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1. INTRODUCTION

Reinforcement learning and model predictive con-
trol are two families of control techniques which
tackle control problems by formalizing them as
optimal control problems. While MPC techniques
assume that a model of the optimal control prob-
lem is available, reinforcement learning techniques
assume that the only information available from
the model is the one gathered from interaction
with the system. Both families of techniques usu-
ally compute a suboptimal control policy to the
control problem. For MPC techniques, the sub-
optimalities come mainly from the simplifications
done to the original optimal control problem for
lightening the computational burdens, while for
RL techniques, they also originate from the lack
of information on the model.

The paper is an attempt to present some MPC
and RL algorithms in a unified framework and
reports, for the first time, simulation results ob-
tained by both families of techniques on the same
optimal control problem.

Over the last decades researchers from both the
MPC and the RL field have proposed numerous
algorithms that can be applied to various types of

1 Damien Ernst is a postdoctoral researcher of the Belgian
FNRS (Fonds National de la Recherche Scientifique), of
which he acknowledges the financial support.

systems (systems of differential equations, Markov
decision processes, etc). We have decided to focus
in this paper on discrete-time deterministic sys-
tems and we have selected, for easing the compari-
son, one particular type of algorithm for each field.
The MPC algorithm selected solves the optimal
control problem by computing open-loop policies
through the resolution of a non-linear optimiza-
tion problem in which the system dynamics is rep-
resented by equality constraints (Morari and Lee,
1999). Such a choice was in some sense normal
since it is the dominant approach to MPC. As RL
algorithm, we have chosen an algorithm, known as
fitted Q iteration, which computes from the infor-
mation gathered from interaction with the system,
an approximation of the optimal control policy
by solving a sequence of batch-mode supervised
learning regression problems (Ernst et al., 2005).
Two main reasons have motivated this choice.
First, this algorithm has been shown to clearly
outperform other RL algorithms which makes it a
good candidate to become the standard approach
to RL. Secondly, in its essence, and this contrary
to many other existing RL algorithms which have
been designed to solve specifically infinite time
horizon control problem, the fitted Q iteration al-
gorithm solves finite time horizon problems. Since
such a feature is also shared by MPC techniques,
the presentation of RL and MPC in a unified
framework gets simplified.
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2. MPC AND RL IN THE FINITE HORIZON
CASE

2.1 The optimal control problem

We consider a discrete-time system whose dynam-
ics over T -stages is described by a time-invariant
equation:

xt+1 = f(xt, ut) t = 0, 1, · · · , T − 1 (1)

where ∀t, the state xt is an element of the state
space X and the action ut is an element of the
action space U . T ∈

�
0 is referred to as the

optimization horizon.

The transition from t to t + 1 is associated with
an instantaneous cost signal ct = c(xt, ut) ∈ �
which we assume bounded by a constant Bc, and
for every initial state x0 and for every sequence
of actions we define the discounted cost over T
stages by

C
{u0,u1,··· ,uT−1}
T (x0) =

T−1∑
t=0

γtc(xt, ut) (2)

where γ ∈ [0, 1[ is the discount factor.

In this context, an optimal control sequence u∗
0,

u∗
1, · · · , u∗

T−1, is a sequence of actions which
minimizes the cost over T stages. 2 We denote by
Cπ

T (x) the cost over T stages associated with a
policy π when the initial state is x0 = x. A T -
stage optimal policy is a policy that leads for every
initial state x0 = x to a minimal Cπ

T (x). This is
the kind of policy we are looking for.

We consider three different types of policies: open-
loop policies which select at time t the action ut

based only on the initial state x0 of the system
and the current time (ut = πo(t, x0)), closed-loop
policies which select the action ut based on the
current time and the current state (ut = πc(t, xt))
and closed-loop stationary policies for which the
action is selected only based on the knowledge of
the current state (ut = πs(xt)).

To characterize optimality of these T -stage poli-
cies, we define iteratively the sequence of functions
QN : X × U → � , N = 1, · · · , T as follows:

QN (x, u) = c(x, u) + γ inf
u′∈U

QN−1(f(x, u), u′) (3)

with Q0(x, u) = 0 , ∀(x, u) ∈ X × U .

We have the following theorem (see e.g. Bertsekas
(2000) for a proof):

2 In this problem statement, we did not explicitly consider
constraints other than those implied by the system dynam-
ics. Note however that static constraints (e.g. operating
limits) can be modeled in this formulation by penalizing
the cost function, and dynamic ones (e.g. energy and time
limitations) by first introducing additional state variables
and adding penalizing terms on these latter.

Theorem 1. A sequence of actions u∗
0, u∗

1, · · · ,
u∗

T−1 is optimal if and only if QT−t(xt, u
∗
t ) =

inf
u′∈U

QT−t(xt, u
′) ∀t ∈ {0, · · · , T − 1}.

Under various sets of additional assumptions (e.g.
U finite or see Hernández-Lerma and Lasserre
(1996) when U is infinite), the existence of an op-
timal closed-loop (open-loop) policy which is a T -
stage optimal policy is guaranteed. We use the no-
tation π∗

c,T (π∗
o,T ) to refer to a closed-loop (open-

loop) T -stage optimal policy. From Theorem 1, we
see that every policy π∗

c,T is such that π∗
c,T (x, t) ∈

{u ∈ U |QT−t(x, u) = inf
u′∈U

QT−t(x, u′)}. Simi-

larly, for every policy π∗
o,T we have π∗

o,T (x0, t) ∈
{u ∈ U |QT−t(x, u) = inf

u′∈U
QT−t(xt, u

′)} with

xt = f(xt−1, π
∗
o,T (x0, t − 1)), ∀t = 1, · · · , T − 1.

2.2 Model predictive control

Model predictive control techniques target an op-
timal open-loop policy π∗

o,T , and assume that the
system dynamics and cost function are available
in analytical form.

For a given initial state x0, the terms π∗
o,T (x0, t),

t = 0, 1, · · · , T − 1 of the optimal open-loop
policy may then be computed by solving the
minimization problem:

inf
(u0,u1,··· ,uT−1,x1,x2,··· ,xT−1)

∈U×···×U×X×···×X

T−1∑
t=0

γtc(xt, ut) (4)

subject to the T equality constraints (1).

Under appropriate assumptions, the minimiza-
tion problem (4) can be tackled by classical con-
vex programming algorithms. However, for many
practical problems, its resolution may be a dif-
ficult task, with no guarantees that the solution
found by the used optimizer is indeed optimal.

Therefore, the MPC techniques actually rather
produce an approximation π̂∗

o,T of a T -stage opti-
mal control policy. The better the approximation,

the smaller C
π̂∗

o,T

T (x0) − C
π∗

o,T

T (x0).

2.3 Reinforcement learning

Reinforcement learning techniques do not assume
that the system dynamics and the cost function
are given in analytical (or even algorithmic) form.
The sole information they assume available about
the system dynamics and the cost function is the
one that can be gathered from the observation of
system trajectories. Reinforcement learning tech-
niques compute from this an approximation π̂∗

c,T

of a T -stage optimal (closed-loop) policy since,
except for very special conditions, the exact opti-
mal policy can not be decided from such a limited
amount of information.
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The fitted Q iteration algorithm on which we
focus in this paper, actually relies on a slightly
weaker assumption, namely that a set of one step
system transitions is given, each one providing
the knowledge of a new sample of information
(xt, ut, ct, xt+1) that we name four-tuple.

We denote by F the set {(xl
t, u

l
t, c

l
t, x

l
t+1)}

#F
l=1 of

available four-tuples. Fitted Q iteration computes
from F the functions Q̂1, Q̂2, · · · , Q̂T , approxima-
tions of the functions Q1, Q2, · · · , QT defined by
Eqn (3), by solving a sequence of batch-mode su-
pervised learning problems. From these, a policy
which satisfies

π̂∗
c,T (t, x) ∈ {u ∈ U |Q̂T−t(x, u) = inf

u′∈U
Q̂T−t(x, u′)}

is taken as approximation of an optimal control
policy.

Posing Q̂0(x, u) = 0, ∀(x, u) ∈ X×U , the training
set for the Nth supervised learning problem of the
sequence (N ≥ 1) is

{
(il, ol) =

(
(xl

t, u
l
t), r

l
t + γ inf

u∈U
Q̂N−1(x

l
t+1, u)

)}#F

l=1

where the il (resp. ol) denote inputs (resp. out-
puts). The supervised learning regression algo-
rithm produces from the sample of inputs and
outputs the function Q̂N .

3. TIME HORIZON TRUNCATION

Let π∗
s,T denote a stationary policy such that

π∗
s,T (x) ∈ {u ∈ U |QT (x, u) = inf

u′∈U
QT (x, u′)} and

let π∗
T denote a T -stage optimal control policy.

We have the following theorem (proof in Ernst
et al. (2006)):

Theorem 2. For any T, T ′ ∈
�

0 such that T ′ < T ,
we have the following bound on the suboptimality
of π∗

s,T ′ when used as solution of a T -stage optimal
control problem:

sup
x∈X

(
C

π∗

s,T ′

T (x) − C
π∗

T

T (x)

)
≤

γT ′

(4 − 2γ)Bc

(1 − γ)2
.(5)

Theorem 2 shows that the suboptimality of the
policy π∗

s,T ′ when used as solution of an optimal
control problem with an optimization horizon T
(T > T ′) can be upper bounded by an expression
which decreases exponentially with T ′.

When dealing with a large or even infinite opti-
mization horizon T , MPC and RL algorithms use
this property to truncate the time horizon, so as
to reduce computational burdens. In other words,
they solve an optimal control problem with a time
horizon T ′ < T and compute an approximation
π̂∗

s,T ′ of π∗
s,T ′ .

Since πs(x) = π∗
o,T ′(x, 0) is a π∗

s,T ′ policy, MPC
methods produce the following policy: π̂∗

s,T ′(x) =
π̂∗

o,T ′(x, 0). Similarly, the RL algorithm outputs a
policy π̂∗

s,T ′ (x) = π̂∗
c,T ′(x, 0).

4. EXPERIMENTS

In this section, we present simulation results ob-
tained by using MPC and RL techniques. The
section starts with a description of the optimal
control problem considered. Then, we run exper-
iments on this optimal control problem with the
reinforcement learning algorithm and, afterwards,
with the MPC algorithm.

4.1 Control problem

We consider the problem of controlling the bench-
mark power system represented on Fig. 1a. This
academic power system example is composed of a
generator connected to a machine of infinite size
through a transmission line. On the transmission
line is installed a variable reactance which influ-
ences the amount of electrical power transmitted
through the line. The system has two state vari-
ables, the angle δ and the speed ω of the generator.
The dynamics of these two state variables is given
by the set of differential equations:

δ̇ = ω

ω̇ =
Pm − Pe

M
with Pe =

EV

u + Xsystem
sin δ

where Pm, M , E, V and Xsystem are parameters
equal respectively to 1, 0.03183, 1, 1 and 0.4.
Pm represents the mechanical power of the ma-
chine, M its inertia, E its terminal voltage, V the
voltage of the terminal bus system and Xsystem

the overall system reactance. When the uncon-
trolled system is driven away from its equilib-
rium point (δe, ωe) = (arcsin(

XsystemPm

EV ), 0), un-
damped electrical power (Pe) oscillations appear
in the line (Fig. 1b). A variable reactance u has
been installed in series with the overall reactance
Xsystem. The control problem consists in finding
a control policy for this variable reactance which
damps the electrical power oscillations.

From this continuous time control problem, we
define a discrete-time optimal control problem
with infinite time optimization horizon (T →
∞) such that policies π leading to small costs
lim

T→∞
Cπ

T (x), also tend to produce good damping

of Pe.

The discrete-time dynamics is obtained by dis-
cretizing the time with the time between t and t+1
chosen equal to 0.050 s. The value of u is chosen
constant during each 0.050 s interval. If δt+1 and
ωt+1 are such that they do not belong anymore to
the stability domain of the uncontrolled (u = 0)
system (Fig. 1c), that is if
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1

2
Mω2

t+1 − Pmδt+1 −
EV cos(δt+1)

Xsystem
> −0.438788,

then a terminal state is supposed to be reached.
A terminal state is a state in which the system
remains stuck, i.e. term. state = f(term. state, u)
∀u ∈ U .

The state space X is thus composed of the un-
controlled system’s stability domain (Fig. 1c) plus
one terminal state. The action space U is chosen
such that U = {u ∈ � |u ∈ [−0.16, 0]}. The decay
factor γ is equal to 0.95. The cost function c(x, u)
was chosen to penalize deviations of the electrical
power from its steady state value (Pe at steady
state = Pm). Furthermore, since control actions
should not drive the system towards the terminal
state, a very large cost is associated with such
actions. The value of this latter cost was chosen
such that a policy which drives the system outside
of the stability domain, whatever the optimization
horizon T , is necessarily suboptimal. The exact
cost function is:

c(xt, ut)=

⎧⎪⎨
⎪⎩

(Pet+1 − Pm)2 if xt+1 �= term. state

0 xt = term. state

1000 otherwise

(6)

where Pet+1 = EV
Xsystem+ut

sin(δt+1).

V � 0E � δ

Generator

Xsystem u

System reactance Variable reactance

Electrical power (Pe)
Infinite size generator

(a) Representation of the power system.

Pm

0.0 2.5 5. 7.5 10. 12.5

2.

1.

0.0

−1.

−2.

Pe

t(s)

10.

5.

0.0

−5.

−10.

−1.−.50.00.51. 1.52.

ω

δ

(b) Electrical power

oscillations when at t = 0

(δ, ω) = (0, 8) and u = 0

(c) Stability domain of

the uncontrolled (u = 0)

power system.

Fig. 1. Some insights into the control problem.

4.2 Reinforcement learning

Fitted Q iteration algorithm. The fitted Q
iteration algorithm computes π̂s,T ′ by solving
sequentially T ′ batch mode supervised learn-
ing problems. As batch-mode supervised learn-
ing algorithm, we have chosen the Extra-Trees
algorithm (Ernst et al., 2005; Geurts et al.,
2006). At each iteration of the fitted Q it-
eration algorithm, one also needs to compute
inf
u∈U

Q̂(xl
t+1, u) for each l ∈ {1, 2, · · · , #F}. To

Value of T ′

1 5 20 100

RL, #F = 105 44.3† 39.3 20.5 20.9

RL, #F = 103 43.9† 47.2 27.7 26.9

MPC 55.2† 38.2 20.3 20.3

Table 1. Value of lim
T→∞

C
π̂∗

s,T ′

T
((0, 8)) esti-

mated by simulating the system with π̂∗
s,T ′

from (δ, ω) = (0, 8) over 1000 time steps. The

suffix † indicates that the policy drives the sys-

tem to the terminal state before t = 1000. Non-

linear optimization algorithm did not converge

at time t = 164 when T ′ = 20.
.compute this minimum, we have considered a sub-
set U ′{0,−0.016, · · · ,−0.16} of U and computed
the minimum over this subset. Similarly, after
T ′ iterations of the algorithm, the policy π̂s,T ′

output by the RL algorithm is chosen equal to
π̂s,T ′(x) = arg inf

u∈U ′

Q̂T ′(x, u).

Four-tuples generation. To collect the four-
tuples we have considered 100,000 one step
episodes with x0 and u0 for each episode drawn
at random in X × U .

Results. On Figs 2a-c, we have represented the
policy π̂s,T ′ computed for increasing values of
T ′. As we may observe, the policy considerably
changes with T ′. To assess the influence of T ′

on the ability of the policy π̂s,T ′ to approximate
an optimal policy over an infinite time horizon,
we have computed for different values of T ′, the

value of lim
T→∞

C
π̂s,T ′

T ((δ, ω) = (0, 8.)). The results

are reported on the first line of Table 1. We see
that the cost tends to decrease when T ′ increases.
That means that the suboptimality of the policy
π̂s,T ′ tend to decrease with T ′, as suggested by
Theorem 2.

Performances of the fitted Q iteration algorithm
are influenced by the information it has on the
optimal control problem, represented by the set
of F . Usually, the less information, the larger

lim
T→∞

C
π̂∗

s,T ′

T (x)− lim
T→∞

C
π∗

s,T ′

T (x), assuming that T ′

is sufficiently large. To illustrate this, we have
run the RL algorithm by considering this time
a 1000 element set of four-tuples, with the four-
tuples generated in the same conditions as before.
The resulting policies π̂∗

s,T ′ are drawn on Figs 2d-
e. As shown on the second line of Table 1, these
policies tend indeed to lead to higher costs than
those observed by considering 100,000 four-tuples.

We were mentioning before, when defining the
optimal control problem, that a policy leading to
small costs was also leading to good damping of
Pe. This is illustrated on Fig. 3a.

4.3 Model predictive control

Non-linear optimization problem. At the
core of the MPC approach, there is the resolution
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(a) π̂∗
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s,5, RL, #F = 105 (c) π̂∗
s,20, RL, #F = 105 (d) π̂∗
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s,1, RL, #F = 103 (f) π̂∗

s,5, RL, #F = 103 (g) π̂∗
s,20, RL, #F = 103 (h) π̂∗

s,100, RL, #F = 103
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ω

δ
0.50.0−.5−1. 1.52.1.

(i) π̂∗
s,1, MPC (j) π̂∗

s,5, MPC (k) π̂∗
s,20, MPC (l) π̂∗

s,100, MPC

Fig. 2. Representation of π̂∗
s,T ′ (x). The evaluation is carried out for {(δ, ω) ∈ X| ∃i, j ∈ � |(δ, ω) = (0.1 ∗ i, 0.5 ∗ j)}.

The grey level of a bullet associated with a state x gives information about the magnitude of |π̂∗
s,T ′(x)|. Black

bullets corresponds to the largest possible value of |π̂∗
s,T ′ | (−0.16), white bullets to the smallest one (0) and grey to

intermediate values with the larger the magnitude of |π̂∗
T ′ |, the darker the grey. Figures a-d gives for different values

of T ′ the policies π̂∗
s,T ′ (x) obtained by the RL algorithm with 100,000 four-tuples, figures g-h with the RL algorithm

with 1000 four-tuples and Figs i-l with the MPC algorithm. On these latter four figures, states for which the MPC
algorithm failed to converge are not represented.

0.0 2.5 5. 7.5 10. 12.5

2.

1.

0.0

−1.

−2.

Pe

t(s) 0.0 2.5 5. 7.5 10. 12.5

2.

1.

0.0

−1.

−2.

Pe

t(s)

(a) π̂∗
s,100, RL, #F=105 (b) π̂∗

s,100, MPC

Fig. 3. Evolution of Pe when the system starts from

(δ0, ω0) = (0, 8) and is controlled by the policy π̂∗
s,100.

of a non-linear programming problem. It has been
stated as follows:

inf
(δ1,··· ,δT ′ ,ω1,··· ,ωT ′ ,u0,··· ,uT ′−1)∈ � 3T ′

(

T ′−1∑
t=0

γt(
EV

Xsystem + ut
sin(δt+1) − Pm)2) (7)

subject to 2T ′ equality constraints (t = 0, 1, · · · , T ′−
1):

δt+1 − δt − (h/2)ωt − (h/2)ωt+1 = 0 (8)

ωt+1 − ωt − (h/2)
1

M

(
Pm −

EV sin δt

ut + Xsystem

)

−(h/2)
1

M

(
Pm −

EV sin δt+1

ut + Xsystem

)
= 0 (9)

with h = 0.05 s and 3T ′ inequality constraints
(t = 0, 1, · · · , T ′ − 1):

ut ≤ 0 (10)

−ut ≤ 0.16 (11)

1

2
Mω2

t+1 − Pmδt+1 −
EV

Xsystem
cos(δt+1)

+0.438788 ≤ 0 (12)

Several choices have been made to state the non-
linear optimization problem. First, the cost of
1000 that occurs when the system reaches a ter-
minal state does not appear in the cost functional
(7) and has been replaced by the inequality con-
straints (12). These constraints limit the search
for an optimal policy to open-loop policies that
guarantee that the system stays inside the sta-
bility domain of the uncontrolled system. It does
not lead to any suboptimality since we know that
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policies driving the system to a terminal state are
suboptimal policies. Another choice that deserves
explanations is the way the equality constraints
xt+1 = f(xt, ut) are modeled. To model them, we
have relied on a trapezoidal method, with a step
size of 0.05 s, the time between t and t + 1 (Eqns
(8-9)).

Non-linear optimization algorithm. As non-
linear optimizer, we have used the primal-dual
Interior-Point Method (Kortanek et al., 1991).

Results. Figures 2i-l represent the different poli-
cies π̂s,T ′ computed for increasing values of T ′.
To compute the value of π̂s,T ′ for a specific state
x, we need to run the optimization algorithm.
As reported on these figures, for some states, the
algorithm fails to converge. Also, the larger the
value of T ′, the more frequently the algorithm
fails to converge, which is not surprising since
the complexity of the optimization problem tends
to increase with T ′. For example, on the 1304
states x for which the policy π̂s,T ′ was estimated,
1 failed to converge for T ′ = 1, 2 for T ′ = 5,
340 for T ′ = 20 and 474 when T ′ = 100. One
may reasonably wonder whether the convergence
problems are not due to the fact that for some
values of x0 and T ′, there are no solutions to the
optimization problem. If the equality constraints
xt+1 = f(xt, ut) were perfectly represented, it
would not be the case since when ut = 0, t =
0, 1, · · · , T ′−1, we know that the trajectory stays
inside the stability domain. However, with a dis-
crete dynamics approximated by Eqns (8-9), it
may not be the case anymore. To know whether
most of these convergence problems were indeed
caused by approximating the equality constraints,
we have simulated the system modeled by Eqns
(8-9) over 100 time steps and with ut = 0, ∀t.
We found out that for the 1304 states for which
the policy was estimated, 20 were indeed leading
to a violation of the constraints when chosen as
initial state. This is however a small number com-
pared to the 474 states for which the non-linear
optimization algorithm failed to converge.

It is interesting to notice that, if we take apart the
states for which convergence did not occur, MPC
policies look similar to RL policies computed with
a large number of samples. This is not surpris-
ing, since both methods aim to approximate πs,T ′

policies. Table 1 reports the costs over an infinite
time horizon obtained by using MPC policies for
various values of T ′. When T ′ = 20, the MPC
algorithm failed to converge for some states met,

which is why the value of lim
T→∞

C
π̂s,20
T is not given.

We observe that for T ′ = 5 and T ′ = 100,
the policies computed by MPC outperform those
computed by RL. Figure 3 shows that, while the
π̂s,100 policy computed by the RL algorithm pro-
duces some residual oscillations, the MPC π̂s,100

policy is able to damp them completely. This is
explained, among others, by the ability the MPC
algorithm has to exploit the continuous nature
of the action space while the RL algorithm dis-
cretizes it into a finite number of values.

5. CONCLUSIONS

We have presented in this paper reinforcement
learning and model predictive control in a uni-
fied framework and run, for both techniques, ex-
periments on a same optimal control problem.
From these experiments, two main conclusions can
be drawn. Firstly, the RL algorithm considered,
known as fitted Q iteration, was offering good
performances. This suggests that it may perhaps
be a good alternative to MPC approaches when
the system dynamics and/or the cost function
are totally or partially unknown. Indeed, rather
than use first the information gathered from in-
teraction to identify the system dynamics and/or
the cost function, one could directly extract from
this information the control policy by using RL
algorithms. Secondly, MPC approaches usually
compute from the model a suboptimal policy by
solving a non-linear optimization problem. How-
ever, we found out that non-linear optimizers may
fail to find a good solution, especially when the
optimization horizon grows. In some sense, we
could have circumvented these convergence prob-
lems by using the fitted Q iteration algorithm
together with a procedure to generate the four-
tuples from the model. More generally, we may
question whether it would not be preferable when
the model is known to rely more on algorithms
exploiting the dynamic programming principle, as
fitted Q iteration does, than to compute immedi-
ately an optimal sequence of actions by solving
a non-linear optimization problem for which the
system dynamics is represented through equality
constraints.
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