviruses is now clearly 

established, the impact of this process may be underestimated. Indeed, several human tumors, in which 

no virus is yet isolated, potentially have a viral origin (Shimizu et al. 1994; Srinivas et al. 1998). This 

"hit and run" effect suggests that infection with an oncogenic virus can induce genetic instability 

and/or epigenetic dysregulation responsible for initiation and maintenance of the transformation of the 

infected cell (Niller et al. ; zur Hausen 1999; Pagano et al. 2004). Subsequently, the loss of the viral 

genome does not affect neoplasic progression following the alteration of cellular functions (Niller et 

al. ; Shen et al. 1997).  

3. The Murid herpesvirus 4 

 

3.1. Host range 

The MHV-68 strain of MuHV-4 has been isolated from bank voles (Myodes glareolus) caught 

in Slovakia in 1980, and this, concomitantly to the strains 60 and 72 (Blaskovic et al. 1980). During 

the same study, the strains 76 and 78 were isolated in yellow neck mice (Apodemus flavicollis) 

(Blaskovic et al. 1980). Recently, very close viruses were isolated in other species such as field voles 

(Microtus agrestis), field mice (Apodemus sylvaticus) (Blasdell et al. 2003; Hughes et al. 2009) and 

shrew (Crocidura russula) (Chastel et al. 1994). To date, no consensus exists with regards to the 

determination of the natural host(s) of MuHV-4. However, from an epidemiological point of view, 

several field studies were conducted to determine the species which can be naturally infected. In 2003, 

a study conducted in England showed that seroprevalence was much higher in populations of wood 

mice in this country (Blasdell et al. 2003). Moreover, these results were confirmed in 2007 (Telfer et 

al. 2007) and studies concluded that the most probable natural host for MuHV-4 could be the wood 

mouse but that this does not exclude that other species could also be natural hosts for MuHV-4. In 

addition, in 2009, Hughes et al. isolated WMHV (Wood mouse herpesvirus) in a wood mouse 

(Hughes et al. 2009). This newly isolated virus is very close to MuHV-4. Consequently it cannot be 

excluded that natural populations tested during the two studies mentioned above were infected by 
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WMHV rather than by MuHV-4. Finally, in 2007, a study designed to identify new herpesviruses in 

natural rodent populations using PCR (polymerase chain reaction) was conducted by Ehlers et al. 

(Ehlers et al. 2007). More than 1,100 samples from rodents caught in the UK, Germany and Thailand 

were tested, allowing the identification of several new beta- and gammaherpesvirinae, among which 

the first gammaherpesvirus naturally infecting house mice (Mus musculus), the species from which 

laboratory mice are derived (Ehlers et al. 2007). Although the identification of this new virus opens 

interesting perspectives concerning the study of a gammaherpesvirus in its natural host, the absence of 

virus isolation makes it impossible to present any experimental perspective.  

3.2. Molecular biology 

 

3.2.1. The viral genome 

As already mentioned, MuHV-4 is a gammaherpesvirus belonging to the rhadinovirus genus. 

Rapidly after its isolation, this virus became an essential tool for the study of gammaherpesvirus 

biology. The genome of MuHV-4 has a B-type structure (Figure 5), and was entirely sequenced in 

1997 (Virgin et al. 1997). With a length of about 120 kb, the genome of MuHV-4 is composed of a 

long unique region (118 237 kb) flanked by a variable number of 1.2 kb direct terminal repeats 

(Efstathiou et al. 1990b). The sequence analysis allowed the identification of 80 open reading frames 

(ORF), 63 of which are homologues of HVS (herpesvirus saimiri), the type species of the genus 

rhadinovirus  (Figure 6) (Virgin et al. 1997). These 63 ORF’s are also present in the genome of KSHV 

and the majority is present in the genome of EBV. The genome is composed of large blocks of genes 

conserved among all the gammaherpesviruses between which MuHV-4-specific ORF’s are 

interspersed. These specific ORF’s seem to participate in specific biological properties of the virus. 

This genomic organization, the high positional homology between MuHV-4 and KSHV and the lack 

of conservation of many proteins involved in the tumoral transformation following EBV infection  

(Virgin et al. 1997) led to the classification of MHV-68 within the rhadinovirus genus (Efstathiou et 

al. 1990a). This classification was moreover confirmed later by phylogenetic evidences (Ehlers et al. 

2008).  

The MuHV-4 genome contains 14 unique genes named M1 to M14. The majority of these are 

only accessory for lytic infection. As an example, the left end of the MHV-68 genome contains the M1 

to M4 genes and sequences coding for t-RNAs and micro RNAs (see later), that are absent in the strain 

76 isolated simultaneously with the 68 strain. The analysis of the infectivity of the strain 76 in mice 

has demonstrated that this region is essential for viral pathogenesis as the infection by the strain 

lacking this region is more rapidly controlled in the lungs and latency is less efficient. Moreover, a 
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recombinant virus made by the 76 strain complemented with the left end of the 68 strain shows similar 

infectivity to 68 strain (Macrae et al. 2001).  

As for all the gammaherpesviruses, numerous cellular homologues are found in the MHV-68 

genome. It seems that these DNA sequences were recently acquired at the scale of evolution and are 

implied in the manipulation of the cellular cycle and the regulation of apoptosis by the virus during the 

infectious process. For the KSHV, at least 12 ORF’s encode proteins with cellular homologues. 

Concerning MuHV-4, this number is reduced to 4 proteins : a homologue (ORF 4) of a complement 

regulatory protein whose role could be the inhibition of complement-dependent lysis; a D-cyclin 

homologue (ORF 72) able to interact with the cyclin dependent kinase 6 (cdk6) and to a lesser extend 

with cdk4, leading to the alteration of the cell cycle; a receptor for the interleukine 8 (IL8) whose 

KSHV homologue is known to be implied in tumourigenesis and neoangiogenesis and finally a 

homologue of the cellular gene bcl-2 (M11 gene) whose function would be to improve the survival of 

infected cells, ensuring the maintenance of a pool of latently infected cells (Virgin et al. 1997). 

The genome also contains eight t-RNA (transfert RNA) type sequences localized at the 5’ 

terminus (Bowden et al. 1997; Virgin et al. 1997). The role of these RNA is not clearly defined but it 

is interesting to note that they are abundant in germinal centers when viral latency is established. The 

expression of the t-RNA is therefore a marker of viral latency (Bowden et al. 1997). It is however 

speculated that those vt-RNA sequences are evolutional remnants serving as promoter for viral 

microRNA (miRNA) sequences (Zhu et al. 2010). Indeed, the expression of viral microRNA during 

latency was recently demonstrated for members of the three families of herpesviruses (Pfeffer et al. 

2005). These were proposed to be implied in both lytic and latent infection, possibly acting on 

viral/host interaction (Sullivan and Ganem 2005; Nair and Zavolan 2006). Pfeffer et al. have predicted 

17 miRNAs encoded by MuHV-4, 9 of which were experimentally confirmed (Pfeffer et al. 2005). 

More recently, Zhu et al. have systematically analyzed the expression profile of RNAs in lytically and 

latently MuHV-4 infected cells (Zhu et al. 2010). Their results show increased level of miRNAs in 

latently infected cells in comparison with levels observed in lytically infected cells. Thus these RNAs 

seems to act positively on viral latency by modulating apoptosis cellular pathways, immunity and 

repression of viral lytic cycle (Cai et al. 2005; Burnside et al. 2006; Lu et al. 2008; Umbach et al. 

2008; Wang et al. 2008; Lei et al. 2010; Forte and Luftig 2011).  

3.2.2. Tools 

 

Making great advances in fundamental and applied research about herpesviruses often 

requires genetic manipulations such as transgene insertion or ORF deletion. While these two types 
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Figure 7: Schematic representation of the generation of a viral BAC-genome. (a) The viral genome
and a linearized baterial plasmid containing the BAC cassette surrounded by homologues sequences to
viral genome are co-transfected in eukaryotic cells. (b) Homologous recombinaison occurs and viral
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are selected using a selection marker and viral DNA is extracted from selected plaques. (d) BAC-
containing viral genome is used to transform baterial cells. (e) BAC-genome can be mutated by various
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of modifications can be made by homologous recombination in eukaryotic cells, the approach is 

extremely long and difficult due to the large genome of herpesviruses and their relatively slow 

kinetics of replication (Adler et al. 2003). Furthermore, with this strategy, genome analysis of the 

mutant virus is only possible after the experimental procedure, revealing only later accidents such 

as unwanted genetic recombination, deletions or rearrangements. On the other hand, the selection 

of target mutants is also difficult. To overcome all these constraints, a new approach for 

constructing herpesvirus mutants has been developed. The principle of it is based on the cloning of 

the viral genome as a bacterial artificial chromosome (BAC) in Escherichia coli (E. coli). The 

maintenance of the viral genome under the form of a bacterial chromosome in prokaryotic cells 

allows the researchers to apply well known and controlled mutagenesis methods, using bacterial or 

phage recombinases, and greatly simplifies genetic modification and selection of recombinants. 

  

To generate a BAC-cloned genome (Figure 7), a BAC cassette composed of genetic 

sequences needed for DNA replication and segregation in prokaryotic daughter cells as well as 

selection markers and often loxP sites surrounding the cassette is inserted in the viral genome. 

Infectious viral particles are obtained following transfection of the BAC genome in eucaryotic cells 

able to support viral lytic infection. The virions therefore contain the BAC cassette which can be 

removed, if wanted, by the action of Cre recombinase on the specifically recognized loxP sites 

(Zhang et al. 1998; Wagner et al. 2002; Warden et al. 2011). Alternatively, the BAC cassette can 

be excised by the presence of homologous sequences, promoting recombination. This technique of 

self-excision leads early in the process of virus-reconstitution to viral genomes rid of the BAC 

cassette thus shorter and therefore preferentially encapsidated (Wagner et al. 1999). Excision of the 

BAC cassette can be an important step, particularly in the context of in vivo experiments. Indeed, 

the presence of these complementary sequences but also the transcription of encoded proteins, 

mainly the selection markers, may alter viral infectivity in mice by eliciting specific immune 

response againgt the transgene (Adler et al. 2001; El-Gogo et al. 2008). 

 

The first BAC cloning of the genome of a herpesvirus was made in 1997 with the cloning 

of murine cytomegalovirus by Messerle et al. (Messerle et al. 1997). Today, numerous genomes of 

herpesviruses have been cloned as BAC (reviewed in Warden et al. 2011) : all the human 

herpesviruses except HHV-7, and also a lot of animal herpesviruses such as BoHV-4 (Gillet et al. 

2005) or AlHV-1 (Dewals et al. 2006a). MuHV-4 was also BAC-cloned in 2000 (Adler et al. 

2000). Today, a lot of recombinant MuHV-4 viruses are available and the majority has been 

obtained from the BAC-cloned genome. Subsequently, many studies, both in vitro and in vivo, 

were permitted by this molecular tool that has now become indispensable for the specific study of 

the involvement of specific genes in the pathogenesis of the herpesviruses. 
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Having this molecular cloning tool has also opened many perspectives in terms of gene 

therapies and vaccination strategies. In this context, BAC-cloning and mutagenesis methods are 

constantly evolving with the development of new strategies allowing the rapid construction of 

vaccinal and therapeutic vectors. For the purpose of gene therapies, viral vectors contain all genes 

needed for viral replication but lack those needed for virulence. Such HSV-1 (Marconi et al. 2009) 

based vectors have been developed with hopes in treating cancers, (Kuroda et al. 2006; Terada et 

al. 2006) and osteoporosis (Xing et al. 2004). EBV vectors have also been developed in the context 

of gene therapies (Magin-Lachmann et al. 2003; Hettich et al. 2006). In addition, these methods are 

very useful in fundamental research.  

 

3.3. Pathogenesis of the MuHV-4 infection 

MuHV-4 infects and establishes a chronic life-long infection in laboratory mice. The natural 

way of infection is not known but it is usually considered that the upper respiratory tract should be the 

most probable entry site. Indeed, a comparative study of intranasal and intravenous infections has 

proven that the intranasal infection was the most likely to produce clinical signs associated with the 

infection while representing a more natural way of contamination (Sunil-Chandra et al. 1992). Other 

studies have tested the potential of intraperitoneal, subcutaneous, intracerebral and oral infections. By 

all these routes, MuHV-4 is able to infect the host, proving the ability of the virus to infect several 

anatomical sites due to a large tropism for diverse epithelial and fibroblastic cell lines. Regardless of 

the route of inoculation, B cell infection is a common feature but bypassing the epithelial barrier (as 

with intraperitoneal infection) leads to more severe disease and seems to make some genes accessory 

(Jacoby et al. 2002). Circulating latently infected cells can theoretically lead to the infection of any 

other anatomical site explaining the relative equivalence of all routes of infection. The classical 

experimental infection is intranasal and leads to viral replication in the nasal mucosa during primary 

infection (Milho et al. 2009). The replication then continues in the lungs, causing severe interstitial 

pneumonia associated with leukocytes in perivascular and peribroncheolar infiltrates. The primo-

infection is largely controlled within 10 to 14 days post-infection (Sunil-Chandra et al. 1992). 

Interestingly, no replication is observed in the lungs when the animals are infected without anesthesia 

(Milho et al. 2009). This strongly indicates that replication in the lungs should probably not be 

considered as a part of natural infection. Simultaneously to the productive infection, latency is 

established in lymphoid organs, essentially in the spleen and the superficial cranial lymph nodes 

(SCLN) (Milho et al. 2009). Acute infection of these organs is controlled within 14 to 16 days and 

latency is considered established within 16 to 18 days post-infection. Clinical signs are similar to those 

observed in the case of an IM following the infection by EBV: lymphadenomegaly, splenomegaly, 

weight loss, and in the case of mice, dorsal curvature and ruffled fur (Sunil-Chandra et al. 1992). 
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Figure 8: In vivo imaging principle (IVIS, In vivo imaging system). A recombinant virus expressing
luciferase from Photinus pyralis under the control of the promoter of a gene associated with the
replicative cycle is used to infect animals. Following intaperitoneal injection of luciferase substrate,
luciferin, this substrate is oxydized with emission of photons which are detected by a CCD camera. A
photagraph and a luminescence image are acquired and superimposed by the software A color scale isphotagraph and a luminescence image are acquired and superimposed by the software. A color scale is
determined to render intensities and quantitative analyzes can be made.
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Although many studies using classical virology methods were performed to bring out MuHV-

4 pathogenesis, new insights were made by the use of in vivo imaging. Indeed, the existence of the 

MuHV-4 genomic BAC-clone has allowed the construction of a recombinant virus expressing firefly 

(Photinus pyralis) luciferase (Milho et al. 2009). This enzyme oxidizes its specific substrate, luciferin, 

with emission of a photon during the reaction (Figure 8). This mechanism, causing the luminescence 

of fireflies, is now advantageously used in biology, among others, in order to study infectious 

processes (Hutchens and Luker 2007). Another important advantage of this method is that the 

substrate needed for the enzymatic reaction is easily available and can be injected in vivo without 

damaging the animal (Hutchens and Luker 2007) but with an excellent biorepartition and 

bioavailability in the organism. Also, this method drastically limits the number of animals needed for 

experiments while minimizing experimental bias caused by the analysis of different groups of animals 

during kinetics experiments. However, the oxidation reaction needs oxygen and is therefore limited in 

most anaerobic organs such as the gut. For the MuHV-4 recombinant, the luciferase coding gene was 

cloned under the dependence of the promoter of the M3 gene (Milho et al. 2009), associated with the 

lytic phase of the viral cycle. Is has to be noted that a similar recombinant was made by another group 

(Hwang et al. 2008). After infection with a luciferase expressing recombinant virus, the infectious 

process can be monitored continuously using an imaging system composed of a charged coupled 

device (CCD) camera able to detect photons emitted from the animal. This technique permitted further 

elucidation of the lytic infection in model animals allowing for example the observation of replication 

in the nasal mucosa (Milho et al. 2009).  

3.4. The immune response and the control of the infection 

Gammaherpesviruses are the archetype of persistent viruses. The co-evolution of these viruses 

with their natural host(s) led them to develop near-perfect adaptation between infectivity and long-

term persistence. Thus gammaherpesviruses have developed immune evasion strategies from the 

innate response but also from the adaptative response that allow their persistence in the host and their 

re-excretion despite the presence of specific antibodies. This ability to evade the immune response is 

also responsible for the concomitant presence of several related viral strains within the same host 

organism. Indeed, the host immune response is so limited and circumvented that a close second strain 

may be the source of infection within an immunized host (Sitki-Green et al. 2003; Gorman et al. 2006; 

Muylkens et al. 2009). This highlights the difficulty in developing efficient vaccines which induce a 

sufficient immune response, in fine allowing the control of the herpesvirus infection. 

Moreover, it is recognized today that the induction of long-term neutralizing response is one of 

the main antiviral mechanism (Burton et al. 2005; Hangartner et al. 2006). Therefore, the development 
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of vaccines against persistent viruses proved to be a major challenge as these viruses have evolved by 

co-speciation, adapting to their host in order to coexist with the antibody response and resist 

neutralization (Burton et al. 2005). At present, the understanding of the mechanisms of evasion of 

gammaherpesviruses toward the neutralizing response is very limited. The development of effective 

vaccine strategies is also complicated by other factors such as low-antigen expression during latency, 

the manipulation of the elements involved in antigen presentation to the immune system, a tropism 

that is not confined to a single cell type, the establishment of latency within immune cells in the case 

of gammaherpesviruses and finally the few available in vivo models allowing a detailed study of 

mechanisms of interaction between the virus and the host immune system. These elements will be 

discussed in this section. 

In this context, the study of MuHV-4 in the laboratory mouse is very useful. Indeed, we can 

say that the immune response of laboratory mice has many similarities with that of humans and 

secondly, a majority of the genes involved in gammaherpesvirus latency was found in MuHV-4. 

However, it has unique genes but their function appears to be preserved. Thus, the assumption of 

common strategies for pathogenesis and escape of the immune system can be emitted (Barton et al. 

2011). 

The control of the gammaherpesvirus lytic infection is primarily provided by the cell-mediated 

immunity and particularly by CD8 + cytotoxic T lymphocytes. Indeed, the end of pulmonary lytic 

infection coincides with a peak of virus-specific CD8 + T cells (Stevenson and Doherty 1998) and 

depletion of these cells prior to infection leads to uncontrolled lytic infection and death (Ehtisham et 

al. 1993). However, the gammaherpesviruses have evolved to considerably limit the recognition of 

their essential epitopes, lytic as well as latent, by the host immune system. In the case of MuHV-4, it 

was shown that CD8 + T cells, although able to proliferate massively following the viral challenge 

after previous infection, are unable to control chronic lytic infection (Belz et al. 2000). Tests of pre-

exposure vaccination designed to increase the efficiency of these CD8 + T cells and to limit the 

colonization of the infected host have failed (Liu et al. 1999; Stevenson et al. 1999a). This shows the 

high capacity of the virus in the escape of the immune system in order to establish an effective state of 

latency. At a molecular level, there are several genes involved in this process. Among these, the K3 

gene product, acts predominantly during the lytic phase to inhibit the presentation of viral antigens in 

the context of class I major histocompatibility complex (MHC) thus limiting the recognition by CD8 + 

T cells and limiting the effect of the cytotoxic response (Stevenson et al. 2000). This effect is related 

to the ability of the K3 protein to bind to neoformed molecules of the MHC class I in the endoplasmic 

reticulum, inducing an ubiquitination complex and its subsequent degradation by the proteasome 

(Boname and Stevenson 2001).  Escaping the CD8 + T cell response is also important during latency. 



Figure 9: A schematic view of the gammaherpesvirus life cycle for MuHV-4. T cells are shown in red, B
cells in blue, epithelial cells in white, neuronal cells are brown and relevant others are in green. Arrows
h th t f i N b 1 5 i di t d fi bl t K i t ti i t l tshow the movement of virus. Numbers 1–5 indicate definable steps. Key intervention points are latency

establishment in naive hosts (steps 2 and 3) and antibody binding to the virions shed by carriers (step 1).
Step 1: virions enter a naive host via secretions such as saliva. Since virions come from immune carriers,
they are likely to have attached antibody. The virions are not normally neutralized, but neutralization may
be possible through boosting fusion-complex-specific antibodies in virus carriers. Nonneutralized MuHV-
4 could first infect epithelial cells, IgG Fc receptor-bearing dendritic cells or olfactory neurons. There is
no good evidence for direct B cell infection after a non-invasive inoculation. Step 2: local lytic spread
could potentially be targeted by antiviral drugs or antibody. Latency establishment seems to occur mainly
in draining lymph nodes. Infection may reach these via dendritic cells or via cell-free virions captured by
subcapsular sinus macrophages. Step 3: infection next spreads to B cells, which proliferate. Lytically
infected myeloid cells secrete evasion proteins such as the M3 chemokine binding protein to protect B
cells against CD8+ T-cell attack. K3 protects myeloid cells and perhaps also B cells against CD8+ T-cell
recognition. IFN-γ produced by CD4+ T cells may limit M3 production and thereby help latent antigen-
specific CD8+ T cells to attack B cells. Step 4: B cells exit germinal centres and differentiate into long-
lived, resting memory B cells. Episome maintenance by ORF73 remains below the threshold of antigen
presentation. Step 5: virus reactivation probably occurs in submucosal sites, accompanied by B-cell
differentiation to a plasma cell phenotype (Sun & Thorley-Lawson, 2007; Wilson et al., 2007). There may
be further lytic replication in epithelial cells prior to virion shedding. Lytic antigen-specific CD8+ T cells
can potentially inhibit reactivation, but K3 and M3 limit their impact. Consequently, CD4+ T cells seem
to protect better against lytic spread. Gp150 promotes virion release and helps to limit neutralization.
From Stevenson et al., 2009.
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Hence, the M3 protein of MHV-68, that has no counterpart in other gammaherpesviruses, is a 

chemokine-binding protein (CBP) with a wide spectrum and whose role would be to limit CD8 + T 

cell migration to sites of latency-antigen expression (Parry et al. 2000; van Berkel et al. 2000). M3 is 

expressed during the lytic phase of the infection (Martinez-Guzman et al. 2003). In the absence of the 

M3 protein, amplification of latency is dramatically reduced but can be largely restored after depletion 

of CD8 + T cells (Bridgeman et al. 2001). M3 acts to protect infected B cells from the host’s immune 

system but the way by which this is realized remains unclear as of yet (Stevenson and Efstathiou 

2005). We can also mention the LANA protein, present in the MuHV-4 (ORF 73) and in the KSHV, 

which has a functional homologue in EBV: EBNA-1. This protein, besides its crucial role in 

maintaining the viral genome as an episome in latently infected cells, significantly limits the 

expression of viral genes, slows the lytic phase and inhibits epitope presentation during episome 

maintenance (Bennett et al. 2005; Li et al. 2008; Wen et al. 2009).  

CD4 + T cells are also important for the control of infection. Indeed, CD4 + T cells also 

display a role in the control of the acute phase of infection by MuHV-4. Assuredly, these cells can act 

as a weapon for the development of a cytotoxic immune response type, but also have a supervisory 

role by themselves. Therefore, infection of mice deficient in B cells and depleted of CD8 + T cells 

may be controlled by the action of CD4 + cells. This mechanism appears to depend on the induction of 

interferon (IFN) production, IFN-γ mainly. Indeed, inhibition of this molecule in these same animals 

led to a complete loss of control of infection by the organism (Christensen and Doherty 1999). 

Furthermore, infection of animals that were deficient for the production of IFN-γ led to a chronic lytic 

infection. Thus, IFN-γ is crucial in the limitation of replication and potentially in that of viral 

reactivation (Dutia et al. 1997; Weck et al. 1997).  

Finally, a model was suggested to explain the balance between the host’s immune system and 

viral evasion (Figure 9). In this model, it is put forward that tissue damage caused by the lytic phase 

leads to an acute inflammatory process and therefore to a response during which the CD8 + T cell 

response is predominant for lytic infection control. During this phase, the host’s immune response 

dominates. Consequently, during the establishment of latency, and during the latency itself, tissue 

damage is severely limited, as is the inflammation reaction, leading to a dominance of the evasion 

mechanisms which act by the expression of viral proteins M3 and K3 (Stevenson et al. 2002).  

4. Epidemiology and transmission of the gammaherpesvirinae 

Knowledge and understanding of the mechanisms of transmission of herpesviruses in 

populations are essential to implement large scale antiviral strategies. Indeed, the development of 
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strategies and/or fully adequate vaccination requires in-depth knowledge not only of the molecular 

mechanisms governing replication, viral latency, reactivation and re-excretion in a single individual, 

but also of the mechanisms involved in the dispersion of these viruses at population level, whether 

human or animal. The association of these diseases with other pathogenesis may also have significant 

repercussions on prevention of the illness. 

In humans, the determination of the mechanisms of transmission at population level is 

essentially based on sero-epidemiological studies that often involve the interrogation of individuals 

included in studies. Although this method is probably the oldest source of epidemiological 

information, many biases may appear in this type of study such as an incomplete questionnaire, the 

inability to check the accuracy of the answers or a limited or inhomogeneous population sample. At 

present, molecular biology reinforces these methods allowing for example the assessment of the 

presence of a pathogen at different anatomical sites. However, access to samples is limited, at least in 

humans, to body fluids and biopsies.  

This section presents a review of current knowledge about the epidemiology and mechanisms 

of transmission of some gammaherpesviruses of interest in human or veterinary medicine. Indeed, the 

different gammaherpesviruses share many common properties, whether at a molecular or an 

evolutionary level, and knowledge of transmission mechanisms involved in the epidemiology of these 

viruses may therefore be important in the context of the study of another gammaherpesvirus, 

especially when developing a model of transmission under experimental conditions.  

As previously mentioned, two gammaherpesviruses are important in human medicine, namely 

EBV and KSHV. Associated diseases, but also some epidemiological data have already been 

mentioned in section 2 of this introduction. This section therefore aims to further explore currently 

known data concerning the transmission of these two infections.  

 

There are now several studies that tend to demonstrate the presence of EBV in the genital tract 

and therefore to hypothesize potential sexual transmission. Indeed, by 1986 the presence of EBV in 

cervical secretions, whether in the form of virions associated with epithelial cells or as free infectious 

viral particles, was shown (Sixbey et al. 1986). Subsequently, many studies have been conducted and 

have disclosed some interesting elements. Thus, about thirty cases of ulcerative vaginal manifestations 

associated with EBV have been reported (Halvorsen et al. 2006; Leigh and Nyirjesy 2009). Some of 

these cases were certainly associated with a primary infection by EBV. Indeed, for one, the 

seroconversion was observed in the month following detection of the ulcerative lesions and secondly, 

because of the detection by PCR of viral genomes in biopsies of the lesions (Halvorsen et al. 2006). 
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Moreover, a study conducted among women of a rural area of India showed that EBV is detected in 

genital secretions of about 20% of these women and that it is frequently associated with poor hygiene 

(for instance, they have no running water), cervical inflammation and genital cancer (Silver et al. 

2011). Further studies have shown EBV viral particles in male and female genital secretions (Sixbey et 

al. 1986; Israele et al. 1991; Naher et al. 1992; Thomas et al. 2006b). In addition, sero-

epidemiological studies conducted on cohorts of university students have correlated EBV 

seropositivity, history of infectious mononucleosis and the number of sexual intercourses and partners 

reported (Crawford et al. 2002; Woodman et al. 2005; Crawford et al. 2006). It was also shown that 

members of a couple often share the same virus isolate (Thomas et al. 2006b). However these latest 

studies do not actually demonstrate sexual transmission as it is not possible to discriminate direct 

sexual transmission from transmission due to practices associated with sexual intercourse such as 

kissing. In conclusion, although sexual transmission should be considered as a way of transmission 

because of the presence of infectious virus in vaginal and urethral secretions, this route does not seem 

to be the most important, but its incidence remains unclear to date. 

KSHV is less prevalent than EBV. Sero-prevalence rates vary greatly depending on the 

geographical areas considered (see section 2) and are higher among low socio-economic populations, 

but also among HIV infected individuals (Cannon et al. 2001).  

A PCR-based detection study of KSHV in body fluids allowed to evidence the presence of the 

virus essentially in saliva with high titers of viral DNA, but also in the blood, the semen, the skin 

injured by KS and even in healthy skin (LaDuca et al. 1998). The virus was also isolated in the 

oropharyngeal secretions of homosexuals, but only rarely in samples harvested at the anal and genital 

regions of the same individuals (Pauk et al. 2000). During the studies conducted on biopsies from 

AIDS patients, prostatic tissues were positive for viral KSHV genomes (Corbellino et al. 1996), 

suggesting that the prostate could be a replication site. KSHV was also shown to be present in the 

semen and this, often in patients with KS (Diamond et al. 1997), sometimes associated with epithelial 

cells and never associated with spermatozoa (Pellett et al. 1999; Ablashi et al. 2002). KSHV was also 

detected in the cervix of some women (Whitby et al. 1999). This biological data suggests that sexual 

transmission should be considered for KSHV. Sero-epidemiological studies were elaborated taking 

this into account. In 1999, a study conducted on more than 3000 people monitored for more than a 

year linked the risk of KSHV acquisition to a homosexual or bisexual way of life but not to that of 

heterosexuals (Smith et al. 1999). This was even true in high prevalence areas such as Zimbabwe 

(Campbell et al. 2009). However, in France and Italy, studies tend to show an increased risk of 

seroconversion of an uninfected partner in a heterosexual relationship with an individual suffering 

from KS (Brambilla et al. 2000; Dupuy et al. 2009). Another study has shown that the risk is also 
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correlated with the number of partners and with infection by HIV (Martin et al. 1998). Finally, KSHV 

was frequently detected in oropharyngeal and cervical secretions of a sample of Zimbabwean women 

presenting classical KS lesions, but not in the control sample population without KS disease, including 

women seropositive for KSHV (Lampinen et al. 2000). This suggests that sexual or perinatal 

transmission in high prevalence populations could be linked to the immunodeficient status that allows 

the shedding at these anatomical sites. This would mean that these transmission routes are probably 

very limited in immuno-competent individuals (Lampinen et al. 2000). High oral and cervical 

shedding is also correlated with HIV co-infection in Kenya (Taylor et al. 2004). In conclusion, despite 

the highly controversial aspect of the results presented here, it seems that sexual transmission is a 

major risk of KSHV acquisition among certain populations particularly at risk, but should be very 

limited in heterosexual and immuno-competent populations (de Sanjose et al. 2009).  

Mother-to-child transmission, both transplacental or perinatal, seems to be very limited, but 

could occur in high prevalence areas (Pica and Volpi 2007). However, in women co-infected by HIV, 

viral reactivation seems to be increased during pregnancy, and this also appears to be the case for 

perinatal shedding (Lisco et al. 2006), but no influence of the infection on the outcome of the 

pregnancy was observed. Mother-to-child infection exists but seems to be essentially caused by an 

increase of the mother’s perinatal salivary shedding (Dedicoat et al. 2004). Additionally, the 

acquisition of infection during childhood would imply the transmission between young children who 

shed high levels of viruses in saliva (Plancoulaine et al. 2000; Mbulaiteye et al. 2006). 

The high frequency of association of KSHV and HIV infections, as well as the much more 

frequent appearance of KSHV-associated diseases such as KS in individuals with AIDS naturally led 

to evaluate the impact of some factors known to be implied in HIV transmission on the epidemiology 

of KSHV. Thus, the potency of blood-borne transmission was considered. A study conducted on 

samples from about 30 infected donnor/healthy patient pairs in West Africa led to the detection of only 

one case of transmission following the transfusion of a blood sample with high viral load (Gobbini et 

al. 2012). In Uganda, it was shown that the risk of blood-borne transmission from infected donors 

decreased after 4 days of blood storage (Hladik et al. 2006). A similar study but of larger scale was 

conducted in the U.S.A. revealing no transmission by blood products (Cannon et al. 2009). However, 

another study of lesser extent that used a more sensitive immunofluorescence method showed 

occasional cases of transmission following blood transfusion in the U.S.A. (Dollard et al. 2005). 

Moreover, the possibility of transmission through needle sharing among populations of injection drug 

users was also evaluated. A study comparing the seroprevalence of KSHV in a group of intravenous 

drugs users and a control group has shown that such practices constitute a risk of KSHV acquisition 

(Sosa et al. 2001), regardless of sexual orientation (Atkinson et al. 2003). However, another similar 
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study did not reveal such a correlation and concluded in the dominance of sexual orientation as an 

important factor regarding the prevalence of KSHV in populations considered at risk (Bernstein et al. 

2003). Finally it appears that the presence of infectious viral particles in the blood stream greatly 

depends on the stage of the infection as the massive presence of IgG correlates with a high viral load 

(Ablashi et al. 2002). Globally, this data indicates that the spread by way of blood transmission or 

needle sharing by drug users can exist but remains of low importance, at least in immune-competent 

individuals. 

AlHV-1 and OvHV-2 are two important gammaherpesviruses in veterinary medicine. As 

previously mentioned, they are the causative agents of the disease named MCF or malignant catarrhal 

fever. AlHV-1 is the source of a particularly important epidemiological problem concerning cattle in 

Africa, but also in the context of zoos hosting many exotic animals. Although the virus and its 

associated diseases should have been studied for many years, little data actually exists concerning viral 

transmission. For AlHV-1, it seems that in the natural host, transmission occurs by direct contacts 

between healthy and infected animals during the first weeks of life. The virus is mostly re-excreted in 

the nasal and ocular mucosa (Mushi et al. 1980; Pretorius et al. 2008). An epidemiological study has 

concluded that the infection is often acquired in utero or soon after birth (Pretorius et al. 2008). Some 

serological studies in which geographical elements were taken into account were conducted, mainly in 

South Africa, over a period of 80 years. The results show that transmission occurs primarily between 

animals grazing in the same areas, probably via viral particles deposited by an infected animal, during 

parturition as an example, on the grass grazed by a healthy animal. Moreover, it seems that the 

shedding needed for transmission occurs mainly in young animals that have been recently infected 

(Barnard et al. 1989). However, transmission in the absence of any possibility of direct contact was 

observed in South Africa, leading the authors to hypothesize transmission through a fly species 

(Barnard and Van de Pypekamp 1988).  

OvHV-2 seems to be predominantly transmitted by nasal secretions from young infected 

animals (Kim et al. 2003). Indeed, a transmission study of the virus was conducted to evaluate the 

infection ability of samples harvested at the nasal mucosa of sheep, with on one hand recently infected 

animals and on the other, individuals that had been infected a long time ago (Nishimori et al. 2004). 

The inoculation of naïve animals was realized at the level of nostrils as the virus is thought to infect its 

host by respiratory route following close contact. Results showed that the efficiency of transmission is 

a lot higher with nasal swabs from recently infected animals than with those from long-term infected 

animals, demonstrating shedding in the nasal mucosa of animals undergoing primary infection. 

Moreover, these results were confirmed during a similar study which also demonstrated that transitory 

shedding episodes occur in the nasal mucosa of infected sheep (Li et al. 2004). All this data indicates 
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that transmission is primarily executed via nasal secretions containing infectious viral particles, often 

from young and recently infected animals.  

BoHV-4 infects cattle and was isolated from various samples harvested from both healthy 

animals and animals presenting various diseases such as endometritis, abortion, respiratory and 

digestive problems or even mammary skin lesions (Donofrio et al. 2005). This virus is present in 

European as well as in African, North American or Asian cattle without causing major health damage. 

Furthermore, experimental infection of cattle causes no clinical signs. The presence of the virus in 

healthy animals as well as in animals undergoing other pathologies seems to place this virus into the 

category of secondary pathogens, generating clinical symptoms only in cases of co-infection with 

other pathogens. These factors result in the low availability of data on the mechanisms of transmission 

of BoHV-4. However, the virus could be detected in the milk of cows suffering from bacterial mastitis 

(Kalman et al. 2004), leading to the hypothesis of food-borne transmission to newborn calves. The 

presence of cell-associated viruses in the milk from infected cows has been confirmed (Donofrio et al. 

2000). Another study suggests the possibility of in utero transmission, as viral DNA was detected in 

blood samples of calves before colostrum intake. However, during this study, calves were seronegative 

at birth and showed no symptoms (Egyed et al. 2011). 

There is less data available concerning the epidemiology and the transmission of MuHV-4. 

Natural epidemiology has already been evoked (see section 3.1). Regarding transmission, the literature 

currently available is very limited. However, it was suggested that the virus could be detected in many 

biological fluids including breast milk and urine (Hricová and Mistríková 2008). This study suggests 

the possibility of transmission from mother to offspring but also the possibility of transmission 

through territorial marking behavior. Transplacental transmission was also suggested and Stiglincova 

et al. published a study in 2011 strengthening this hypothesis (Stiglincova et al. 2011). This study also 

seems to show that the infection, even if it is latent, is the cause of a delay of fetal development as well 

as of shorter duration of gestation, resulting in fewer births. This study also provided further 

indications of the presence of virus in breast milk (Stiglincova et al. 2011). Globally, available data 

concerning MuHV-4 transmission are poor and the essential of the epidemiological cycle of the virus 

in natural population remains unknown. 

The diversity of the routes of transmission and the frequent co-existence of multiple routes of 

dissemination of herpesviruses within their host population makes it relatively difficult to elucidate the 

preferred mode of transmission of a newly studied herpesvirus. Thus, although assumptions can be 

made by comparison with other known viruses belonging to the same viral genus, experimental 

evidence and/or epidemiological studies are needed to determine the existence of a specific mode of 
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transmission. Indeed, we have evoked that the human gammaherpesviruses seem to be essentially 

transmitted through re-excretion in saliva, but can also be sexually transmitted and even be associated 

with genital pathologies. Although current knowledge seems to determine this second mechanism as a 

secondary route of transmission for gammaherpesviruses, its precise impact remains undetermined so 

far. 
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Objectives 

 

The MHV-68 strain of MuHV-4 was isolated in 1980 from a bank vole (Myodes glareolus) 

(Blaskovic et al. 1980). This virus was rapidly considered of great interest by the scientific 

community. A lot of studies were subsequently performed in this model, allowing progress in 

understanding of gammaherpesvirus biology both in vitro and in vivo. However these three decades of 

studies have not allowed researchers to evidence the re-excretion or transmission of this virus among 

laboratory mice populations. To date, this remains the major problem associated with this model, as 

the capacity to test reexcretion and/or transmission is necessary for the development of new 

vaccination strategies. The main objective of this work is therefore to analyze the in vivo cycle of 

MuHV-4 with modern techniques in order to establish an experimental transmission model of 

this virus. 

Firstly, we want to compare MuHV-4 infection in mice and bank voles. Indeed, given that 

gammaherpesviruses have co-evolved with their host, they are specifically adapted to their immune 

system. They may therefore behave very differently when infecting a species which differs from the 

natural host. Thus, even if the gnu (Connochaetes taurinus) and domestic cattle are phylogenetically 

separated by only 15 to 20 million years (Chaves et al. 2005), transmission of the Alcelaphine 

herpesvirus 1 (which is highly prevalent among populations of gnu), to cattle, leads to a fatal 

lymphoproliferative disease (Dewals et al. 2008). Likewise, bank voles and house mice present a 

similar phylogenetic distance, estimated at 12 to 19 million years (Kilpatrick 1996). We want therefore 

to know if MuHV-4 behaves differently in mice and in bank voles. Secondly, based on the results 

obtained in the first part of this work, we will try to develop a model of transmission of MuHV-4 in 

the experimental conditions that will be judged as the most suitable. 
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Preamble 

The MHV-68 strain of MuHV-4, isolated from a bank vole in 1980 (Blaskovic et al. 1980), 

has been especially used as a model of gammaherpesvirus infection for a long time. However, it can be 

hypothesized that the use of a mouse model of infection is potentially inadvisable given the 

particularly narrow host range that gammaherpesviruses usually have and the lack of consensus on the 

natural host(s) of MuHV-4. Subsequently, the determination of potential differences during the 

MuHV-4 infection of mice (the experimental model), and bank voles (the species from which the virus 

was isolated), should be particularly informative.  

To answer this question, we have designed a comparative study of the infection of Mus 

musculus and of Myodes glareolus, using various methods of classical virology but also in vivo 

imaging. This study aimed to evaluate the quality of mice as a model for gammaherpesvirus infection 

but also to determine the potential of voles as an alternative model for vaccinal and viral transmission 

studies.  

Notably, this has been rendered possible through a collaboration established with Professor 

Pawel Koteja of the University of Krakow, who brought to us knowledge concerning voles and 

individuals from his animal husbandry to enable us carry out this study. In the same way, Johan 

Michaux, of the University of Liège has brought to us his large knowledge about rodent phylogeny but 

also about vole lifestyle. 

The results obtained have been published in the Journal of General Virology in 2010 (Francois 

et al. 2010) and are presented in this section. 
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Gammaherpesviruses are archetypal pathogenic persistent viruses. The known human

gammaherpesviruses (Epstein–Barr virus and Kaposi’s sarcoma-associated herpesvirus) are

host-specific and therefore lack a convenient in vivo infection model. This makes related animal

gammaherpesviruses an important source of information. Infection by murid herpesvirus 4 (MuHV-

4), a virus originally isolated from bank voles (Myodes glareolus), was studied here. MuHV-4

infection of inbred laboratory mouse strains (Mus musculus) is commonly used as a general

model of gammaherpesvirus pathogenesis. However, MuHV-4 has not been isolated from house

mice, and no systematic comparison has been made between experimental MuHV-4 infections of

mice and bank voles. This study therefore characterized MuHV-4 (strain MHV-68) infection of

bank voles through global luciferase imaging and classical virological methods. As in mice,

intranasal virus inoculation led to productive replication in bank vole lungs, accompanied by

massive cellular infiltrates. However, the extent of lytic virus replication was approximately 1000-

fold lower in bank voles than in mice. Peak latency titres in lymphoid tissue were also lower,

although latency was still established. Finally, virus transmission was tested between animals

maintained in captivity. However, as observed in mice, MuHV-4 was not transmitted between

voles under these conditions. In conclusion, this study revealed that, despite quantitative

differences, replication and the latency sites of MuHV-4 are comparable in bank voles and mice.

Therefore, it appears that, so far, Mus musculus represents a suitable host for studying

gammaherpesvirus pathogenesis with MuHV-4. Establishing transmission conditions in captivity

will be a vital step for further research in this field.

INTRODUCTION

Gammaherpesviruses have been identified in a range of
animals from mice to man (Davison et al., 2009). They
establish persistent, productive infections, with virus
carriers making antiviral immune responses that protect
against disease and continuing to secrete infectious virions.
Most gammaherpesviruses establish a long-term latent
infection of circulating lymphocytes. They drive lympho-
cyte proliferation as part of normal host colonization, and
this feature of the virus life cycle predisposes the host to
neoplastic disease. Such disease can be particularly marked

when cross-species transmission occurs, as observed for
saimiriine herpesvirus 2, ovine herpesvirus 2 and alcela-
phine herpesvirus 1 (Dewals et al., 2006; Fickenscher &
Fleckenstein, 2001; Hart et al., 2007).

The best studied gammaherpesviruses are human herpes-
virus 4 (Epstein–Barr virus) and human herpesvirus 8
(Kaposi’s sarcoma-associated herpesvirus), which are asso-
ciated with a range of cancers. As these viruses have no
well-established in vivo infection model, related animal
gammaherpesviruses are an important source of informa-
tion. We have been studying murid herpesvirus 4 (MuHV-
4). The archetypal MHV-68 strain was originally isolated
from bank voles (Myodes glareolus) in Slovakia (Blaskovic
et al., 1980) together with four other MuHV-4 strains,

A supplementary figure showing IVIS Spectrum sensitivity in Myodes
glareolus is available with the online version of this paper.

Journal of General Virology (2010), 91, 2553–2563 DOI 10.1099/vir.0.023481-0
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MHV-60 and -72 also isolated from bank voles and MHV-
76 and -78 isolated from yellow-necked mice (Apodemus
flavicollis). More recently, closely related viruses have been
isolated from shrew (Crocidura russula) (Chastel et al.,
1994) and wood mouse (Apodemus sylvaticus) (Blasdell
et al., 2003; Hughes et al., 2010b).

Although MuHV-4 has not been isolated from house mice
(Mus musculus), infection of inbred laboratory mouse
strains is commonly accepted as a viable model for
studying gammaherpesvirus pathogenesis in vivo. Experi-
mental MuHV-4 infection typically employs intranasal
virus inoculation under general anaesthesia. This leads to a
lytic infection of lung alveolar epithelial cells that is
controlled within 2 weeks (Sunil-Chandra et al., 1992).
Meanwhile, the virus seeds to lymphoid tissue, mainly
draining lymph nodes and spleen (Milho et al., 2009), and
drives the proliferation of latently infected B cells. This
peaks at 2 weeks post-infection (p.i.) and is controlled by
4 weeks. A predominantly latent infection of memory B
cells then persists (Flano et al., 2002). Some inbred mouse
strains infected with MuHV-4 tend to develop lymphomas
(Sunil-Chandra et al., 1994).

An unresolved feature of the MuHV-4/Mus musculus
infection model is that virus re-excretion and transmission
have not been observed. Whilst this could mainly reflect
the restrictions on normal murine social behaviour
imposed by conventional housing, it is also possible that
the lack of transmission reflects the fact that one or more
virus functions necessary for efficient host exit work(s)
poorly in carrier mice. The different host species infectable
by MuHV-4-like viruses are indeed separated by several
millions of years (Fig. 1). In this study, we therefore
characterized MuHV-4 infection in bank voles, the species
from which it was first isolated, in order to reveal any
major defects of the Mus musculus infection model.

RESULTS

Luciferase imaging sensitivity in bank voles

The purpose of this study was to compare MuHV-4
infection in mice, either inbred or outbred, and in one
reported natural host, the bank vole. We first monitored

infection by bioluminescence imaging of animals infected
with luciferase-expressing MuHV-4 (Milho et al., 2009). As
bank voles have darker fur pigmentation than the BALB/c
or CD1 mice used for comparison, we first established the
sensitivity of bioluminescence imaging for each host.
Different numbers of baby hamster kidney (BHK-21) cells
infected with a MuHV-4 strain expressing luciferase under
the control of the M3 promoter were therefore injected
subcutaneously on the ventral part of animals before
imaging. Removing the fur from animals prior to imaging
had little effect on the signal obtained (data not shown), so
all animals were imaged with fur present. After biolumin-
escent imaging, the total flux of photons for each injection
site was reported on a graph (see Supplementary Fig. S1,
available in JGV Online). Each group showed a similar
sensitivity and linearity of signal with injected BHK-21 cell
number. Therefore, bioluminescence imaging was consid-
ered a viable means of comparing infections in the different
hosts.

Luciferase imaging of MuHV-4 infection in bank
voles and BALB/c and CD1 mice

We then infected anaesthetized animals intranasally with
104 p.f.u. luciferase+ MuHV-4 and tracked infection by D-
luciferin injection and charge-coupled-device (CCD)
camera scanning. Based on previous analysis (Milho et al.,
2009), we considered thoracic signals to come from the
lungs, abdominal signals from the spleen and neck signals
from the superficial cervical lymph nodes (SCLNs). The
signal intensities in the nose (Fig. 2a), lungs (Fig. 2b),
SCLNs (Fig. 2c) and spleens (Fig. 2d) were monitored over
time. A strong signal was visible in the lungs and noses of
BALB/c mice at the peak of lytic replication (5–7 days p.i.).
CD1 mice were very similar. In contrast, bank voles showed
no signal in the nose and only sporadic weak signals in the
lungs. At the peak of latency amplification (12–15 days
p.i.), luciferase signals were weak or undetectable in the
lungs and noses of most of BALB/c and CD1 mice, but
strong in the SCLNs and spleen. Again, the corresponding
bank vole signals were weak or undetectable.

These results were confirmed by ex vivo imaging of
dissected organs (Fig. 3). In the noses of all groups, we
observed sporadic signals at day 7 p.i., which had

Fig. 1. Evolutionary relationships among the
studied species. Synthetic phylogenetic tree
summarizing the evolutionary relationships and
an estimation of the divergence times among
the studied species (Michaux et al., 2001,
2002; Murphy et al., 2001). Myrs, Million years.

S. François and others
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disappeared by days 14 and 21 p.i. Signals from lungs were
maximal at day 7 p.i. and again much weaker in bank voles
than in mice, consistent with the analysis of living animals.
Only sporadic lung signals were observed at days 14 and
21. Signals from SCLNs and spleens were maximal in mice
at day 14 and only rarely observed in dissected bank voles.
Based on the images, the signal in CD1 mice spleen
appeared to be larger than in BALB/c mice spleen. Fig. 2
also suggested that there was more replication around
day 14 in CD1 mice spleens and SCLNs than in similar
organs from BALB/c mice. This probably reflects differ-
ences between mice strains and requires more experiments
for clarification. No signals were observed in other organs.
Therefore, it appeared that MuHV-4 follows a similar in
vivo cycle in bank voles as in mice, but replicates much less
well.

Classical analysis of MuHV-4 infection in bank
voles and BALB/c and CD1 mice

Luciferase expression by luciferase+ MuHV-4 reflects
predominantly lytic gene expression (Milho et al., 2009).
Therefore, to explore further the establishment of MuHV-4
latency in bank voles, we infected bank voles or mice

intranasally with 104 p.f.u. wild-type MuHV-4 (strain
MHV-68). Consistent with the bioluminescence imaging
results, lytic replication, as measured by plaque assay, was
greatly reduced in bank voles compared with mice (Fig. 4).
At day 7 p.i., infectious virus was recovered only sporad-
ically from noses (Fig. 4a) but was recovered from all lungs
(Fig. 4b). However, plaque assay titres were approximately
1000 times lower in bank voles than in mice. Although the
lung virus titres of bank voles were significantly lower than
those of BALB/c mice (P,0.001), they were not signific-
antly lower than those of outbred CD1 mice (P.0.05).

The colonization of SCLNs and spleens by latent virus was
then determined by infectious centre assay. The recovery of
replication-competent virus from SCLNs and spleens of
mice was maximal at 14 days p.i. (Fig. 4c, d), consistent
with published data (Milho et al., 2009). Virus recovery
from the SCLNs and spleens of bank voles was much less
consistent. However, it was possible to observe a peak
latent load in spleens at 14 days p.i., suggesting that latency
amplification occurs in bank voles much as it does in mice.

Lower virus recovery in infection centre assays could have
reflected a lower capacity of MuHV-4 to reactivate pro-
ductively from latently infected bank vole spleen cells

Fig. 2. Luciferase imaging of MuHV-4 infection in Myodes glareolus (g) and BALB/c (h) and CD1 (e) mice. Animals were
infected intranasally (104 p.f.u. in 30 ml) under general anaesthesia with wild-type luciferase+ MuHV-4 strain MHV-68. The
maximum luciferase signal intensities in the nose (a), lungs (b), SCLNs (c) and spleen (d) were monitored in the different animals
(ten per group: five males and five females) over time. Each point shows the signal of one animal. The dashed lines indicate the
lower limits of detectable signal intensity.

MuHV-4 infection of bank voles

http://vir.sgmjournals.org 2555
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explanted onto BHK-21 monolayers. In order to evaluate
latent loads in SCLNs and spleens further, we quantified viral
genomes by real-time PCR. In spleens, the viral DNA loads
of infected bank voles were approximately ten times lower
than those of BALB/c mice (Fig. 5a). However, the difference
was less when compared with CD1 mice. Moreover, viral
DNA was recovered from the spleens of all infected bank
voles, implying that MuHV-4 robustly establishes latency in
this site. The SCLN latent loads were similar between bank
voles and mice (Fig. 5b). Together, these results showed that
MuHV-4 can efficiently establish latency in bank voles,
despite lower levels of replication than in mice.

Tissue histology and immunohistochemistry

Dramatic peribronchiolar, perivascular and interstitial
lymphocytic infiltrates were observed in mouse lungs at
day 7 p.i. (Fig. 6a). These lesions were associated with virus
replication as identified by immunohistochemical staining
for viral antigens (Fig. 6a). A very similar interstitial
pneumonia occurred in MuHV-4-infected bank voles.
Viral antigens were detectable, but with a much more
limited distribution than observed in mice. This was
consistent with the limited luciferase expression and low
virus titres of infected bank voles. Therefore, infection of
bank vole lungs appeared to be qualitatively similar to that
of mice, but quantitatively less.

At 14 days p.i., MuHV-4-infected mice show marked
splenomegaly and lymphadenopathy (Nash et al., 2001).
The same was observed here. Myodes spleens are naturally
much smaller than those of mice, but overall similar
changes could be observed. Histological examination of
mouse SCLNs at day 21 p.i. showed enlargement with
increased numbers of germinal centres [Fig. 6b(ii, iv)].

Although bank vole SCLNs were luciferase-negative and
yielded few observable infectious centres, viral antigens
were more readily detectable than in mice [Fig. 6b(xii);
18.0±9.8 positive cells per field in Myodes vs 3.8±1.6 and
3.2±1.2 positive cells per field in BALB/c and CD1 mice,
respectively; P,0.05 by one-way ANOVA and Bonferroni’s
multiple comparison test].

Antibody response analysis

Lower viral loads in bank voles might be expected to
induce weaker antibody responses. Sera taken at various
times p.i. were analysed by a plaque reduction assay to
determine the titres of neutralizing antibodies (Fig. 7). As
viral neutralization assays can be influenced by the cell
types on which they are performed, we repeated the experi-
ment on three cell types from different origins: BHK-21
cells, derived from hamsters, and mouse NAMRU mam-
mary gland (NMuMG) cells and 3T3 cells representing
epithelial and fibroblastic murine cells, respectively. In each
cell type, MuHV-4-specific neutralizing titres were low at
day 7 p.i. in all animals, but increased dramatically by
day 14. For some time points, the titres measured in bank
voles were significantly lower than in mice (Fig. 7a–c).

MuHV-4 is not transmitted between mice or voles
in captivity

Finally, we evaluated the ability of MuHV-4 to undergo
transmission between female mice or voles maintained in
captivity. In each group, three 6–8-week-old females were
inoculated intranasally (104 p.f.u. in 30 ml). At 2 days p.i.,
three naı̈ve females were placed in the same cage as the
inoculated animals. Luciferase signals were monitored once
a week (data not shown) and sera were taken at various

Fig. 3. Luciferase signals from isolated organs after intranasal MuHV-4 infection. Mice equivalent to those in Fig. 2 were dissected
and their organs imaged ex vivo. The images are representative of data from at least five mice and show photographs overlaid with
luciferase signals. The scale bar [photons (p) s”1 cm”2 steradian (sr)”1] shows the colour scheme for signal intensity.

S. François and others
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times p.i. and analysed by a plaque reduction assay to
determine the titres of neutralizing antibodies (Fig. 8a).
Although all infected animals showed luciferase signals
characteristic of the MuHV-4 in vivo cycle and developed
neutralizing antibodies, none of the contact animals pres-
ented any luciferase signal or neutralizing antibody. Finally,
all the animals were sacrificed at day 28 and latent virus
loads in spleens were quantified by real-time PCR (Fig. 8b).
Again, viral DNA was only recovered from infected
individuals and not from any of the contact individuals.

DISCUSSION

Co-speciation has evidently been the prominent mode of
evolution in the order Herpesvirales (Davison, 2002;

McGeoch, 2001; McGeoch et al., 2000, 2006). In nature,
most herpesviruses are effectively closely associated with a
single host species. They have evolved over long periods of
time with their host and are extremely well-adapted to
them. This view is supported not only by phylogenetic
studies, but also by the modest pathogenicity of herpes-
viruses in their natural settings (Davison, 2002). In con-
trast, herpesvirus infections resulting from trans-species
transmission are generally associated with severe diseases
(Dewals et al., 2006; Fickenscher & Fleckenstein, 2001; Hart
et al., 2007). We have been studying MuHV-4 in mice. The
power of MuHV-4 to harness mouse genetic and immuno-
logical tools makes it an obvious choice for initial analysis.
Indeed, we recently described several immune-evasion
mechanisms that could explain why the antibody response
to natural infection does not prevent its transmission (Gillet

Fig. 4. Classical analysis of MuHV-4 strain MHV-68 infection in Myodes glareolus (g) and BALB/c (h) and CD1 (e) mice. Ten
animals (five males and five females) were infected intranasally (104 p.f.u. in 30 ml) under general anaesthesia with wild-type
MuHV-4 strain MHV-68. Each horizontal line shows the mean for each group of ten (including negatives) and each point shows
the signal for one entire organ. (a) At 7, 14 and 21 days p.i., the infectious virus titre in noses was determined by plaque assay.
The titres at day 7 p.i. in Myodes glareolus noses were reduced significantly relative to those in BALB/c mice (P,0.001 by two-
way ANOVA and Bonferroni post-test), but not relative to those in CD1 mice (P.0.05). (b) At 7, 14 and 21 days p.i., the
infectious virus titre in lungs was determined by plaque assay. The titres in Myodes glareolus lungs were reduced significantly at
day 7 p.i. relative to those in BALB/c mice (P,0.001), but not relative to those in CD1 mice (P.0.05). (c) Superficial cervical
lymph nodes were removed at the indicated times and assayed individually for reactivatable MHV-68 by infectious centre assay.
The titres in Myodes glareolus SCLNs were only reduced significantly at day 14 relative to those in CD1 mice (P,0.001).
(d) Spleens from the same animals were analysed individually by infectious centre assay. The titres in Myodes glareolus spleens
were reduced significantly at day 14 relative to those in BALB/c and CD1 mice (P,0.05 and P,0.001, respectively), but not at
days 7 and 21.
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& Stevenson, 2007; Gillet et al., 2007a, 2008a, b). However,
no transmission model has yet been defined in mice for
MuHV-4. Thus, so far it has proved difficult to test the
significance of viral antibody evasion and strategies of
vaccination in the setting where they are likely to be most
important.

All viruses must be selected primarily for efficient
transmission. Failure of experimental transmission in the
mouse could be due to several reasons, among which is the
fact that the house mouse (Mus musculus) may not be a
natural host for MuHV-4. Although there are serological
indications that MuHV-4 (or a close relative) naturally
infects house mice (Mistrikova et al., 2000), the virus has
never been isolated from this species. We therefore do not
have any idea whether it is a relevant model. Comparisons
of MuHV-4 infection in mice and natural hosts could
provide answers to that question.

Recently, two gammaherpesvirus infection models were
described in wood mouse (A. sylvaticus) (Hughes et al.,
2010a, b). In the first study, the authors characterized a
novel wood mouse virus related to MuHV-4 (Hughes et al.,
2010b). However, wood mouse herpesvirus and MuHV-4
share only 85 % nucleotide sequence identity and therefore
cannot be seen as strains of the same species. Although
wood mouse herpesvirus seems to be a very interesting
model, it will be very difficult to transpose all of the
knowledge accumulated about MuHV-4 infection to this
new model. In a second study, Hughes et al. (2010a)
described MuHV-4 infection in the wood mouse. Based on
PCR results, Blasdell et al. (2003) proposed MHV-68 as a
wood mouse virus (Blasdell et al., 2003). However, they did
not provide any sequence analysis. Moreover, subsequent
data from the same group strongly suggested that they were
amplifying a related virus rather than MHV-68 (Ehlers
et al., 2008). This was reinforced by their recent paper
describing wood mouse herpesvirus (Hughes et al., 2010b).
Therefore, although their characterization of wood mouse
infection by MuHV-4 is interesting, there is major evidence
suggesting that wood mice cannot be considered a natural
host of MHV-68, only of the wood mouse virus. As MHV-
68 has been isolated from bank voles (Blaskovic et al.,
1980), analysis of the MuHV-4 in vivo cycle in this species
was therefore needed.

Intranasal virus inoculation led to productive replication in
bank vole lungs, as is observed in mice; however the extent
of lytic replication was approximately 1000-fold lower in
bank voles than in mice. This observation could be related
to the fact that the nose – but not the lung – is the most
likely point of normal host entry for MuHV-4 (Milho et al.,
2009). Indeed, intranasal inoculation of mice without
anaesthesia gave luciferase expression in just the nose and
not in the lung, with a normal latent colonization of
draining lymph nodes. In this study, despite lower
replication levels in the lung, we observed similar latent
loads in voles and mice (Fig. 5). MuHV-4 host colonization
is relatively independent of the extent of primary lytic
infection (Coleman et al., 2003; Stevenson et al., 1999). It
depends much more on latency-associated lymphoproli-
feration (May et al., 2004). As gammaherpesvirus epi-
demiology indicates that transmission correlates with the
latent load, our results suggest that gammaherpesviruses
may have evolved to infect their hosts without extensive
lytic spread, which could provide a powerful immune
stimulus. Besides a lower extent of lytic replication, Hughes
et al. (2010a) reported focal granulomatous infiltrations in
Apodemus lungs, rather than diffuse lymphocytic intersti-
tial pneumonitis as observed in mice. Our experiments in
Myodes, however, revealed lung lesions comparable to
those observed in mice (Fig. 6a). Although lytic replication
was limited in Myodes lungs, infection was accompanied by
a characteristic diffuse interstitial pneumonitis. In the
future, it would be interesting to see whether similar
pathological changes are observed in mice after intranasal
inoculation without anaesthesia. In comparison with

Fig. 5. Latent loads in spleens and SCLNs of Myodes glareolus

(filled bars) and BALB/c (empty bars) and CD1 (grey-shaded bars)
mice. The same samples as in Fig. 4(c, d) were analysed for viral
genomes by real-time PCR of DNA from spleens or SCLNs. Each
bar shows the mean viral genome copy number per host
genome±SEM for each group of ten. The dashed lines show the
lower limits of assay sensitivity. (a) At day 7, viral genome loads in
Myodes glareolus spleens were not significantly different from
those measured in mice (two-way ANOVA and Bonferroni post-
test). However, they were reduced significantly at days 14 and 21
relative to BALB/c but not CD1 mice (P,0.01 and P,0.001,
respectively). (b) Viral genome loads in Myodes glareolus SCLNs
were not significantly different from those measured in mice (two-
way ANOVA and Bonferroni post-test).
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laboratory mice, the spleens of infected bank voles showed
reduced splenomegaly. However, long-term latency was
maintained similarly in voles and mice, suggesting that

splenomegaly is not required for long-term latency. Finally,
an intriguing observation was that, although bank vole
SCLNs were luciferase-negative and yielded few observable

Fig. 6. Tissue histology and immunohistochemistry. (a) At 7 days after infection with wild-type MuHV-4 strain MHV-68, the lungs of
Myodes glareolus and BALB/c and CD1 mice were removed and fixed in formaldehyde before haematoxylin/eosin staining. In the three
species, lung infection evoked interstital pneumonia with massive cellular infiltrates and oedema (i–vi). Samples from the same organs
were then processed for immunohistochemistry and stained with anti-MHV-68 rabbit polyserum (vii–xii). The results confirmed that
viral pulmonary replication was much lower in Myodes glareolus than in BALB/c and CD1 mice. The arrow indicates focal MuHV-4
antigen detection. The images are representative of data from at least five animals. (b) At 21 days after infection with wild-type MuHV-4
strain MHV-68, SCLNs of Myodes glareolus and BALB/c and CD1 mice were removed and fixed in formaldehyde before
haematoxylin/eosin staining (i–vi). An increased number of germinal centres was observed mainly in BALB/c and CD1 mice. Samples
from the same organs were then processed for immunohistochemistry and stained with anti-MHV-68 rabbit polyserum (vii–xii). The
arrows indicate representative focal MuHV-4 antigen detection. The images are representative of data from at least five animals.
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infectious centres, viral antigens were more readily
detectable than in mice. Several hypotheses can explain
this observation, such as differences in tropism, differences

in spreading and differences of antigenicity of some viral
proteins. The significance of this phenomenon therefore
remains unclear and will require further experiments in the
future to be understood.

The main features of MuHV-4 infection in Myodes
glareolus are very similar to those observed in A. sylvaticus.
However, unlike what we found in Myodes, Hughes et al.
(2010a) described titres of neutralizing antibody to MuHV-
4 that were significantly higher in wood mice than in
BALB/c mice. They related this observation to the
histological changes that they found and that we did not
observe in Myodes glareolus. Whilst this is possible, another
explanation could be that their results mainly reflected
poor neutralizing antibody titres in BALB/c mice, although
numerous studies have investigated MuHV-4 neutraliza-
tion in this model. This difference could be due to the cell
type they used to perform their experiments, as every
laboratory 3T3 cell line is potentially a bit different. For
example, the mouse cells that they used could have
provided Fc receptors that could have reduced BALB/c
serum neutralizing activity (Rosa et al., 2007). Other effects
of wood mouse sera on 3T3 cells are also possible. We
therefore performed our plaque reduction assays on three
cell types from mouse and hamster origins. In each cell
type, we observed neutralizing antibody titres in Myodes
that were similar overall to those observed in mice, even if
they tended to be lower at some time points. Further
comparative studies on both Myodes and Apodemus sera in
parallel are therefore needed to assess the differences
between MuHV-4 neutralizing antibody responses in
Myodes glareolus and A. sylvaticus.

The tendency towards lower antibody titres in Myodes
glareolus suggests that transmission could be easier in bank
voles than in mice. We therefore created epidemiological
situations by mixing MuHV-4-infected and naı̈ve animals.
We monitored possible transmission for 1 month by
serology, in vivo bioluminescence and genome quantifica-
tion in spleens. However, it was impossible to establish
experimental transmission in populations of either mice or
voles. Several hypotheses could explain this lack of trans-
mission. Firstly, these results could reflect the fact that
gammaherpesvirus transmission is a rare event. However,
the prevalence of these viruses in natural populations
suggests the opposite. Secondly, luciferase expression could
prevent virus transmission by altering the long-term
behaviour of the virus, as recently shown by a MuHV-4
strain expressing the non-structural protein NS3 of hepa-
titis C virus under the control of the murine cytomegalo-
virus promoter (MHV-68-NS3; El-Gogo et al., 2008). To
avoid this problem, luciferase was placed under the control
of the MuHV-4 M3 promoter and therefore was only
expressed in lytically infected cells. In contrast to MHV-68-
NS3, no decreased viral latent load was observed for this
strain in comparison with the wild-type strain (Milho et al.,
2009). However, further studies with the wild-type MuHV-
4 strain will be needed to determine whether luciferase
expression during lytic replication could prevent virus

Fig. 7. Kinetics of the virus-specific neutralizing humoral response
following infection with MuHV-4. Five females per group were
infected intranasally (104 p.f.u. in 30 ml) under general anaesthesia
with wild-type MuHV-4 strain MHV-68 and blood samples were
taken at the indicated times p.i. The neutralizing antibody titre was
determined by plaque inhibition on BHK-21 (a), 3T3 (b) or
NMuMG (c) cells (see Methods). All measurements were made
relative to a standard pool of immune sera and the reciprocal of
the dilution that resulted in a .50 % reduction in the number of
MuHV-4 plaques was plotted. Empty bars, BALB/c; grey-shaded
bars, CD1; filled bars, Myodes glareolus. Each bar shows
the mean±SEM for each group of five. Asterisks indicate the
values for each day that are significantly different from the Myodes

values: *P,0.05, ***P,0.001 by two-way ANOVA and Bonferroni
post-test.
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transmission in Myodes glareolus populations. Thirdly,
failure of experimental transmission could be because the
transmission conditions that we used were not appropriate.

MuHV-4 and its close relatives are, unusually, found in a
wide variety of hosts (mouse, shrew and bank vole). We are
used to thinking of herpesviruses as being highly host-
restricted (McGeoch et al., 2006). However, recent phylo-
genetic analysis has shown that for some gammaherpesvirus
species, including MuHV-4, distant interspecies transfer has
been an important part of their evolutionary history (Ehlers
et al., 2008). We can assume that there may be more
horizontal transmission between small rodents than
between large mammals, simply because more species share
overlapping ecological niches. This diversity of hosts could
explain why MuHV-4 genomes have been accumulating
sequence changes atypically fast compared with other
members of the Gammaherpesvirinae (McGeoch, 2001;
McGeoch et al., 2005). Furthermore, nose infection has
raised the possibility of transmission through scent marking.
This behaviour is distorted in caged mice. Therefore, we
need to test MuHV-4 transmission between Mus musculus
in a more physiological context than conventional animal
caging. Another way would be to test MuHV-4 transmission

in another described host species. However, it is unclear
whether the infections observed in field studies are always
productive. MuHV-4 (or a related virus) has been isolated
repeatedly from yellow-necked mice (A. flavicollis), so these
could be the natural host. In the future, testing whether they
transmit in captivity would be an interesting point.

In conclusion, MuHV-4 infection of bank voles follows the
same route as in mice, but the virus replicates to a lesser
degree. These differences in the extent of lytic replication
could just mean that strain MHV-68 is better adapted to
replication in mice. An MHV-68 isolate has actually been
obtained from successive intracranial passages in newborn
mice (Blaskovic et al., 1980; Nash et al., 2001). By contrast,
limited lytic replication with normal long-term latent loads
could also represent better adaptation of the virus to its
host, as is also observed for wood mouse herpesvirus in the
wood mouse (Hughes et al., 2010b). In the future, we hope
to be able to choose between these hypotheses in light of
virus transmission. Whilst MuHV-4 infection in yellow-
necked mice – another species known to be naturally
infected – may yet yield surprises, it appears so far that Mus
musculus represents a suitable host for studying gamma-
herpesvirus pathogenesis with MuHV-4.

Fig. 8. Transmissibility of MuHV-4 in Myodes glareolus and BALB/c and CD1 mice. Three females per group were infected
intranasally (104 p.f.u. in 30 ml) under general anaesthesia with wild-type MuHV-4 strain MHV-68. At 48 h p.i., three naı̈ve
females (contact) were placed in the same cage as the inoculated animals. (a) Blood samples were taken at the indicated times
p.i. The neutralizing antibody titres were determined by plaque inhibition on BHK-21, 3T3 or NMuMG cells (see Methods). All
measurements were made relative to a standard pool of immune sera and the reciprocal of the dilution that resulted in a .50 %
reduction in the number of MuHV-4 plaques was plotted. Empty bars, contact animals; filled bars, infected animals. Each bar
shows the mean±SEM for each group of three. (b) The animals were sacrificed at day 28 p.i. and their spleens were analysed for
viral genomes by real-time PCR. Each bar shows the mean viral genome copy number per host genome±SEM for each group of
three.
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METHODS

Animals. Female and male BALB/c and CD1 mice were purchased
from Charles River Laboratories. We used adult female and male bank

voles from generation 2 of a colony established from voles maintained
in a large experimental colony in Poland (Sadowska et al., 2008).
Their offspring (generation 1) were weaned at day 21 and main-

tained individually in standard polypropylene mouse cages (266
20616 cm). Voles from generation 1 were paired at the age of 4–

6 months to produce generation 2 (some individuals in generation 2
were cousins or paternal half-siblings). All the animals were housed in
the Department of Infectious Diseases, University of Liège. The

animals were infected with MuHV-4 at 6–12 weeks old. Intranasal
infections with anaesthesia were in 30 ml aliquots. For luciferase

imaging, animals were anaesthetized with isoflurane, injected
intraperitoneally with D-luciferin (150 mg kg21), then scanned with
an IVIS Spectrum (Caliper Life Sciences). Animals were routinely

imaged after 10 min. For quantitative comparisons, we used Living
Image software (Caliper Life Sciences) to obtain either the maximum

radiance [photons (p) s21 cm22 per steradian (sr)] or total flux (p s21)
over each region of interest. All experiments conformed to the rules of
the local animal ethics committee of the University of Liège.

Cells and virus. BHK-21, NMuMG and 3T3 cells were propagated in

Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen), supple-
mented with 2 mM glutamine, 100 U penicillin ml21, 100 mg
streptomycin ml21 and 10 % FCS. We used the wild-type MHV-68

strain of MuHV-4 (Blaskovic et al., 1980). The MuHV-4 strain
expressing luciferase under the control of the M3 promoter has been

described previously (Milho et al., 2009).

Viral infectivity assays. Virus stocks were titrated by plaque assay

on BHK-21 cells (Gillet et al., 2007b). Cell monolayers were incubated
with virus (2 h, 37 uC), overlaid with 0.3 % carboxymethylcellulose,
and 4 days later were fixed and stained for plaque counting.

Infectious virus in lungs was measured by homogenizing the lungs
in 6 ml complete medium prior to plaque assay. To determine nasal

titres, we removed a block of tissue bound (i.e. not including)
anteriorly by the cartilaginous tip of the nose, posteriorly by the

orbits, laterally by the zygomatic arches, ventrally by the palate and
dorsally by the nasal bones. This region contained all the luciferase
signal measurable by ex vivo CCD camera scanning. Bone fragments

were discarded after homogenization in 3 ml complete medium and
the lysate was plaque assayed. Latent virus in ex vivo tissues was

measured by infectious centre assay (Gillet et al., 2007b): spleen or
SCLN suspensions were co-cultured with BHK-21 cells, fixed and
stained for plaque counting after 5 days. Pre-formed infectious virus

titres in lymphoid tissue, as measured by plaque assay of freeze–
thawed cells, were always ,1 % of infectious centre assay titres, so the

latter essentially measured reactivatable latent virus.

Viral genome quantification. Viral genome loads were measured by

real-time PCR (Gaspar et al., 2008). DNA from organs (100 ng) was
used to amplify MuHV-4 genomic co-ordinates 4166–4252 (iCycler;
Bio-Rad) (gene M2: forward primer 59-GTCAGTCGAGCCAG-

AGTCCAACA-39, reverse primer 59-ATCTATGAAACTGCTAAC-
AGTGAAC-39). The PCR products were quantified by hybridization

with a TaqMan probe (genomic co-ordinates 4218–4189, 59-6-FAM-
TCCAGCCAATCTCTACGAGGTCCTTAATGA-BHQ1-39) and con-
verted to genome copies by comparison with a standard curve of

cloned plasmid template serially diluted in control spleen DNA and
amplified in parallel. Cellular DNA was quantified in parallel by

amplifying part of the interstitial retinoid binding protein (IRBP)
gene (forward primer 59-ATCCCTATGTCATCTCCTACYTG-39,

reverse primer 59-CCRCTGCCTTCCCATGTYTG-39). The PCR
products were quantified with SYBR Green (Invitrogen) and the
copy number was calculated by comparison with standard curves of

cloned IRBP templates from each species amplified in parallel.

Amplified products were distinguished from paired primers by

melting curve analysis, and the correct sizes of the amplified products

were confirmed by electrophoresis and staining with ethidium

bromide.

Lung histology and immunohistochemistry. Portions of lungs and

SCLNs were fixed in buffered formol saline, processed routinely to

5 mm paraffin wax-embedded sections, stained with haematoxylin

and eosin, and examined by light microscopy. Immunohistochemistry

was performed using an EnVision Detection System (Dako) with anti-

MHV-68 rabbit hyperimmune serum (Sunil-Chandra et al., 1992) as

the primary antibody.

Measuring neutralizing antibody. Duplicate twofold serum dilu-

tions, starting from an initial concentration of 1 : 10 in DMEM

containing 10 % FCS, were incubated with 40 p.f.u. MHV-68 at 37 uC
for 1 h in 96-well plates. Freshly trypsinized cells (26104) were added

to each well and allowed to adhere for 2 h. The cells were then

overlaid with 0.3 % carboxymethylcellulose, and 4 days later fixed and

stained for plaque counting. A standard immune serum was included

in each experiment to ensure uniformity of results. The neutralization

titre was defined as the highest serum dilution giving a .50 %

reduction in viral plaques. Naı̈ve mouse and Myodes sera had no effect

on plaque formation.
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Recherche dans l’Industrie et dans l’Agriculture’. S. V. and L. G. are

Research Fellow and Research Associate of the ‘Fonds de la Recherche

Scientifique – Fonds National Belge de la Recherche Scientifique’

(FRS-FNRS), respectively. P. G. S. is a Wellcome Trust Senior Clinical

Fellow (GR076956MA). This work was supported by the following

grants: starting grant of the University of Liège (D-09/11) and
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Supplementary Fig. S1. IVIS spectrum sensitivity in Myodes glareolus. (a) MuHV-4-infected cells 

(5×105) (dot 1) and serial threefold dilutions (dots 2–6) were injected subcutaneously into Myodes 

glareolus and BALB/c and CD1 mice before D-luciferin injection and imaging. All points could be 

detected in the different species used in this study. (b) The maximum luciferase signal intensities for 

each dot were monitored and plotted on a graph. These were compared with signals measured in vitro 

(BHK-21 cells). Linear regression curves were calculated for each condition.  
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Preamble 

 

As previously mentioned, herpesviruses establish lifelong latency within their host. In the 

particular case of gammaherpesviruses such as EBV or KSHV, temporary reactivation episodes with 

low levels of infectious virions produced are observed. This phenomenon of re-excretion is an 

epidemiological necessity for these latent viruses, ensuring their spread amongst host populations. 

Understanding and knowledge of this re-excretion is therefore crucial in order to consider the 

containment of the epidemiological cycle of a virus through vaccination. 

For EBV, re-excretion occurs principally in the saliva and transmission often occurs by direct 

contacts with the saliva of an infected host undergoing a reactivation phase. Moreover, several studies 

demonstrated that EBV can be transitorily detected in the cervix of infected women. Several 

epidemiological studies have also shown a relationship between the age at the onset of sexual activity 

and the age of infection by EBV.  

KSHV is clearly associated with a sexually transmitted disease as the majority of the 

associated pathologies are described in patients infected by HIV. The literature describes, as for EBV, 

re-excretion in the saliva, but also the presence of the virus in the genital tract of men and women. 

For MuHV-4, the literature does not describe, as of yet, any observation of viral re-excretion. 

However, thanks to in vivo imaging, we have detected MHV-68 infectious virus in the genital area of 

female mice infected intranasally by MHV-68 and this, after the establishment of latency. Moreover 

the implication of sexual steroids in the observed phenomenon of genital re-excretion was 

demonstrated in vivo. 

The study presented in this section is displayed as an article currently in preparation, and 

consists of the description of the phenomenon of MuHV-4 re-excretion as it is observed in laboratory 

mice. We also present the in-depth analysis of the consequences of this observation concerning the 

potential mechanisms of transmission. Lastly, we demonstrate the existence of sexual transmission of 

the virus from re-excreting female mice to naïve males. 
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Abstract 

 

Transmission is a matter of life or death for pathogen lineages and can therefore be considered 

as the main motor of their evolution. Gammaherpesviruses are archetypal pathogenic persistent viruses 

which have evolved to be transmitted in presence of specific immune response. Identifying their mode 

of transmission and their mechanisms of immune evasion is therefore essential to develop prophylactic 

and therapeutic strategies against these infections. As the known human gammaherpesviruses, 

Epstein-Barr virus and Kaposi's Sarcoma-associated Herpesvirus, are host-specific and lack a 

convenient in vivo infection model, related animal gammaherpesviruses, such as Murid herpesvirus 4 

(MuHV-4), are commonly used as general models of gammaherpesvirus infections in vivo. To date, it 

has however never been possible to monitor viral re-excretion or virus transmission of MuHV-4 in 

laboratory mice population. In this study, we have used the MHV-68 strain of MuHV-4 associated 

with global luciferase imaging to investigate potential re-excretion sites of this virus in laboratory 

mice. This allowed us to identify a genital re-excretion site of MuHV-4 following intranasal infection 

and latency establishment in female mice. This re-excretion occurred at the external border of the 

vagina and was dependent on the presence of oestrogens. However, MuHV-4 vaginal re-excretion was 

not associated with vertical transmission to the litter or with horizontal transmission to female mice. In 

contrast, we observed efficient virus transmission to naïve males after sexual contact. In vivo imaging 

allowed us to show that MuHV-4 firstly replicated in penis epithelium and corpus cavernosum before 

spread to draining lymph nodes and spleen. All together, those results revealed the first experimental 

transmission model for MuHV-4 in laboratory mice. In the future, this model could help us to better 

understand the biology of gammaherpesviruses and could also allow the development of strategies that 

could prevent the spread of these viruses in natural populations. 
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Introduction 

Gammaherpesviruses are important pathogens which are both ubiquitous in human and animal 

populations. They establish persistent, productive infections, with virus carriers both making anti-viral 

immune responses that protect against disease and excreting infectious virions. Most 

gammaherpesviruses establish a long-term latent infection of circulating lymphocytes. They drive 

lymphocyte proliferation as part of normal host colonization and consequently they can induce some 

lymphoproliferative disorders.  In humans, Epstein-Barr virus (EBV) and the Kaposi's Sarcoma-

associated Herpesvirus (KSHV) are associated with several human malignancies such as Burkitt's and 

Hodgkin's lymphomas, nasopharyngeal carcinoma, Kaposi's sarcoma and post-transplant 

lymphoproliferative disease (Verma and Robertson 2003; Thorley-Lawson and Gross 2004). Human 

cancers associated with these two viruses are particularly prevalent in Africa where they are linked to 

malaria (Young and Rickinson 2004) and human immunodeficiency virus-1 (HIV-1) infection (Mesri 

et al. 2010). More generally, individuals with inherited or acquired immunodeficiency have an 

increased risk of developing a malignancy caused by one of these two viruses (Cesarman 2011). 

Efficient control of these infections is therefore of major interest, particularly in some epidemiological 

circumstances. 

Experimental studies are difficult to perform directly with human gammaherpesviruses 

because they show limited lytic growth in vitro and have no well-established in vivo infection model. 

However, the identification of a closely related virus, Murid Herpesvirus 4 (MuHV-4), in wild rodents 

offered the possibility of developing a mouse model of gammaherpesvirus pathogenesis (Blaskovic et 

al. 1980). MuHV-4 readily infects laboratory mice (Mus musculus) in which it establishes a chronic 

infection that is harboured for life (Nash et al. 2001; Barton et al. 2011). We have recently confirmed 

that mouse is a valuable model for in vivo studies of MuHV-4 (Francois et al. 2010). 

Experimental MuHV-4 infection of laboratory mice typically employs intranasal virus 

inoculation. When it is performed under general anaesthesia, this leads to a lytic infection of nose and 

of lung alveolar epithelial cells that is controlled within 2 weeks (Sunil-Chandra et al. 1992). It has to 

be noted that, after intranasal infection of non-anaesthetized mice, which seems most likely to mimic 

natural conditions, the nose is the only site of non-lymphoid luciferase expression (Milho et al. 2009). 

Virus meanwhile seeds to lymphoid tissue, mainly draining lymph nodes and spleen (Milho et al. 

2009), and drives the proliferation of latently infected B cells. This peaks at 2 weeks post-infection 

(p.i.) and is controlled by 4 weeks. A predominantly latent infection of memory B cells then persists 

(Flano et al. 2002). Although differences exist, the other inoculation routes also lead to B-cell 
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infection, and latently infected B cells can transport MuHV-4 all over the organism. After latency 

establishment, B cells, along with macrophages and dendritic cells (DCs), harbour latent MuHV-4 

infection (Barton et al. 2011).  

Although MuHV-4 has been studied for more than 30 years (Blaskovic et al. 1980), attempts 

to demonstrate horizontal transmission in laboratory mice have been almost entirely unsuccessful, 

leaving unresolved how MuHV-4 is spread in wild rodent hosts (Nash et al. 2001; Barton et al. 2011). 

Different hypotheses can be mounted to explain these poor results. Firstly, conventional animal caging 

could not allow physiological behaviours observed in the wild such as scent-marking or male fighting. 

Secondly, although the MuHV-4 life cycle in mice following experimental infection is considered as 

well-known, unexplored inoculation routes could lead to important differences.  

Methods available to follow viral infections are constantly evolving, becoming more sensitive 

and efficient. Recently, a bioluminescence imaging technique has been developed to measure the 

activity of luciferase reporters in living mice noninvasively and repetitively (Contag et al. 1998). This 

technique has been successfully applied to MuHV-4 (Hwang et al. 2008; Milho et al. 2009; Francois 

et al. 2010). In this study, we pursued this work. This allowed us to detect infectious virus in the 

genital tract of female mice after the time of latency establishment. This presence of infectious virus in 

the genital tract of latently infected females was transient and under the dependance of sexual steroid 

hormones. Strikingly, presence of infectious virus in female genital tract allowed us to observe sexual 

transmission of MuHV-4 to naïve males.  
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Material and methods 

Ethics Statement. The experiments, maintenance and care of mice complied with the 

guidelines of the European Convention for the Protection of Vertebrate Animals used for 

Experimental and other Scientific Purposes (CETS n° 123). The protocol was approved by the 

Committee on the Ethics of Animal Experiments of the University of Liège, Belgium (Permit Number: 

1051). All efforts were made to minimize suffering. 

Animals. Females and males BALB/c mice were purchased from Charles River Laboratories. 

All the animals were housed in the University of Liège, Department of infectious diseases. The 

animals were infected with MuHV-4 when 6–12 weeks old. Intranasal infections with anaesthesia 

were in 30 µl aliquots. For luciferase imaging, animals were anaesthetized with isoflurane, injected 

intraperitoneally with luciferin (150 mg/kg), then scanned with an IVIS Spectrum (Caliper Life 

Sciences). Animals were routinely imaged after 10 min. For quantitative comparisons, we used Living 

Image software (Caliper Life Sciences) to obtain the maximum radiance (photons per s per cm2 per 

steradian, i.e. photons s-1 cm-2 sr-1) over each region of interest.  

Cells and virus. We used a MuHV-4 strain expressing luciferase under control of the M3 

promoter that was described previously (Milho et al. 2009). Virus was propagated on BHK-21cells 

cultured in Dulbecco’s modified Eagle’s medium (Invitrogen) and supplemented with 2 mM 

glutamine, 100 U penicillin ml-1, 100 mg streptomycin ml-1 and 10% fetal calf serum. Virions were 

concentrated as described previously (Gillet et al. 2007b). 

Viral infectivity assays. Virus stocks were titrated by plaque assay on BHK-21 cells (Gillet et 

al. 2007a). Cell monolayers were incubated with virus (2 h, 37 °C), overlaid with 0.3% 

carboxymethylcellulose (CMC, medium viscosity, Sigma), and 4 days later fixed and stained for 

plaque counting (Gillet and Stevenson 2007). Infectious virus in organs was measured by 

homogenizing them after freezing (-80°C) in 6 ml complete medium prior to plaque assay.  

Virus detection by infectious centre assay. Virus detection in genital organs cell suspension 

was assayed by infectious centre assay (ICA) as follows. 5.105 BHK-21 cells grown in 6 well cluster 

dishes (Becton Dickinson) were co-cultured for 5 days at 37°C with ex vivo cell suspension in MEM 

containing 10% FCS, 2% PS, 0.3% CMC and 5.10−5M of β-mercaptoethanol (Merck). Cells were then 

fixed and stained for plaque counting. 
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   Viral genome quantification. Viral genome loads were measured by real-time PCR (Francois 

et al. 2010). DNA from organs (100 ng) was used to amplify MuHV-4 genomic co-ordinates 4166–

4252 (iCycler, Biorad) (gene M2, forward primer 5’- GTCAGTCGAGCCAGAGTCCAACA-3’, 

reverse primer 5’-ATCTATGAAACTGCTAACAGTGAAC-3’). The PCR products were quantified 

by hybridization with a TaqMan probe (genomic co-ordinates 4218–4189, 5’ 6-FAM-

TCCAGCCAATCTCTACGAGGTCCTTAATGA-BHQ1 3’) and converted to genome copies by 

comparison with a standard curve of cloned plasmid template serially diluted in control spleen DNA 

and amplified in parallel. Cellular DNA was quantified in parallel by amplifying part of the interstitial 

retinoid binding protein (IRBP) gene (forward primer 5’-ATCCCTATGTCATCTCCTACYTG-3’, 

reverse primer 5’-CCRCTGCCTTCCCATGTYTG-3’). The PCR products were quantified with Sybr 

green (Invitrogen), the copy number was calculated by comparison with standard curves of cloned 

mouse IRBP template amplified in parallel. Amplified products were distinguished from paired 

primers by melting curve analysis and the correct sizes of the amplified products confirmed by 

electrophoresis and staining with ethidium bromide. 

   Detection of infectious virus in vaginal fluids. Vaginal lavage fluids were obtained by gentle 

flushing of the mouse vagina with 100μl of sterile PBS. Lavage fluids were then centrifuged and the 

supernatant was titrated as described above. 

            Ovariectomy and hormonal supplementation. Ovariectomy were performed at 3 weeks of 

age under isoflurane anaesthesia. Hormonal treatment was started 3 weeks after ovariectomy. 60 days 

slow-release pellets (Innovative Research of America, Sarasota, FL, USA) containing 0.05 mg 17β-

estradiol (SE-121), or 25 mg progesterone (SP-131) per pellet were implanted subcutaneously, giving 

a release of ~0.8 μg 17β-estradiol or ~400 μg progesterone per 24 hours. Groups of mice were the 

following: 10 non ovariectomized mice, 7 ovariectomized mice and 5 ovariectomized mice 

complemented per hormonal condition. 

In vitro and ex vivo hormonal stimulation. 17-β-estradiol (Sigma) stock solution was 

prepared in DMSO (1 mg/ml). For in vitro stimulation, A20-Syndecan-1 cells (Bennett et al. 2005) 

were persistently infected with a MuHV-4 strain expressing eGFP under an EF1a promoter, between 

the 3' ends of ORFs 57 and 58 (Dr P.G. Stevenson, unpublished data). For ex vivo stimulation, spleen 

of WT MuHV-4 intranasally infected mice were harvested 14 days post-infection, cells were 

dissociated and erythrocytes were lysed by using red blood cells lysis buffer. Cells were cultivated in 

RPMI medium without phenol red, to avoid the presence of steroids, supplemented with 2 mM 

glutamine, 100 U penicillin ml-1, 100 mg streptomycin ml-1, 5*10−5M of β-mercaptoethanol (Merck) 

and 10% Charcoal Stripped Fetal Bovine Serum (CSFBS, Sigma). Stimulation of virus reactivation by 



Chapter 3  Experimental section – Study 2 
 

54 
 

17-β-estradiol was performed as follows. Briefly, 3*105 BHK-21 cells grown in 6 well cluster dishes 

were co-cultured for 5 days at 37°C with 5*103 MuHV-4 infected A20 cells or 5*105 infected spleen 

cells (from 5 mice) in RPMI containing 10% CSFBS, 2% PS, 0.3% CMC, 5.10−5M of β-

mercaptoethanol (Merck) and complemented with increasing doses of 17-β-estradiol. After 5 days, 

cells were fixed and stained for plaque counting. 

Organ histology and immunohistochemistry. Portions of genital organs were fixed in 

buffered formol saline, processed routinely to 5-mm paraffin wax-embedded sections, stained with 

hematoxylin and eosin, and examined by light microscopy. Immunohistochemistry was performed 

using EnVision™ Detection Systems (DAKO) with anti-MuHV-4 rabbit hyperimmune serum against 

MuHV-4 as primary antibody (Francois et al. 2010). 

Quantification of anti-MuHV-4 specific antibodies by ELISA. Nunc Maxisorp ELISA 

plates (Nalgene Nunc) were coated for 18 h at 37°C with 0.1% Triton X-100-disrupted MuHV-4 

virions (2.106 PFU/well), blocked in PBS/ 0.1% Tween-20/ 3% BSA, and incubated with mouse sera 

(diluted 1/200 in PBS/ 0.1% Tween-20/ 3% BSA). Bound antibodies were detected with Alkaline 

Phosphatase conjugated goat anti-mouse Ig polyclonal antibody (Sigma). Washing were performed 

with PBS/ 0.1% Tween-20/ 3% BSA. p-Nitrophenylphosphate (Sigma) was used as substrate and 

absorbance was read at 405nm using a Benchmark ELISA plate reader (Thermo). 
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Results 

 

MuHV-4 reaches female genital tract after intranasal infection. The main advantage of 

whole body imaging of luciferase-expressing MuHV-4 cycle in living mice is the revelation of novel 

sites of viral replication. Therefore, we infected 6 weeks female BALB/c mice intranasally under 

general anaesthesia with 104 PFU of luciferase+ MuHV-4 and tracked infection daily by luciferin 

injection and charge-coupled-device camera scanning. Representative images are shown in Figure 1A. 

As previously described (Hwang et al. 2008; Milho et al. 2009; Francois et al. 2010), we observed 

signals coming from the nose (d4 p.i.), the thoracic region (d7 p.i.), the neck (d14 p.i.) and the left 

abdominal region (d14 p.i.). Based on former descriptions (Hwang et al. 2008; Milho et al. 2009; 

Gaspar et al. 2011), we considered the nose signals to come from the nasal turbinates (Gaspar et al. 

2011); thoracic signals from the lungs; neck signals from the superficial cervical lymph nodes 

(SCLNs); and the abdominal signals from the spleen. As previously described (Hwang et al. 2008; 

Milho et al. 2009; Francois et al. 2010), the nose and lung signals peaked at 5-7 days after infection 

and were undetectable after day 14. On the opposite, signal appeared around day 7 in SCLNs and was 

maximal at day 14, the peak of latency amplification. SCLNs signal then disappeared over the two 

following weeks. Signals appeared in the spleens around day 10 but were more transient and randomly 

observed than in the SCLNs. Anyway, the observation of spleen signal revealed virus dissemination 

over the body, likely through B-cells transport. 

 

Surprisingly, we randomly observed appearance of luciferase signal in the genital region of 

infected female mice (Figure 1A-B). This signal appeared after the initial clearance of acute lytic 

replication in nose and lungs. Moreover, the signal in the genital region was concomitant or appeared 

after disappearance of the SCLNs and spleen signals (Figure 1A-B and Figure S1). To further 

investigate MuHV-4 replication in the female genital region, we followed it over time among different 

mice (Figure 1C). Interestingly, ~80% of the mice displayed luciferase signal in the genital region 

during this period. This signal was transient (no more than 4 consecutive days) and recurrent. To 

confirm the sites of infection and to further investigate the origin of the signal, ex vivo imaging of 

individual organs was performed after euthanasia of luciferase+ MuHV-4 infected mice. This approach 

revealed that the luciferase signal observed in the genital region was coming from small regions of the 

vagina (Figure 2A). Fragments of vagina identified as positive for light emission were dissociated 

from the rest of the organs (Figure 2A) and processed for histological analysis. Immunohistochemical 

staining for viral antigens identified focal sites of MuHV-4 antigen expression in the superior layers of 

the vaginal epithelium (Figure 2B). This was associated with morphological changes of infected cells 
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(Figure 2B, panel iii) and with the presence of leukocytic infiltrate in the lamina propria (Figure 2B, 

panels ii and v). These lesions were not observed every time, likely because of their restricted size. 

 

MuHV-4 presence in vagina is associated with release of infectious virions. In order to 

further investigate this observation, 12 mice were infected intranasally and light emission from the 

genital region was measured 23 days p.i. (Figure 3A). This allowed us to categorize mice into two 

groups: the first in which genital signal was observed was called IVIS+ and the other IVIS-, three 

uninfected mice were used as mock infected controls. Genital tracts of these mice were isolated as 

shown in Figure 2A and light emitting regions of the vagina were isolated. Equivalent regions were 

isolated in mock and IVIS- groups. These different samples were then analyzed by infectious center 

assays, infectious virus titration and viral genome quantification (Figure 3B-D). These experiments 

identified the presence of reactivable virus (Figure 3B) and infectious virions (Figure 3C) only in the 

IVIS+ group. Moreover, there were statistically more copies of MuHV-4 genome in the IVIS+ 

samples than in the IVIS-. Finally, titration of vaginal lavage fluids, collected before euthanasia, 

revealed the presence of infectious virions in half of the IVIS+ samples (Figure 3E). The latter 

experiment was repeated on a higher number of mice between days 21 and 30 post-infection (Figure 

S2). This revealed that excretion of infectious MuHV-4 virions in female genital tracts occurred 

randomly and was limited in terms of number of PFUs. All together, these experiments showed that 

MuHV-4 luciferase signal in female genital tract is associated with the presence of infectious virus in 

the vaginal epithelium and in the vaginal fluids. This could therefore represent a potential portal of 

transmission of this virus. 

 

Oestrogens indirectly influence MuHV-4 excretion in female genital tract. Random and 

recurrent observations of MuHV-4 associated luciferase signal in female genital tract suggest an 

association of this phenomenon with the oestrus cycle. To investigate this possibility, we compared 

occurrence of MuHV-4 associated luciferase signal in genital tract among groups of control and 

ovariectomized female mice between days 14 and 32 post-infection (Figure 4A and S3). This revealed 

that ovariectomy greatly diminished observation of MuHV-4 associated luciferase expression in the 

genital tract (Figure 4A and S3) although the global levels of MuHV-4 latency were not affected by 

the treatment (data not shown). In order to indentify if it was associated with specific hormonal 

deprivation, we implanted ovariectomized mice with slow-release progesterone and/or oestrogen 

pellets (Figure 4A and S3). Oestrogens alone or in combination with progesterone were sufficient to 

restore occurrence of genital luciferase signal to levels similar to the ones observed in the non 

ovariectomized group.  

 

To determine whether oestrogen treatment can trigger MuHV-4 reactivation from latently 

infected cells, we used murine A20 B cells latently infected with MuHV-4 (Figure 4B) or explanted 
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Female mice were infected intranasally (104 PFU) with WT luciferase+ MuHV-4 under general
anaesthesia, and then injected with luciferin and imaged every day. At the time of the first observation of
genital signal, infected females were mated with uninfected males. Mock infected female mice were used
as controls. Effect of MuHV-4 infection on litter size (A), mortality/litter (B) and gestation length (C) was
then monitored. The data presented are the average for 20 (infected) and 11 (mock) pregnancies +/-
standard error of the mean and were analyzed by 1way ANOVA and Bonferroni posttests, no statistically
significant difference was observed. Transmission to the progeny (n≥20 per group) was assessed by
infectious center assays performed on isolated organs taken from newborn or at 3 or 6 weeks after birth
(C) l d i di id ll l i ( 10) i f d i ll (104 ) i h(C). Data are plotted individually. E. Female mice (n=10) were infected intranasally (104 PFU) with WT
luciferase+ MuHV-4 under general anaesthesia, and then injected with luciferin and imaged every day. At
the time of the first observation of genital signal, infected females were co-housed with 3 uninfected
females. Potential MuHV-4 transmission was monitored 45 days later by detection of anti-MuHV-4
specific antibodies. The dashed line indicates the mean value obtained with sera from 3 uninfected mice
taken as controls.
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splenocytes from MuHV-4 infected mice, 14 days p.i. (Figure 4C). These cells were treated with 

increasing amounts of 17β-Estradiol and MuHV-4 reactivation was analyzed by infectious center 

assays. The results obtained did not show that oestrogen stimulation of latently infected cells induces 

MuHV-4 reactivation. The observed effect of oestrogens on occurrence of MuHV-4 associated 

luciferase signal (Figure 4A and S3) is therefore likely indirect. 

 

Genital excretion of MuHV-4 is not associated with vertical transmission to the litter or 

horizontal transmission between female mice. The presence of MuHV-4 replication in latently 

infected females could affect gestation. To investigate this hypothesis, luciferase+ MuHV-4 infected 

female mice were mated with uninfected males at the time of the first observation of genital signal. 

Mock infected female mice were used as controls. Effect of MuHV-4 infection on litter size (Figure 

5A), mortality/litter (Figure 5B) and gestation length (Figure 5C) was then monitored. We did not 

observe any effect of MuHV-4 infection on any of these parameters (Figure 5A-C). Moreover, we also 

did not observe transmission to the progeny either at birth or after 3 or 6 weeks (Figure 5D). Similarly, 

we also did not observe seroconversion (Figure 5E) or detectable levels of MuHV-4 DNA in the 

spleen of co-housed naïve female mice (data not shown). 

 

Genital excretion of MuHV-4 is associated with sexual transmission. To determine 

whether the presence of infectious virus in the vaginal epithelium and in the vaginal fluids can result 

in sexual transmission of MuHV-4, we mated luciferase+ MuHV-4 infected female mice with 

uninfected males at the time of the first observation of genital signal. We then tested transmission to 

males by serology at day 10 post-contact and more than 20 days post-contact. Interestingly, we 

observed seroconversion of 10 individuals among the 30 males that were tested (Figure 6A). As this 

seroconversion was moderate in comparison to the one observed after intranasal infection (Figure 6A), 

presence of MuHV-4 DNA in spleens was tested. At least 9 out of the 10 previously identified males 

displayed detectable levels of MuHV-4 DNA in the spleen (Figure 6B). All together, these results 

therefore show that MuHV-4 can be transmitted from infected female mice to naïve males. 

 

Transmission to males is associated with penis infection. To determine the route of MuHV-

4 transmission to naïve males, we repeated the previous experiment and tracked MuHV-4 infection of 

males daily by luciferin injection and charge-coupled-device camera scanning (Figure 7). We observed 

that light emission appeared in the genital region around 4 days post-contact. This signal peaked 

around 10 days post-contact but was maintained for at least 3 weeks. To confirm the site of infection 

and to further investigate the origin of the signal, ex vivo imaging of individual organs was performed 

after euthanasia of luciferase+ MuHV-4 infected males at different time points. This approach revealed 

that the luciferase signal observed in the genital region was coming from small regions of the penis 

(Figure 8A). Fragments of the penis identified as positive for light emission were dissociated from the 
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Figure 7. Spatial and temporal progression of MuHV-4 infection after sexual transmission to male
mice. Female mice were infected intranasally (104 PFU) with WT luciferase+ MuHV-4 under general
anaesthesia, and then injected with luciferin and imaged every day. At the time of the first observation of
genital signal, infected females were mated with uninfected males. The males were then injected with
luciferin and imaged every day. Images show a representative mouse over time. The day post-contact with
the infected female (e.g., d4 is day 4 post-contact) is shown at the top of each image. Pictures are
representative of at least 15 males from 3 independent experiments.
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rest of the organ (Figure 8A) and processed for histological analysis. Immunohistochemical staining 

for viral antigens identified focal sites of MuHV-4 antigen expression in the superior layers of the 

penis epithelium and of the corpus cavernosum (Figure 8B). Viral antigens were also detected in 

deeper regions of the Corpus cavernosum (Figure 8B, panel iii). Penis infection was associated with 

propagation of the infection to draining lymph nodes. Ex vivo imaging revealed that they were mainly 

lumbar aortic medial iliac lymph nodes (Figure 9). Light emitted by these lymph nodes had already 

been observed during imaging of living animals (Figure 7, days 13 to 17). Finally, colonization of the 

spleen was observed (Figure 7, days 15 to 19) as already showed by viral genome detection (Figure 

6B). All together, these results show that MuHV-4 can be sexually transmitted between laboratory 

mice. 
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Discussion 

 

Transmission in host population is the main motor of viral evolution (Derdeyn et al. 2004; 

Keele and Derdeyn 2009; Alizon et al. 2011). Herpesviruses have co-evolved with their host for 

millions of years and have therefore developed sophisticated mechanisms to persist and transmit in 

presence of protective immune response (Griffin et al. 2010; Lee et al. 2010). This is particularly well 

illustrated by the fact that infection by multiple herpesvirus strains in a single individual is not a rare 

event. Indeed, recent studies on Herpes Simplex viruses (HSV) have found multiple-strains genital 

infection in 15% of healthy adults infected with genital HSV-1 and HSV-2 (Roest et al. 2004; Roest et 

al. 2006). Similarly, multiple strains of human cytomegalovirus (HCMV) are detected in more than 

90% of HCMV-infected women and these can even be congenitally transmitted together to infants 

(Novak et al. 2008; Ross et al. 2011). Understanding how they do this and what countermeasure can 

be taken is therefore of major importance for the development of new prophylactic or therapeutic 

strategies. Until now, most of the immune evasion strategies of gammaherpesviruses have been 

studied in vitro or in animal models (Barton et al. 2011). However, none has been investigated in the 

light of transmission mainly due to the lack of experimental transmission model. 

EBV and KSHV, the two human gammaherpesviruses, are host-specific and cannot be 

experimentally studied in vivo. The identification of a closely related viral species, MuHV-4, in wild 

rodents (Blaskovic et al. 1980) opened therefore new horizons to the study of gammaherpesviruses. 

However, despite several attempts, MuHV-4 transmission had never been observed. In this study, 

using in vivo imaging, we observed that MuHV-4 is genitally reexcreted after latency establishment in 

intranasally infected female mice (Figures 1-3, S1 and S2). This allowed us to observe, for the first 

time, experimental transmission to naive males after sexual contact (Figures 6-9).  

The first question is why genital reexcretion of MuHV-4 has never been documented before. 

Firstly, in comparison with initial investigations, we used a very powerful approach able to identify 

very few infected cells (Costes et al. 2009; Francois et al. 2010). As MuHV-4 genital reexcretion is 

weak and transient, similar reexcretion could have happened in other studies but could have been 

below their detection threshold. Interestingly, the two previous studies using in vivo luciferase imaging 

of MuHV-4 cycle identified potential genital infection. Milho et al. showed that the female genital 

tract is a site of virus replication after intraperitoneal infection (Milho et al. 2009) and one of the mice 

used by Hwang et al. displayed light emission in the genital region (Figure 2A, day 18 p.i. (Hwang et 

al. 2008)). Interestingly, similarly to our observations, this mouse had also been infected intranasally 
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and the signal appeared after latency establishment (Hwang et al. 2008). The latter observation 

strengthens the results presented in our study. Secondly, the frequency of genital signal observation in 

our study (~80% of the infected mice) could reflect particular experimental conditions. For example, 

co-infection with other pathogens could favour MuHV-4 genital excretion as observed for HSV-2 and 

human immunodeficiency virus-1 which enhance reciprocal virus replication (Van de Perre et al. 

2008). However, despite several attempts, we did not manage to identify another specific infection that 

could explain our observations.  

The observation of genital signal in females was transient and recurrent (Figure 1C). 

Moreover, this was dependent on the oestrus cycle as ovariectomy nearly abolished the phenomenon 

and as oestrogens supplementation restored it (Figure 4). However, we did not observe any direct 

effect of oestrogens on latently infected B-cells either in vitro or ex vivo (Figure 4 B and C). Similar 

observations of a role of the oestrus cycle on virus reactivation have been made for HSV-1 (Vicetti 

Miguel et al. 2010). In this case, HSV-1 reactivation through 17β-Estradiol was leukocyte independent 

but depended on oestrogen receptor activation (Vicetti Miguel et al. 2010). Further experiments will 

be required to identify the mechanism involved in MuHV-4 reactivation. The fact that the genital 

signal lasted for at most 3-4 days (Figure 1C) could be linked to the cyclic remodelling of the 

epithelium observed during the oestrus cycle. Indeed, infected cells are located in the superior layers 

of the vaginal epithelium (Figure 2B) and could therefore be removed at each cycle. How MuHV-4 

reaches this location is still unknown. In the future, we could investigate this hypothesis by using cell-

type specific Cre/lox genetic labelling of MuHV-4 to track the route of viral reexcretion in vivo as it 

has recently been done to explore the in vivo entry pathway (Gaspar et al. 2011). 

In contrast to what was reported by Stiglincova et al. (Stiglincova et al. 2011), we did not 

observe premature termination of pregnancy, reduced number of newborns, vertical transmission or 

transmission through milk of MuHV-4 in mice (Figure 5). We have no explanation for this 

discrepancy. However, mother to child transmission of human gammaherpesviruses, both 

transplacental or perinatal, seems also to be very limited (Meyohas et al. 1996; Pica and Volpi 2007). 

On the opposite, sexual transmission has been proposed for both viruses (Crawford et al. 2002; 

Thomas et al. 2006; Pica and Volpi 2007). The observation of MuHV-4 sexual transmission from 

infected females to naive males is therefore particularly interesting in that context. 

In males, initial infection was localized in the superior layers of the penis epithelium and of 

the corpus cavernosum (Figure 8B). Infection then spreads to draining lymph nodes and spleen (Figure 

7 and 9). Again, cell-type specific Cre/lox genetic labelling of MuHV-4 (Gaspar et al. 2011) will be 

helpful to track the route of viral infection after sexual transmission. On the opposite, horizontal 
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transmission of the infection was not observed. Moreover, infectious virions were rarely detected in 

vaginal lavages although MuHV-4 induced luciferase signal was frequent. Therefore, we hypothesize 

that close contacts between genital organs of males and females were necessary to transmit infection. 

Indeed, the penis of the male mice is recovered of spines called filiform papilla. These structures could 

therefore induce abrasion of the vaginal epithelium and promote virus transmission. Interestingly, cells 

that were initially infected on penis were located around these filiform papilla (Figure 8B). Infection 

persisted at this site for at least three weeks (Figure 7). The importance of this observation for MuHV-

4 epidemiology and transmission to females will therefore have to be tested. Interestingly, Telfer et al. 

showed that gammaherpesvirus (identified serologically as MuHV-4, though likely Wood Mouse 

Herpesvirus) infection in wood mice was more prevalent in heaviest males than in any other category 

of animal (Telfer et al. 2007). Finally, it has recently been shown that male circumcision significantly 

reduces the incidence of HSV-2 and HIV-1 infection and the prevalence of HPV infection (Golden and 

Wasserheit 2009; Tobian et al. 2009). Our results suggest that it could also be the same for some 

gammaherpesviruses. 

The identification of a route of transmission for MuHV-4 in mice will allow testing the 

importance of various immune evasion strategies in the context of infection epidemiology. Thus, we 

have shown that the gp150 glycoprotein acts as an immunogenic decoy, distorting the MuHV-4-

specific antibody response to promote Fc receptor-dependent infection and so compromise virion 

neutralization (Gillet et al. 2007b). In the future, it will therefore be interesting to test this hypothesis 

at the scale of a population. Similarly, it will be possible to test prophylactic vaccinal strategies in 

physiological conditions as well as antiviral and therapeutic vaccines, not only used to improve the 

clinical course in individual patients but also to potentially decrease virus shedding and hence 

transmission.  

All together, in this study we identified for the first time a genital reexcretion site of MuHV-4 

after latency establishment in intranasally infected female mice. This has allowed us to observe sexual 

transmission of the virus from infected females to naïve males. These results open new perspectives 

for the study of gammaherpesvirus in particular but also for the study of sexually transmitted 

infections in general. 
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Supplemental figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. In vivo infection by luciferase-expressing MuHV-4. Female mice were infected 

intranasally (104 PFU) with WT luciferase+ MuHV-4 under general anaesthesia, and then injected with 

luciferin and imaged every days. Images show a representative mouse around 2 weeks p.i. The scale 

bar (photons sec-1 cm-2 steradian-1) shows the color scheme for signal intensity.  
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Figure S2 Quantification of infectious MuHV-4 virions in vaginal flushes after intranasal 

infection. Female mice were infected intranasally (104 PFU) with WT luciferase+ MuHV-4 under 

general anaesthesia. Individual vaginal flush samples (at least 10 per time point) were collected 

between day 21 and 30 p.i. and were tested for the presence of infectious virions as described in the 

Material and Methods.  
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Figure S3. Influence of oestrus cycle on genital MuHV-4 reexcretion after intranasal infection. 

Control female mice and ovariectomized mice, implanted or not with slow-realease hormonal pellets 

(progesterone and/or oestrogen), were infected intranasally (104 PFU) with WT luciferase+ MuHV-4 

under general anaesthesia. Individual genital signals were monitored between days 14 and 32 post-

infection. For the reliable comparison of signal intensities, the signal intensities were measured from 

equivalent regions of interest (ROI) after subtraction of individual backgrounds measured daily in the 

right thoracic region. Each point shows one measurement. 5 individual mice per group are shown.  
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Discussion – perspectives 

 

Herpesviruses are archetypal persistent viruses identified in a wide variety of animals, ranging 

from mice to man (Davison et al. 2009). They are able to establish persistent and productive infections 

in immunocompetent hosts, provoking an efficient immune response. Despite this defense of the host, 

infectious viruses are sporadically re-excreted from the infected individual, ensuring viral spread in the 

host population.  

Herpesviruses are classified according to their cellular reservoir for the long-term latent 

infection. Alphaherpesviruses such as VZV and HSV are neurotropic viruses while betaherpesviruses 

and gammaherpesviruses are lymphotropic (Roizman and Pellet 2007). All of the human herpesviruses 

are of great interest in terms of human health. Indeed, alphaherpesviruses mostly cause ulcerative skin 

lesions during both primary infection and reactivation. The acquisition of infection by VZV, HSV-1 or 

HSV-2 during pregnancy is a risk of congenital infection that can lead to severe neurological sequels 

(Brown et al. 1997; Corey and Wald 2009; Smith and Arvin 2009). In the same way, CMV, a 

betaherpesvirus, is the major cause of deafness and neurological disorders in neonates especially when 

the primo-infection is contracted during pregnancy (Dollard et al. 2007; Grosse et al. 2008). Finally 

primo-infection by gammaherpesviruses such as EBV and KSHV is often mild and can even be 

asymptomatic. However, these viruses establish long-term latency in circulating lymphocytes and 

induce lymphoproliferation as part of normal host-colonization. This characteristic predisposes the 

infected host to the development of neoplasic diseases including certain cancers, particularly in high 

risk populations such as immunocompromised individuals (for instance in cases of HIV co-infection, 

grafts,…). Therefore the scientific community has made great efforts for more than 50 years to oppose 

the epidemiological cycle of herpesviruses. However, studying these human viruses is very difficult 

because of their limited in vitro growth and because of the impossibility to study biological properties 

in vivo in humans. Also, even if a given virus grows well in vitro, the observed infectious system is 

never completely similar to the one observed in vivo as herpesviruses require the cooperation of 

different cell types to complete their life cycle. In vitro studies are for that reason only partially 

informative. Consequently, animal models were considered to answer some important questions about 

the biology of herpesviruses. Research soon faced limitations due to the very host-restricted capacity 

of infection or the dramatic difference in the pathology induced by infection in non-natural hosts. 

Indeed, herpesviruses are generally moderately pathogenic in their natural host but cross-species 

infection often leads to severe disease, which is potentially fatal (Fickenscher and Fleckenstein 2001; 

Dewals et al. 2006b; Hart et al. 2007). Much attention has been drawn to research models that could 

provide effective answers about the biology of these viruses in order to consider halting their 
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epidemiological cycle by treatment or vaccination. Consequently some alternative methods were 

developed.  

HSV is frequently studied in a mouse model as this small animal can readily reproduce the 

infection. However, HSV-1 is often studied following ocular inoculation which is proved not to be the 

major route of infection. A vaginal model of infection in mice is used for HSV-2 studies, but the 

mouse mucosa and the remodeling of vaginal tissue is so different in mice compared to that of women 

that this method, although informative, creates a bias in the observations made. The in vivo 

investigation of VZV infection was hampered by a strict restriction for human tissues and so no small 

animal model can recapitulate the human disease. To bypass this, a SCID (Severe Combined 

Immunodeficiency) mouse/human xenograft model was developed and proved to be a valuable 

experimental tool for the studies of VZV infection and pathogenesis in the human skin, the dorsal root 

ganglia and T cells (reviewed in Arvin et al. 2010; Zerboni et al. 2010). In this model, SCID mice are 

used as “incubators” for human tissues and the infection is restricted to xenografts due to the host cell 

restriction of the infection. To date this model is the most sophisticated, developed for the assessment 

of VZV “in vivo” pathogenesis. Human CMV is also very host-restricted, but closely related viruses 

naturally infecting mice (MCMV) (Cheung and Lang 1977), rats (RCMV) (Rabson et al. 1969) and 

guinea pigs (GPCMV) (Patrizi et al. 1967) can easily be studied in their natural hosts in laboratory 

conditions. The most studied amongst them is certainly MCMV because of the large panel of 

molecular tools available for this species. This virus/host homolog model is probably one of the most 

informative ones available and we can expect that the major part of the data obtained with this model 

should be valuable for HCMV as the genome of MCMV is closely related to that of HCMV 

(Rawlinson et al. 1996). Finally, gammaherpesviruses, like betaherpesviruses, are lymphotropic and 

they need several different cells to complete their life-cycle. Therefore, the development of a modified 

mouse model implied the use of a “humanized” mouse from the point of view of the complete immune 

system. This was performed for some studies of EBV (Kuwana et al. 2011; Sato et al. 2011). 

However, the epithelial system, that is to say the portal of entry of the virus, continues to be the one of 

the mouse in such systems. This probably leads to the acquisition of mouse specific proteins at the 

viral surface and consequently, creating non-realistic infections. In addition, a lot of 

gammaherpesviruses infecting a wide range of species were discovered, only rarely infecting 

accessible animal models. For example, BoHV-4, a gammaherpesvirus that naturally infects cows is 

able to infect rabbits, but only when using high quantities of intravenously injected viruses. This 

probably reflects the difficulty of the virus in the infection of the rabbit’s epithelial cells in this trans-

species model of infection. Nevertheless, this virus replicates well in vitro and in vivo, and a BAC 

clone exists. This renders BoHV-4 a useful tool and using it led for example to the elucidation of some 

immunoevasion and entry mechanisms (Machiels et al. 2011a; Machiels et al. 2011b; Lete et al. 

2012). Another useful model is the study of the herpesvirus saimiri in monkeys. Indeed, this model is 
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phylogenetically the closest to humans (Rosenwirth et al. 2011). However, the ethical trend is now to 

limit drastically the use of experimental animals and even more so when considering primates. 

Therefore we can expect that the use of such models will be restricted to the evaluation of data that we 

cannot obtain with small animal models. 

Consequently, the isolation in 1980 of Murid herpesvirus 4 strains in various naturally infected 

rodents (Blaskovic et al. 1980) was of great interest. Although a lot of information was collected using 

MuHV-4 experimental infections of mice, no consensus has been reached concerning the natural 

host(s) of the virus. Indeed, MuHV-4 was isolated in different species such as field voles, wood mice 

and shrews (Blaskovic et al. 1980; Chastel et al. 1994), and field studies conducted in the UK 

determined that the prevalence of the infection was higher in wood mice than in bank voles (Blasdell 

et al. 2003; Telfer et al. 2007). In 2010, Hughes et al. compared the infection of wood mice and 

BALB/c laboratory mice by MuHV-4 (Hughes et al. 2010). They reported several differences 

including a lower replication rate in the lungs of wood mice when compared to laboratory mice and 

focal granulomatous infiltrations rather than the interstitial pneumonia observed in Mus musculus. 

However, the route followed by the infection was the same in the two species and latency was not 

significantly different.  

As no consensus has been reached to define MuHV-4’s natural host(s); we have evaluated the 

quality of another potential in vivo alternative model: the bank vole, which is the species in which the 

virus was isolated. For this purpose we have compared the infection by MuHV-4 of bank voles and of 

mice, the latter being the classical experimental model. The comparative characterization of the 

infection after intranasal inoculation demonstrated that the infection of mice and of bank voles follows 

the same route. The virus first replicates in the nasal mucosa and afterwards, in the lungs, causing 

pneumonia and leukocyte infiltration. However, replication is about 1000-fold less intense in bank 

vole tissues than in those of the mouse. This was demonstrated by different techniques. Following this 

acute phase, the virus establishes successful latency in the superficial cranial lymph nodes and in the 

spleen of the two species. This indicates that the virus follows the same cycle in mice and in bank 

voles. Moreover, MuHV-4 host-colonization is more related to latency-establishment than to viral 

replication, indicating that transmission should be dependent on a latent load (Stevenson et al. 1999b; 

Coleman et al. 2003; May et al. 2004). In parallel to our work, a recently published study was 

dedicated to the comparison of the MuHV-4 infection of bank voles and wood mice, another potential 

natural host (Hughes et al. 2012). The results of this study are very similar to ours except that they 

have compared the latency in lungs which was largely lower in bank voles than in wood mouse or 

laboratory mouse. In their study, the latency in spleen was also lower in bank voles, contrasting with 

our results. However, they concluded that bank voles is probably an occasional and inefficient host in 

the wild (Hughes et al. 2012). We are not so conclusive about this point. Indeed, the low level of 

replication could be a viral strategy dedicated to the limitation of the host’s immunological response. 
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This hypothesis is reinforced by the observation of lower neutralizing antibodies titers in bank voles 

than in mice. On the whole, these results demonstrate no major differences between the infections of 

the two species and so mice could henceforth be considered as a good model for MuHV-4 in vivo 

studies. Another good model for the study of gammaherpesvirus biology should be the recently 

described Wood mouse herpesvirus (Hughes et al. 2009) in the wood mouse. This has to be considered 

very interesting as it is a real virus/host homologue model. This situation is rarely encountered and of 

great interest in concern with herpesvirus biology. However, molecular and analysis tools available for 

the study of wood mouse are largely less extended than those available for the mouse. This will 

probably leads to major limitations of the research on this model. Another very interesting perspective 

was recently opened with a screening by PCR which was designed to detect new herpesviruses in 

naturally infected rodents. For this purpose, more than 1100 samples were analyzed and 21 novel 

gammaherpesviruses were identified, including the first gammaherpesvirus naturally infecting house 

mice (Ehlers et al. 2007). Unfortunately, this virus was only identified by sequence analyses and was 

not isolated. The opportunity to study a gammaherpesvirus naturally infecting mice would be of great 

interest as on one hand it might be a real homologous host/virus model and on the other hand the 

scientific community has a lot of biological and molecular tools for this species. Therefore, when this 

virus will be isolated, it could potentially become the most sophisticated and suitable model for in vivo 

studies of gammaherpesviruses.  

Up until now, the major argument to devaluate the MuHV-4/laboratory mouse model has been 

the absence of observed re-excretion and transmission. This information is not valuable any more as 

we have demonstrated that both re-excretion and viral transmission occur in laboratory mouse 

populations. The finding of re-excretion in laboratory mice was somewhat surprising as numerous 

people have been working on this model around the world for a long time without reporting such 

observations. However, several points can be mentioned. First, we have used a method of in vivo 

imaging that was recently developed and which is very sensitive, allowing the detection of low levels 

of replicative virus. Secondly, we have followed the infections daily and during a long period, 

generally between 14 and 32 days post infection. To our knowledge, such following of the infectious 

process has never been reported. Another hypothesis could come from a potential pre-existing 

infection of the mice by a pathogen helping viral reactivation. Indeed, such synergic relation has been 

demonstrated for others herpesviruses, notably HSV-2 and CMV, with HIV-1 (Rinaldo et al. 1992; 

Mostad et al. 1999; Van de Perre et al. 2008; Schoenfisch et al. 2011). If such a pre-existent infection 

exists, the causal agent remains to be identified. Finally, our housing facility homes both females and 

males and this can be an important element. Indeed, the re-excretion observed is on a genital level and 

we have demonstrated a link between the sexual steroid cycle and the re-excretion of the virus. The 

ovariectomy of mice leads to a drastic decrease of viral genital re-excretion, nearly abolishing it, and 

complementation by estrogens, but not by progesterone, restores the re-excretion to the level of non-
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ovariectomized mice. However, estrogens do not act directly to reactivate MuHV-4 from latency as 

the effect is only seen in vivo. Such effects of sex hormones on herpesvirus reactivation have already 

been described. For HSV-1, it was shown that 17β-estradiol causes reactivation from latency (Vicetti 

Miguel et al. 2010). Moreover, Mostad et al. demonstrated that high levels of sexual hormones, 

resulting from contraception or pregnancy, increase the frequency of HSV-2 genital shedding (Mostad 

et al. 2000). Sex hormones are major actors of the cyclic cellular remodeling of the vaginal tissue. 

This could influence the re-excretion by two ways. First, the cyclic observation of shedding could 

reflect the renewal of epithelial cells at the surface of vaginal mucosa. Secondly, hormones could act 

to modify the expression of membrane proteins at the surface of cells, modifying their sensibility to 

the infection. However, the molecular and cellular pathways influenced by sex hormones and implied 

in the observed shedding remains to be elucidated. 

 It is well known that the immunity of the female genital tract is remodeled during the sexual 

cycle and that these changes are essentially controlled by steroid hormones. The recruitment of 

neutrophils, the antibodies in genital secretions, as well as T-cell mediated response and susceptibility 

are all dependent on the stage of the estrous cycle (Beagley and Gockel 2003). TLR are important 

mediators of the innate immunity and are known to be implied in gammaherpesviruses reactivation 

from latency (Gargano et al. 2009; Gregory et al. 2009). In a general fashion, TLR are expressed on 

phagocytic and epithelial cells (Akira et al. 2001; Takeda and Akira 2001) and some of them are 

expressed on female reproductive tract epithelial cells (Fichorova et al. 2002). Moreover, it is possible 

that the expression of TLR at the level of the genital tract varies upon the sexual cycle, modifying the 

sensibility of innate immunity at this anatomical site. The activation of TLR, by another infectious 

agent for example, in the genital tract could participate to the reactivation of MuHV-4 on a genital 

level. Moreover, it is possible that the expression of TLR at the level of the genital tract varies upon 

the sexual cycle, modifying the sensibility of innate immunity at this anatomical site. In addition, the 

humoral immunity is also greatly affected by the sexual cycle as the level of IgA in vaginal fluids 

reaches a maximum at the estrous stage and dramatically decreases during the diestrus while IgG 

levels show a reverse profile (Gallichan and Rosenthal 1996; Nardelli-Haefliger et al. 1999). This 

could be only a part of the phenomenon and the mechanisms underlying this phenomenon and the cell 

types implied remain however unclear. Moreover, the fact that the re-excretion occurs when the 

antibody level is maximum at the genital area could be an advantage in terms of transmission. Indeed, 

excreted virions could for example bind anti-gp150 antibodies present at the re-excretion sites and it 

was demonstrated that anti-gp150 antibodies were on one hand non neutralizing and on the other hand 

were promoters of the infection by favoring the infection of cells with Fc receptors (Gillet et al. 

2007b; Rosa et al. 2007).  

Elucidating the cellular origin of vaginally re-excreted virions will be very interesting to shed 

light on re-excretion mechanisms. For this purpose, we could use a newly-developed cell-type specific 
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virus genetic labeling based on Cre/lox recombination allowing to track viral infection in vivo (Barton 

and White 2008; Sacher et al. 2012). This system is based on the impairment of the viral survival after 

Cre/lox recombination because of the loose of an essential part of the viral genome. Another potential 

marking system is based on the insertion of two genes coding for different fluorescent proteins and 

switch from the expression of first transgene in absence of Cre to the expression of the second 

transgene after recombination by the Cre recombinase. Such Cre/loxP system has recently been 

applied to demonstrate that MuHV-4 uses DC’s to colonize B cells after intranasal infection (Gaspar et 

al. 2011). We could use transgenic mice expressing Cre recombinase only in certain cell types, such as 

B cells, T cells subsets or dendritic cells, or only after specific induction. This, associated with 

infection by recombinant viruses specifically constructed for assaying exposure to Cre should allow 

revealing the route of re-excretion of MuHV-4 from latently infected female mice. In parallel, the 

determination of the cell-types implied in the entry of the virus in males during natural primary 

infection will be important in the context of the development of vaccinal strategies. Indeed, knowing 

which cell-types are firstly targeted could direct the choice of vaccinal antigen target. As an example 

of this, the gp350 of EBV is required for B-cell infection but is dispensable for epithelial infection and 

the induction of antibodies against gp350 failed to protect from infection as seroconversion rates do 

not decrease after immunization against gp350 (Sokal et al. 2007). Moreover, treatment by antibodies 

against gp350 enhances the ability of EBV to infect epithelial cells (Turk et al. 2006). This underlines 

the importance of deep understanding of the entry mechanisms in the context of treatment or 

vaccination. 

The precedent results, indicative of potential routes of transmission, led us to address the 

question of vertical and horizontal transmission among laboratory mice populations. We have firstly 

addressed vertical transmission which is proven for some herpesviruses albeit it is a very rare event, 

especially for gammaherpesviruses. In 2011, Stiglincova et al. reported vertical transmission of MHV-

68 in laboratory mouse population, via either transplacental infection or breast milk (Stiglincova et al. 

2011). They also reported retardation of fetal development and premature termination of the 

pregnancy. This contrasts drastically with the results we have obtained. Indeed, in our experimental 

conditions, no transmission from mother to progeny occurred. They also reported the detection of 

infectious viruses in the newborns of all the litters tested by co-culture on Vero cells. This also 

contrasts with our results revealing no effect of the infection, either acute or latent, on litter size or 

gestational length. Moreover, regarding the very low frequency of transplacental transmission of the 

two human gammaherpesviruses (Pica and Volpi 2007), this type of transmission in mice should be 

expected at lower rates. Indeed, in women, the placental interface is of haemomonochorial type which 

means that only one layer of trophoblast separates the maternal blood from the fetus, but in mice, the 

placental interface is named heamotrichorial as three layers of trophoblast exist (Johnson 2007). This 

structural difference should render the transmission more difficult in mice than in humans. In our 
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experiments, no transmission via breast milk was observed as the progeny remains negative in terms 

of infectious viral particles after 6 weeks of life. However, breastfeeding transmission is not excluded 

for gammaherpesviruses as HHV-8’s DNA was detected in some breast-milk samples (Dedicoat et al. 

2004). On the contrary, another study failed to demonstrate the presence of KSHV in the breast milk 

of infected women (Brayfield et al. 2004). Finally, a link between the presence of viral DNA of CMV, 

EBV and HIV’s RNA in breast milk was established in another field study (Gantt et al. 2008), 

indicating a potential link between these infections and their re-excretion site. Moreover, BoHV-4 was 

detected in the cellular fraction of milk of infected cows, suggesting a potential way of transmission 

(Donofrio et al. 2000). In conclusion, the mother-to-child transmission of gammaherpesviruses in 

utero or via breastfeeding remains a potential way of viral spread in natural populations but the impact 

of such transmission remains unclear and if it exists, it seems to be a very rare event. 

Sexual horizontal transmission was also assessed as this route is more established although it 

is not considered as a major way of transmission for gammaherpesviruses. EBV and KSHV may be 

detected in the semen and cervical secretions of infected individuals (Sixbey et al. 1986; Israele et al. 

1991; Naher et al. 1992; Diamond et al. 1997; Whitby et al. 1999; Ablashi et al. 2002). However, 

sero-epidemiological studies failed to definitively prove the existence of sexual transmission because 

these two viruses are also primarily re-excreted in the saliva of infected individuals (LaDuca et al. 

1998; Rickinson and Kieff 2001). Consequently, even if it has been proved that the risk of acquisition 

of the infection is higher with sexual activity, it is impossible to link the transmission with sexual 

intercourse itself or with other associated behaviors such kissing. However, the possibility of genital 

acquisition of EBV was demonstrated with cases of ulcerative genital lesions in children from which 

infectious EBV was collected (Halvorsen et al. 2006).  

Here, we have demonstrated the first case of female-to-male sexual transmission of MuHV-4. 

This transmission occurred from genitally re-excreting females to naïve males and sexual infection 

was clearly demonstrated because the first replication site in males was the penis. This transmission 

reached about 30% of exposed males. The co-housing conditions of both genders were chosen to rely 

as much as possible on the conditions encountered in nature. This implies the co-housing of three 

infected females with three naïve males, inducing the possibility of multiple sexual contacts, but also 

of some situations which provoke physiological stress in the cages. These elements can be part of the 

observed transmission phenomenon. Indeed, the presence of several males probably induces an 

increase in coupling attempts and contacts because of some non-fertilizing mating. Indeed, female 

mice are no more receptive to sexual attempts once fertilized.  Moreover, it is possible that females re-

excrete more viruses on a longer period in such stressful situations. However, the monitoring of re-

excretion by imaging is not indicative of such a situation in females. When transmission takes place, it 

starts by an intense replicative signal at the level of the penis and the infection then spreads to 

surrounding lymph nodes and later to the spleen, demonstrating that primo-infection by MuHV-4 can 
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be acquired by the sexual route and that lymph nodes and spleen colonization is part of the natural 

infection. However, once transmitted to males, the virus seems to replicate at high levels during a long 

time (at least 20 days) in the urogenital tract of males. This shed new insights on the natural 

epidemiological cycle of MuHV-4 as viral replication in the urogenital tract of males could reveal 

several (and not mutually exclusive) ways of transmission: by sexual route, but also by territory-

marking. This last point could only be relevant if infectious viruses are re-excreted in urine as it is 

frequently observed for CMV and sporadically for HHV-6 and HHV-7 (Gautheret-Dejean et al. 1997; 

Mocarski et al. 2007). Therefore, the systematic analysis of body fluids from infected mice on a long-

term period should bring relevant information on that point. This could also be informative to 

determine if the infection could be transmitted between males by biting, fighting or any other means. 

Indeed, we have sporadically observed transmission to naïve males beginning by replication in the 

area of nose/mouth. Finally, the transmission from males undergoing viral replication at the level of 

the penis to naïve female should be investigated. Indeed, we have observed viral replication in sexual 

male tissue during a long time after primary infection. This is indicative of the great ability of the virus 

to replicate in these tissues. Thus it can also be hypothesized that virus will be maintained in the male 

genital tract, maybe at low levels, during long periods, favoring the transmission to females and thus 

spread in the whole population. In this case, the effect of such transmission on the issue of pregnancy 

and on progeny should be investigated. 

Sexual transmission constitutes an easy way of spread for a virus in natural populations of 

wild animals. This is particularly the case for rodents. Indeed, rodents live generally in small groups of 

spread on a relatively large territory. Direct contact could be a relatively efficient route of transmission 

when considering urine (territory marking) or saliva (biting/fighting). However, the opportunity of 

transmission by these is probably considerably less than by sexual route. Taking this point in account, 

the fact that the viral shedding in the female genital tract is linked to sexual cycle and more precisely 

to the period of oestrus (high rates of estrogens) would be very beneficial for transmission as re-

excretion would occur during the periods of female receptivity for mating.  

Altogether, these results also question the natural routes of infection. To date, intranasal 

infection has been considered as the most probable way of natural infection. Indeed, several 

herpesviruses are spread by contact and the first replication site is often the respiratory tract. 

Moreover, several groups evaluated the intranasal, intravenous, and intraperitoneal routes of infection 

for MuHV-4 and in all cases, the viral inoculation led to spleen and lymph node colonization. 

However, among these tested routes, the most potent natural way of infection was the intranasal route 

and this was subsequently used experimentally. In 2009, Milho et al. compared the MuHV-4 infection 

following intranasal inoculation under general anesthesia or without anesthesia (Milho et al. 2009). In 

this study they revealed that mice infected without anesthesia do not undergo viral replication in the 

lung contrary to those infected under general anesthesia, which led to the conclusion that lungs are not 
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a natural site of replication. Other characteristics of the infection were otherwise very similar. Even if 

intranasal inoculation is considered for the moment as the best experimental route of infection to 

evaluate the natural biology of MuHV-4, we cannot exclude that sexual experimental infection could 

bring new important information about MuHV-4 biology. We have tried experimental intravaginal 

infection (data not shown). As the sexual intercourse in mice implies the deposit of a vaginal plug 

composed of male secretion, we have designed an experimental infection mimicking this physiological 

aspect of murine behavior. So we have infected mice under anesthesia and maintained them on their 

back during about half an hour after the infection. In this experiment only one mouse on the five used 

became infected, but the mice were not synchronized in terms of genital cycle and we can expect that 

the phase of the cycle and therefore the vaginal tissue structure can influence the acquisition of the 

infection. However, this has demonstrated the capacity of the virus to directly infect the vaginal 

epithelia or cells presents in this area. In the future, it could be interesting to test the vaginal route of 

infection also in bank voles. Indeed, sexual transmission could be seen as an easy way of natural viral 

transmission and the infection by this route could reveal some new interesting information in this 

alternative model of infection. Moreover, the suggested above systematic analysis of body fluids 

(blood, saliva, sperm, cervical secretions) during the time of the acute and latent infections should 

provide new insights into the mechanisms implied in viral shedding and transmission of MuHV-4 in 

mouse populations and maybe in bank vole populations. 

In addition, several immune-evasion mechanisms, often implying glycoproteins, were 

described and offer perspectives in term of development of original vaccinal strategies as they could 

explain why the natural immune response fails to prevent transmission of gammaherpesviruses (Gillet 

et al. 2007b; Gillet and Stevenson 2007a; Gillet et al. 2008a; Gillet et al. 2008b; Gillet et al. 2009). 

However, to date, the absence of a transmission model has made these findings theoretical in terms of 

epidemiology. Now disposing of this new model of re-excretion/transmission will allow their 

evaluation. The first considered target for vaccination will be the gH/gL complex. Indeed, gH/gL is a 

part, along with gB and gp150, of a potential multiprotein entry complex (Gillet and Stevenson 

2007b). Gp150 seems to act as an immunologic decoy, inducing massive production of non 

neutralizing antibodies (Gillet et al. 2007b). Those antibodies even promotes the infection of cells with 

Fc receptor (Rosa et al. 2007). Therefore, gp150 is supposed to protect the other proteins of the 

complex (essentially gH/gL) from neutralization (Gillet et al. 2007b). Thus, the induction of mucosal 

immunization against gH/gL should therefore be a key part in vaccinal strategies. In this context, 

immunization with adenoviruses expressing the gH/gL heterodimer should be tested in diverse 

epidemiological conditions experimentally created such as mixing of vaccinated naïve males and 

vaccinated infected females, unvaccinated naïve males and vaccinated infected females, vaccinated 

naïve males with unvaccinated infected females or unvaccinated naïve males with unvaccinated 

infected females. 



Chapter 4  Discussion - Perspectives 
 

78 
 

This strategy could be applied to the evaluation of several potential targets for vaccination. 

The identification of novel candidates could be realized by random mutagenesis of the MuHV-4 BAC 

genome. Indeed, we could randomly mutate the genome in order to identify recombinant viruses less 

re-excreted. This could bring new information both on proteins implicated in transmission 

mechanisms and in reactivation and immune evasion. Then, the potential use of these mutated viruses 

for vaccination should be tested in our model. 

 Finally, as our model allows the evaluation of the level of the shedding as well as the 

transmission power of the virus by the sexual route, effects of enhancing the immunity at the genital 

mucosa should be evaluated. For this purpose, several strategies might be considered: direct genital 

immunization, antiviral vaginal treatments or nasal immunization. Indeed, nasal immunization not 

only stimulates an immune response on a respiratory tract level but also elicits a strong vaginal/genital 

mucosal immunization response (Holmgren and Czerkinsky 2005; Neutra and Kozlowski 2006). 

However, regardless to the chosen site of immunization, particular attention should be paid to 

hormonal conditions. Indeed, as previously mentioned, steroid hormones greatly influence the immune 

system. Many studies were designed to evaluate their effect in the context of vaccination, especially 

against HSV-2. Indeed, it was showed that intranasal and subcutaneous immunization by an attenuated 

HSV-2 strain led to better protection when performed under the effect of estradiol (Bhavanam et al. 

2008). These results were confirmed by the enhancement of vaccination by estradiol in the context of a 

clinically relevant vaccine (Pennock et al. 2009). However, it could be different if an intra-vaginal 

treatment was proposed. Indeed, antigen presentation in the genital tract is also regulated by sex 

hormones. In the female reproductive tract, antigen presentation is carried out by specialized antigen 

presenting cells but also by non-specialized cells such as epithelial and stromal cells (Prabhala and 

Wira 1995; Wira and Rossoll 1995). It was demonstrated that antigen presentation is higher when 

estradiol levels in the blood are low, suggesting an inhibitory effect of estrogens on antigen 

presentation. This should be taken in account in the design of studies dedicated to the enhancement of 

mucosal immunity of the genital tract (Wira and Rossoll 1995). 

Despites that gammaherpesvirus infections are associated with several important diseases in 

human and animal populations, recent studies on MuHV-4 have suggested that the relationship 

between these viruses and the host immune system could be more symbiotic than pathogenic (Barton 

et al. 2007; Larson et al. 2012). Even if these effects are limited in duration, the multiple herpesvirus 

infections acquired during early childhood may have significant beneficial consequences for human 

immunology (Barton et al. 2011).However, there is no evidence so far that this beneficial effect 

observed in mice has relevance for human gammaherpesvirus infections. Moreover, there are several 

epidemiological circumstances in which the need for a prophylactic and/or a therapeutic vaccination 

strategy remains an important goal (Yager et al. 2009). These include African populations where there 

is a high incidence of Burkitt’s lymphoma, Southeast Asian populations displaying an increased 
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incidence of EBV-associated nasopharyngeal carcinoma and EBV-negative adolescents in whom late 

EBV infections can be associated with debilitating infectious mononucleosis and increased 

susceptibility to Hodgkin’s disease (Klein et al. 2007). Moreover, the identification of a potential 

benefit of gammaherpesvirus infection does not argue against the development of prophylactic or 

therapeutic vaccines (Yager et al. 2009). The challenge will be to develop attenuated vaccines that 

could confer any potential benefits of latent gammaherpesvirus infection while simultaneously 

protecting against wild-type associated diseases. 

In conclusion, we have hither confirmed that mouse is a valuable model for in vivo studies of 

MuHV-4. Moreover, we have reported the observation of genital viral re-excretion in female mice and 

of sexual transmission from re-excreting female to male. This has led to the development of the first 

relevant model of transmission for the MuHV-4 virus, the most studied model of gammaherpesvirus 

infection, in experimental conditions. In the future, this model should help to better understand the 

mechanisms underlying gammaherpesvirus reactivation and spread among host populations. The 

model should also be very helpful in the design and testing of novel vaccinal strategies. 
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