University of Liège Department of Aerospace and Mechanical Engineering

Multi-scale computational homogenization of foams with micro-buckling

Van Dung Nguyen & Ludovic Noels

Computational & Multiscale Mechanics of Materials, ULg Chemin des Chevreuils 1, B4000 Liège, Belgium VanDung.Nguyen@ulg.ac.be

• Modeling of foams

- Buckling can occur at the thin components (cell walls, cell struts), leading to
 - Macroscopic strain localization
 - Loss of the representativeness of volume elements
- Size effects

Figure: Force-displacement crushing response of polycarbonate honeycomb - S. D. Papka and S. Kyriakides (1999)

- Multi-scale computational approachs:
 - Classical multiscale computational homogenization
 - Local action → not suitable for high gradient problems and for localization analyses
 - Does not take into account the absolute size of representative volume element → not suitable for analysis of size effects

- Second-order multiscale computational homogenization

- Macroscopic second order continua
- Microscopic classical continua
 - Periodic boundary condition
- Suitable for analyses of
 - Moderate localization
 - Size effects
 - High gradient problems

Kouznetsova et al 2004

- Modeling of foams by multi-scale computational approach
 - Using second-order multiscale computational homogenization
 →method to solve the second-order continua
 - Using periodic boundary condition
 - Random representative volume element→non-conformal meshes
 →method to enforce periodic boundary condition
 - Local buckling
 - Path-following

Random distributed hole structure

Second-order continua

- Formulation in terms of the first Piola stress tensor **P** and second-order stress tensor **Q** $\partial_{\tau}B_0$

 $\boldsymbol{B} + (\boldsymbol{P} - \boldsymbol{Q} \cdot \boldsymbol{\nabla}_0) \cdot \boldsymbol{\nabla}_0 = \boldsymbol{0} \quad \forall \boldsymbol{X} \in B_0$

- Boundary condition

$$u = u^0 \quad \forall X \in \partial_D B_0$$

$$Du = Du^0 \quad \forall X \in \partial_T B_0$$

$$(\boldsymbol{P} - \boldsymbol{Q} \cdot \boldsymbol{\nabla}_0) \cdot \boldsymbol{N} + (\boldsymbol{Q} \cdot \boldsymbol{N}) \cdot \left(\boldsymbol{N} \ \boldsymbol{\nabla}_0^s \cdot \boldsymbol{N} - \boldsymbol{\nabla}_0^s\right) = \boldsymbol{T}^0 \quad \forall \boldsymbol{X} \in \partial_{\boldsymbol{N}} B_0,$$
$$\boldsymbol{Q} : (\boldsymbol{N} \otimes \boldsymbol{N}) = \boldsymbol{R}^0 \quad \forall \boldsymbol{X} \in \partial_{\boldsymbol{M}} B_0$$

Second-order continua

- Requires the continuity of displacement field and of its gradients. Some methods can be considered
 - Mixed (multi-field) method (Shu et al 1999, Amanatidou et al 2002)
 - Messless method (Askes et al 2002)
 - C1 finite elements (Papanicolopulos et al 2009, 2012)
 - Discontinuous Galerkin (DG) method (Engel et al 2002, Bala Chandran et al 2008)
- In this work, DG method is extended to large deformation and multiscale analyses to solve second-order continua
 - Using only the displacement field as unknowns
 - Enforcing weakly inter-element continutities

- Microscopic periodic boundary condition
 - Fluctuation field $\boldsymbol{\omega} = \boldsymbol{u} (\bar{\boldsymbol{F}} \boldsymbol{I}) \cdot \boldsymbol{X} \frac{1}{2}\bar{\boldsymbol{G}} : (\boldsymbol{X} \otimes \boldsymbol{X})$
 - Periodic condition of fluctuation field : (Kouznetsova et al 2004, Kaczmarczyk et al 2008)

 $\omega(X^+) = \omega(X^-) \quad \forall X^+ \in \partial V_0^+ \text{ and matching } X^- \in \partial V_0^-$

$$\int_{S \in \partial V_0^-} \boldsymbol{\omega} \, d\partial V = \mathbf{0}$$

- Finite element enforcement
 - Conformal meshes: enforcement on the matching nodes
 - For foams: non-conformal meshes:
 - Local implementation (Tyrus et al 2007)
 - Master/slave approach (Yuan et al 2008)
 - Weak periodicity (Larson et al 2011)
 - New method: polynomial interpolation (Nguyen et al 2012)

- Periodic boundary condition with foams
 - Polynomial interpolation method
- Strain-gradient continua
 - DG formulation for second-order continua
- Second-order multiscale computational homogenization with DG formulation
- Local buckling
- Conclusions and perspectives

Periodic boundary condition

- Enforcement of periodic boundary condition in foams
 - Meshes created from foams are generally non-conformal
 - Enforcement by polynomial interpolation (Nguyen et al 2012)
 - Fluctuation field of two opposite RVE sides is interpolated by linear combinations of some shape functions
 - Degrees of freedom of two opposite RVE sides are then substituted by the coefficients of these shape functions

$$egin{aligned} & \omega^+ = \mathbf{S}(s) \ & \mathbf{S}(s) = \sum_{i=0}^N \mathcal{N}_i(s) a_i \ & \omega^- = \mathbf{S}(s) \end{aligned}$$

Periodic boundary condition

- Enforcement of periodic boundary condition in foams
 - Numerical example

Non-periodic mesh from random materials

Convergence of effective property in terms of new DOFs added to the system

Discontinuous Galerkin formulation

- Main idea
 - Finite-element discretization
 - Same discontinuous polynomial approximations for the

- Definition of operators on the interface trace:
 - **Jump** operator: $\llbracket \bullet \rrbracket = \bullet^+ \bullet^-$
 - Mean operator: $\langle \bullet \rangle = \frac{\bullet^+ + \bullet^-}{2}$
- Continuity is weakly enforced, such that the method
 - Is consistent
 - Is stable
 - Has the optimal convergence rate

- Enriched DG formulation (EDG)
 - Strong enforcement of displacement continuity by using conventional finite element framework
 - Weak enforcement of displacement gradients by DG formulation

- Kinematic space
$$U_{h}^{k} = \left\{ \boldsymbol{u}^{h} \in \mathbf{H}^{1}\left(B_{0}^{h}\right)|_{\boldsymbol{u}^{h}|_{\Omega_{0}^{e}} \in \mathbb{P}^{k}} \forall \Omega_{0}^{e} \in B_{0}^{h} \right\}$$

 $U_{hc}^{k} = \left\{ \delta \boldsymbol{u} \in U_{h}^{k}|_{\delta \boldsymbol{u}|_{\partial_{D}B_{0}} = 0} \right\}$

- Full DG formulation (FDG)
 - Weak enforcement of displacement field and of its gradients by using DG formulation

- Kinematic space
$$U_{h}^{k} = \left\{ \boldsymbol{u}^{h} \in \mathbf{L}^{2} \left(B_{0}^{h} \right) |_{\boldsymbol{u}^{h}|_{\Omega_{0}^{e}} \in \mathbb{P}^{k}} \forall \Omega_{0}^{e} \in B_{0}^{h} \right\}$$

 $U_{hc}^{k} = \left\{ \delta \boldsymbol{u} \in U_{h}^{k} |_{\delta \boldsymbol{u}|_{\partial_{D}B_{0}} = 0} \right\}$

- Application to finite strain
 - Strong form:

 $\boldsymbol{B} + (\boldsymbol{P} - \boldsymbol{Q} \cdot \boldsymbol{\nabla}_0) \cdot \boldsymbol{\nabla}_0 = \boldsymbol{0} \quad \forall X \in B_0$

- Weak form: finding $u^h \in U_h^k$ such that

• New weak formulation obtained by integration by parts on each element Ω^e

$$\begin{split} \sum_{e} \int_{\partial \Omega_{0}^{e}} N_{j} \left\{ \begin{bmatrix} P_{ij}\left(\boldsymbol{u}^{h}\right) - \frac{\partial Q_{ijk}\left(\boldsymbol{u}^{h}\right)}{\partial X_{k}} \end{bmatrix} \delta u_{i} + Q_{ijk}\left(\boldsymbol{u}^{h}\right) \frac{\partial \delta u_{i}}{\partial X_{k}} \right\} d\partial B = \\ \int_{\partial B_{0}^{h}} N_{j} \left\{ \begin{bmatrix} P_{ij}\left(\boldsymbol{u}^{h}\right) - \frac{\partial Q_{ijk}\left(\boldsymbol{u}^{h}\right)}{\partial X_{k}} \end{bmatrix} \delta u_{i} + Q_{ijk}\left(\boldsymbol{u}^{h}\right) \frac{\partial \delta u_{i}}{\partial X_{k}} \right\} d\partial B \\ - \int_{\partial_{I}B_{0}^{h}} N_{j}^{-} \begin{bmatrix} \hat{P}_{ij}\left(\boldsymbol{u}^{h}\right) \delta u_{i} \end{bmatrix} d\partial B - \int_{\partial_{I}B_{0}^{h}} N_{j}^{-} \begin{bmatrix} Q_{ijk}\left(\boldsymbol{u}^{h}\right) \frac{\partial \delta u_{i}}{\partial X_{k}} \end{bmatrix} d\partial B \quad \forall \delta \boldsymbol{u} \in \mathbf{U}_{hc}^{k}, \end{split}$$

$$\hat{P}_{ij}\left(\boldsymbol{u}^{h}\right) = P_{ij}\left(\boldsymbol{u}^{h}\right) - \frac{\partial Q_{ijk}\left(\boldsymbol{u}^{h}\right)}{\partial X_{k}}$$

• New weak formulation obtained by integration by parts on each element Ω^e

$$\sum_{e} \int_{\partial \Omega_{0}^{e}} N_{j} \left\{ \left[P_{ij}\left(\boldsymbol{u}^{h}\right) - \frac{\partial Q_{ijk}\left(\boldsymbol{u}^{h}\right)}{\partial X_{k}} \right] \delta u_{i} + Q_{ijk}\left(\boldsymbol{u}^{h}\right) \frac{\partial \delta u_{i}}{\partial X_{k}} \right\} d\partial B = \int_{\partial B_{0}^{h}} N_{j} \left\{ \left[P_{ij}\left(\boldsymbol{u}^{h}\right) - \frac{\partial Q_{ijk}\left(\boldsymbol{u}^{h}\right)}{\partial X_{k}} \right] \delta u_{i} + Q_{ijk}\left(\boldsymbol{u}^{h}\right) \frac{\partial \delta u_{i}}{\partial X_{k}} \right\} d\partial B$$

$$\int_{\partial B_{0}^{h}} N_{j}^{-} \left[\left[\hat{P}_{ij}\left(\boldsymbol{u}^{h}\right) \delta u_{i} \right] \right] d\partial B \int_{\partial B_{0}^{h}} N_{j}^{-} \left[\left[Q_{ijk}\left(\boldsymbol{u}^{h}\right) \frac{\partial \delta u_{i}}{\partial X_{k}} \right] \right] d\partial B \quad \forall \delta \boldsymbol{u} \in \mathbf{U}_{hc}^{k},$$
Interface term is neglected when using EDG
$$\hat{P}_{ij}\left(\boldsymbol{u}^{h}\right) = P_{ij}\left(\boldsymbol{u}^{h}\right) - \frac{\partial Q_{ijk}\left(\boldsymbol{u}^{h}\right)}{\partial X_{k}}$$

• New weak formulation obtained by integration by parts on each element Ω^e

$$\begin{split} \sum_{e} \int_{\partial \Omega_{0}^{e}} N_{j} \left\{ \begin{bmatrix} P_{ij}\left(\boldsymbol{u}^{h}\right) - \frac{\partial Q_{ijk}\left(\boldsymbol{u}^{h}\right)}{\partial X_{k}} \end{bmatrix} \delta u_{i} + Q_{ijk}\left(\boldsymbol{u}^{h}\right) \frac{\partial \delta u_{i}}{\partial X_{k}} \right\} d\partial B = \\ \int_{\partial B_{0}^{h}} N_{j} \left\{ \begin{bmatrix} P_{ij}\left(\boldsymbol{u}^{h}\right) - \frac{\partial Q_{ijk}\left(\boldsymbol{u}^{h}\right)}{\partial X_{k}} \end{bmatrix} \delta u_{i} + Q_{ijk}\left(\boldsymbol{u}^{h}\right) \frac{\partial \delta u_{i}}{\partial X_{k}} \right\} d\partial B \\ - \int_{\partial_{I} B_{0}^{h}} N_{j}^{-} \begin{bmatrix} \hat{P}_{ij}\left(\boldsymbol{u}^{h}\right) \delta u_{i} \end{bmatrix} d\partial B - \int_{\partial_{I} B_{0}^{h}} N_{j}^{-} \begin{bmatrix} Q_{ijk}\left(\boldsymbol{u}^{h}\right) \frac{\partial \delta u_{i}}{\partial X_{k}} \end{bmatrix} d\partial B \\ \forall \delta \boldsymbol{u} \in \mathbf{U}_{h_{c}}^{k}, \end{split}$$

Interface terms must be considered when using FDG

$$\hat{P}_{ij}\left(\boldsymbol{u}^{h}\right) = P_{ij}\left(\boldsymbol{u}^{h}\right) - \frac{\partial Q_{ijk}\left(\boldsymbol{u}^{h}\right)}{\partial X_{k}}$$

• Interface terms

- Introduction of the numerical fluxes

$$\begin{split} & \int_{\partial_{I}B_{0}^{h}} N_{j}^{-} \left[\left[\hat{P}_{ij} \left(\boldsymbol{u}^{h} \right) \delta u_{i} \right] \right] d\partial B \simeq \int_{\partial_{I}B_{0}^{h}} \left[\delta u_{i} \right] h_{i} \left(\hat{\boldsymbol{P}}^{+}, \hat{\boldsymbol{P}}^{-}, N^{-} \right) d\partial B \\ & \int_{\partial_{I}B_{0}^{h}} N_{j}^{-} \left[\left[Q_{ijk} \left(\boldsymbol{u}^{h} \right) \frac{\partial \delta u_{i}}{\partial X_{k}} \right] \right] d\partial B \simeq \int_{\partial_{I}B_{0}^{h}} \left[\frac{\partial \delta u_{i}}{\partial X_{j}} \right] H_{ij} \left(\boldsymbol{Q}^{+}, \boldsymbol{Q}^{-}, N^{-} \right) d\partial B \end{split}$$

• Has to be consistent:

$$h(\hat{P}, \hat{P}, N) = \hat{P} \cdot N \text{ and } h(\hat{P}^+, \hat{P}^-, N^-) = -h(\hat{P}^-, \hat{P}^+, N^+)$$

 $H(O, O, N) = O \cdot N \text{ and } H(O^+, O^-, N^-) = -H(O^-, O^+, N^+)$

One possible choice

$$h_i\left(\hat{\boldsymbol{P}}^+, \hat{\boldsymbol{P}}^-, N^-\right) = \left\langle \hat{P}_{ij} \right\rangle N_j^- + \frac{1}{2}N_j^- \left\langle \frac{\beta^P}{h^s} C_{ijkl}^0 \right\rangle \llbracket u_k \rrbracket N_l^-$$
$$H_{ij}\left(\boldsymbol{Q}^+, \boldsymbol{Q}^-, N^-\right) = \left\langle Q_{ijk} \right\rangle N_k^- + \frac{1}{2}N_k^- \left\langle \frac{\beta^Q}{h^s} \mathcal{J}_{ijkpqr}^0 \right\rangle \left\llbracket \frac{\partial u_p}{\partial X_q} \right\rrbracket N_r^-$$

• Stabilization controlled by parameter β , for all mesh sizes h^s

Multiscale scheme

- Second-order multiscale computational homogenization with DG formulation
 - Using FDG or EDG at the macroscopic scale
 - Using conventional C⁰ finite element framework at microscopic scale
 - RVEs are assigned into both surface and volume integration points
 - All microscopic boundary condition types are possible (linear displacement BC, constant traction BC, periodic BC)

Multiscale scheme

- Macroscopic problem:
 - H = 1 cm, 2cm, 4cm and 8cm
 - Boundary condition

 $u(0) = 0, \frac{\partial u}{\partial y}(0) = 0$

 $u(H) = 0.01H, \frac{\partial u}{\partial y}(H) = 0$

- Microscopic problem:
 - RVE size d = 0.2cm
 - Periodic BC
 - Material law
 - Young modulus= 210GPa
 - Poisson ration= 0.3
 - Yield stress = 507MPa
 - Hardening modulus = 200MPa

• Shear layer problem: size effects

- Profil of deformation gradient

Multiscale scheme

• Shear layer problem: size effects

- Development of boundary layer due to elastoplasticity

Micro-buckling

Conclusions and perspectives

- Second-order computational homogenization for analyses of
 - Moderate localization
 - Size effect
 - High gradient
 - New efficient method based on DG enforcement
- Periodic boundary condition for non conforming meshes
 - Enforced by polynomial interpolation
- Analyses of local buckling
 - Based on path-following method
- Work in progress
 - Multiscale computational homogenization with micro-buckling

Thanks for your attention!

