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Introduction

• Modeling of foams

– Buckling  can occur at the thin components (cell walls, cell 

struts), leading to

• Macroscopic strain localization  

• Loss of the representativeness of  volume elements 

– Size effects

• Pore size
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• Pore size



Introduction

• Multi-scale computational approachs:

– Classical multiscale computational homogenization

• Local action � not suitable for  high gradient  problems and  for 
localization  analyses

• Does not take into account the absolute size of representative 
volume element � not suitable for analysis of size effects

– Second-order multiscale computational homogenization
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– Second-order multiscale computational homogenization

• Macroscopic second order continua

• Microscopic classical continua

– Periodic boundary condition

• Suitable for  analyses of

– Moderate localization

– Size effects

– High gradient problems
Kouznetsova et al 2004



• Modeling of foams by multi-scale computational approach

– Using second-order multiscale computational homogenization

�method to solve the second-order continua 

– Using periodic boundary condition

• Random representative volume element�non-conformal meshes

�method to enforce periodic boundary condition 

– Local buckling

Introduction
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– Local buckling

• Path-following 

Random distributed

hole structure



• Second-order continua

– Formulation in terms of the first Piola stress tensor P and 

second-order stress tensor Q 

– Boundary condition

Introduction
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Introduction

• Second-order continua

– Requires the continuity of displacement field and of its 

gradients. Some methods can be considered 

• Mixed  (multi-field) method (Shu et al 1999,  Amanatidou et al 
2002)

• Messless method (Askes et al 2002)

• C1 finite elements (Papanicolopulos et al 2009, 2012)
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• C1 finite elements (Papanicolopulos et al 2009, 2012)

• Discontinuous Galerkin (DG) method (Engel et al 2002, Bala 
Chandran et al 2008)

• In this work, DG method is extended to large deformation 

and multiscale analyses to solve second-order continua

– Using only the displacement field as unknowns

– Enforcing weakly inter-element continutities



Introduction

• Microscopic periodic boundary condition

– Fluctuation field

– Periodic condition of fluctuation field :  (Kouznetsova et al 2004,  

Kaczmarczyk et al 2008)

Department of Aerospace and Mechanical Engineering

• Finite element enforcement

– Conformal meshes: enforcement on the matching nodes

– For foams: non-conformal meshes:

• Local implementation (Tyrus et al 2007)

• Master/slave approach (Yuan et al 2008)

• Weak periodicity (Larson et al 2011)

• New method: polynomial interpolation (Nguyen et al 2012)



Topics

• Periodic boundary condition with foams

– Polynomial interpolation method

• Strain-gradient continua

– DG formulation for second-order continua

Department of Aerospace and Mechanical Engineering

• Second-order multiscale computational homogenization 

with DG formulation 

• Local buckling

• Conclusions and perspectives



Periodic boundary condition

• Enforcement of periodic boundary condition  in foams

– Meshes created from foams are generally non-conformal 

– Enforcement by polynomial interpolation  (Nguyen et al 2012)

• Fluctuation field of two opposite RVE sides is interpolated by 
linear combinations of some shape functions

• Degrees of freedom of two opposite RVE sides are then 
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• Degrees of freedom of two opposite RVE sides are then 
substituted by the coefficients of these shape functions



Periodic boundary condition

• Enforcement of periodic boundary condition  in foams

– Numerical example
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Convergence  of effective property in 

terms of new DOFs added to the 

system

Non-periodic mesh

from random materials



Discontinuous Galerkin formulation

• Main idea

– Finite-element discretization

– Same discontinuous polynomial approximations for the

• Test functions ϕϕϕϕh and

• Trial functions δϕϕϕϕ
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– Definition of operators on the interface trace:

• Jump operator:

• Mean operator:

– Continuity is weakly enforced, such that the method
• Is consistent
• Is stable
• Has the optimal convergence rate

(a-1)- (a-1)+ (a)- (a)+(a+1)-
X

(a+1)+



DG formulation for second-order continua

• Enriched DG formulation (EDG) 

– Strong enforcement of displacement continuity by using 

conventional finite element  framework

– Weak enforcement of displacement gradients by DG 

formulation

– Kinematic space
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• Full DG formulation (FDG)

– Weak enforcement of displacement field and of its gradients 

by using DG formulation

– Kinematic space



• Application to finite strain

– Strong form:

– Weak form: finding                such that

DG formulation for second-order continua
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• New weak formulation obtained by integration by parts 

on each element Ω 
e

DG formulation for second-order continua
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• New weak formulation obtained by integration by parts 

on each element Ω 
e

DG formulation for second-order continua
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Interface terms must be 

considered when using EDG
Interface term is neglected 

when using EDG 



• New weak formulation obtained by integration by parts 

on each element Ω 
e

DG formulation for second-order continua
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Interface terms must be

considered when using FDG



DG formulation for second-order continua

• Interface terms

– Introduction of the numerical fluxes

• Has to be consistent:
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• One possible choice

• Stabilization controlled by parameter β, for all mesh sizes hs



DG formulation for second-order continua

• Shear layer test: boundary effect

– Displacement field
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– Results by using FDG

Mesh 1 (8 Elements)

Mesh 2 (20 Elements)

Mesh 3 (38 Elements)



Multiscale scheme

• Second-order multiscale computational homogenization 

with DG formulation  

– Using FDG or EDG at the macroscopic scale 

– Using conventional      finite element framework at  

microscopic scale

– RVEs are assigned into both surface and volume integration 

points
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points

– All microscopic boundary condition types are possible (linear 

displacement BC, constant traction BC, periodic BC)



Multiscale scheme

• Shear layer problem: size effects

– Macroscopic problem:   

• H = 1cm , 2cm,  4cm and 8cm

• Boundary condition
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– Microscopic problem: 

• RVE size d = 0.2cm

• Periodic BC

• Material law

– Young modulus= 210GPa

– Poisson ration= 0.3

– Yield stress = 507MPa

– Hardening modulus = 200MPa

IP
Using FDG



Multiscale scheme

• Shear layer problem: size effects

– Profil of deformation gradient 
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Multiscale scheme

• Shear layer problem: size effects

– Development of boundary layer due to elastoplasticity
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H= 1cm H = 4cm



Micro-buckling

• Micro-buckling with honey-comb

– Elastic

– Elastoplastic
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Buckling shape



Conclusions and perspectives

• Second-order computational homogenization for analyses of

– Moderate localization

– Size effect

– High gradient

– New efficient method based on DG enforcement

• Periodic boundary condition for non conforming meshes 
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• Periodic boundary condition for non conforming meshes 

– Enforced by polynomial interpolation 

• Analyses of local buckling

– Based on path-following method

• Work in progress

– Multiscale computational homogenization with micro-buckling



Thanks for your attention!
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