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Abstract—We present an application of a cross-entropy based search [8] or nested partitioning [19] constitute the selcon
combinatorial optimization method for solving some unit can-  family of strategies. These are iterative algorithms foickh
mitment problems. We report simulation results and analyze 1ha go|ytion given at the next iteration is a 'stochasticnefi

under several perspectives (accuracy, computing times, dity to , .
solve efficiently large-scale problems), the performancesf the ment’ of the current solution. They have been shown to be

approach. able to efficiently identify good solutions of numerous real
Keywords: cross-entropy method, combinatorial optimizaworld problems and have gained an immense popularity in
tion, power systems. the scientific community. In particular, references [3]1]i1
[12], [13], [14], [16], [21], are only a small sample of the
|. INTRODUCTION success met by these methods when applied to power system

Many problems faced by power system engineers can $@mbinatorial problems.
formalized as combinatorial optimization problems. Asraxa Around 1997, the so-called Cross-Entropy (CE) method was
ples, we mention transmission network expansion planniR§PPosed by R.Y. Rubinstein for solving rare-event sinatat
problems where one needs to evaluate the best possilgblems [17] and was afterwards extended to solving combi-
combination of single investments [16], the unit commitmeratorial problems. Several randomized optimization atgors
problem [11], the optimal placement of phasor measuremeR@&sed on the CE method have been proposed in the literature
units for state estimation [12] or the design of special gtot and have been shown to lead to good performances on

tion schemes [13]. numerous optimization problems, often outperforming othe
We can write a pure combinatorial optimization problerf@ndomized algorithms [18].
using the generic form: While applications of these CE-based techniques to various
fields of engineering have already been reported (see,4,9. |
u* = argmaxS(u), (1) [10]), they have, to our best knowledge, not been applied yet
uet to power systems.

where S(-) denotes the performance function abfl the In this paper, we introduce the cross-entropy method to

discrete search space of the optimization problem. Tyghe power system community by illustrating its applicatan

cally, ¢ is of large dimension- that is, an elementt = problems for which one has to compute short-term production

(u[1],u[2],...,u[n]) of the search space is described by plans to generate electricity at minimal cost. These proble

large number of components. Solving a combinatorial probleare commonly referred to as unit commitment problems.
through simple enumeration has a complexity which grovBased on the simulation results, we also will analyze, under
exponentially with the dimension of the search space, ngakiseveral perspectives (accuracy, computing times, abitity
such an approach hardly applicable when dealing with largelve efficiently large-scale problems), the performancks
dimensional/. the CE-based optimization algorithm.

To curb this exponential growth problem, two types of The paper is organized as follows. Section Il focuses on
strategies are commonly adopted. The first one exploits tiie CE method and describes a practically implementable
particular structure of the performance functi®u) to design CE-based combinatorial algorithm. Section IlI discusses t
‘customized algorithms’. We cite for example the integeaesults obtained by running this algorithm on unit commitine
programming problems [7] which are particular instances pfoblems. Finally, Section IV concludes and the Appendix
(1) where the performance function is given Bu) = provides a detailed description of the benchmark problem
cru[l] 4+ coul2] + ... + cyuln] and for which various 'cus- used.
tomized techniques’, as for example those based on cutting
planes [2] or branch-and-bound [20], have been developed.

Randomized algorithms such as genetic algorithms [9], We start this section by describing the CE method in the
simulated annealing [1], ant colony optimization [5], tabuare-event framework. Afterwards, we explain how to adapt

II. THE CEMETHOD



algorithms developed in this framework for solving combinawhich is also termed the cross-entropy betweén andb(-).
torial optimization problems. Finally, we describe a pigadty The Kullback-Leibler distance, which is not a “distance “ in
implementable and well-performing CE-based combinaltorithe formal sense since it is for example not symmetric, is
algorithm for problems whose search spacesiadémensional defined as follows:
binary spaces, i.é{ = {0,1}".

The material of this section is largely borrowed from [17] D(a,b) = Exna() [ln Q(X)] (5)
to which we refer the reader for a complement of information. b(X)

A. The CE method for rare event simulation The CE method reduces the problem of finding an appropri-

Let X be a random variable taking its value in some discrefd® importance sampling pmf to the following optimization
spaceY’ with a probability mass function (pmfj(-), S’(-) be Problem:
a real-value function defined ot and~ be a real number.

In the rare-event simulation context, one needs to estithate
probability of occurrencé of an event{S’(X) > ~}, i.e. to
estimate the expressidix. s () [I{s/(x)>+}]-* One can show through simple mathematical derivations that

In rare-event simulation problems, this probability is exsolving (6) is equivalent to solve:

tremely low, say less thatD—6, and estimating with enough

argminD(g*,g) . (6)
Y

accuracy by relying on a Crude Monte-Carlo (CMC) estimator argmaxEx s (. [I{S,(X)M} 1ng(X)] @
geg -
.1 &
L= N Z Iis1(x;)27) (2)  which does not depend explicitly dnanymore.
=1 If [ is not too small, CE-based algorithms for rare-event
requires to draw a considerably large sample, X», ..., simulations estimate a good solution of (7) by solving its

Xy from f(-). For example, for estimating = 10~°, with  stochastic counterpart:
a relative errors = 0.01, a sample size ofV ~ —; = 10%°

is required, which shows that it is generally computatiynal M

meaningless to estimate small probabilities via CMC. arggglaxzf{s/(xj)m} In g(X;) (8)
An alternative to CMC is based on importance sampling. J =1
With such an approach, a random sample, Xy, .., Xx  ypare the sampleX;, Xs, ..., X/ is drawn according to

is drawn from an importance sampling prpf-) and the
probability of occurrence of the event is estimated via t
following unbiased estimator

i‘f(')' When! is too small, sayi < 10~%, which is often the
Case in rare-event simulation, the valueldfone has to adopt
for having a 'good’ stochastic counterpart may be prohibli

1 X F(X;) high and some specific iterative techniques need to be adiopte
l= ~ Z I{S/(Xj)Z'y}(TJ.) : (3) to solve (7). The use of these techniques is often equivédent
j=1 9\ solving a sequence of rare event problems using the same pmf

The best way to estimateis to adopt the 'ideal’ importance .f(-) and functionS’ but with increasing values of converging
sampling pmf to the value ofy related to the original problem.
Iie £(X) Under some specific assumptions &) f(-) and G, it is
g (X) = A2y ) (4) possible to solve analytically the optimization problen). (8
! This property is often exploited in the CE context.
Since [ is constant using this 'ideal’ importance sampling gqr example, let us suppose that= {0,1}" and let us

(4) would lead to an estimator (3) having a zero variancgenote byBer, (-, p) the n-dimensional Bernoulli pmf
Consequently, we would need to produce only a one element

sample to determiné Bern(X,p) = H?:lp[i]X[i](l _p[i])le[i] 9)
The obvious difficulty is thag*(-) depends on the unknown
parameter. wherep is a vector of parameters belonging to theube (i.e.,

The main idea of the CE method for rare event simulation [67 1]”), and often referred to as the vector of probabi"ties

to find inside an a priori given sét of pmfs defined ont, the  associated with the Bernoulli distribution, and whe¥éi] is
elementg(-) such that its distance with the ‘ideal’ samplinghe jth component of the random variable.

distribution is minimal. _ Then, one can show that jf(-) is an-dimensional Bernoulli
A particularly convenient measure of distance between Wt andg is the set of alli-dimensional Bernoulli pmfs, the
pmfs a(-) and b(-) on X is the Kullback-Leibler distance, solution Ber, (-, p*) of (8) can be computed analytically:

1The function is defined by

I{logical_ezpression} M .
Iiogical_eapressiony = 1 If logical_expression = true and0 otherwise. wro Zj:1 I{S/(Xj)Z'Y}Xj ['L]
The expressionEx . (. [I{S/(x)zqﬂ can be written equivalently as p [z] -

Yoxex Igsr(x)> F(X).

(10)
M
Zj:l Iisi(x))=v



Input: A performance functiorb : &/ — R wherel/ = {0,1}" and two parameters> and p.
Output: An elementuoytpur € U.

Algorithm:
Step 1.Sett equal tol and the componenis[i] of the n-dimensional vectop, equal t00.5.
SetnbElite equal to the largest integer inferior or equaldgo C x n. If nbElite < 1 then setnbElite to 1.
Step 2.SetU; equal to an empty set ang to an empty vector.
Step 3.Draw independently”’ x n elements according to the Bernouilli pr#fer,, (-, p;) and set them irU;.
Step 4.For every element. € U;, computeS(u) and add this value at the end of the vectar
Step 5.Order the vector; in decreasing order and sgt = r[nbElite].
Step 6.1f stopping conditionsire met, then returfy e =  argmax  S(u) and stop. Otherwise go tBtep 7.

U, UUsU...UU
0 Zueu, Lswyzayuld] . e !
Step 7.Setp;y1[i] = T fort=1,2,...,n andt «— ¢t + 1. Go to Step 2.

Fig. 1. A cross-entropy based combinatorial optimizatitgodthm for search spaces composed of vectors of binarahas.

B. From rare event simulation to combinatorial optimizatio subsection and is particularized to the case where thg set

The main ideas of the CE algorithm for solving the comis the set of alln-dimensional Bernoulli pmfs defined d.
binatorial optimization problem described by Eqn (1) aréhe algorithm solves the optimization problem (7) by regyin
based on the following two observations. First, the eveff its stochastic counterpart (8) whose solution is compute
{S(u) > v = S(u*)}, whereu is a random variable taking @nalytically by exploiting (10).
its values ini/ with a pmf f,(-), tends to be a rare event. There is however one notable difference between the it-

For example, iff,(:) is a uniform pmf possessing a uniqueerative scheme adopted by the algorithm of Fig. 1 and the

maximum, the probability of this event '§U Second, when One described in previous subsection. Indeed, the ram-eve
solving this particular type of rare-event problem by using;)blem the algorithm of Fig. 1 solves at iteratibmoes not

a CE method, one generally obtains, as byproduct, a pRfve a value ofy equal toy, = géang(u). Instead, this value
which is close to the ’ideal’ one, and, therefore, likely tds equal to9; with 4, defined in such a way that only a small
generate samples for which the value ofS(u) is close to fraction ¢ of the elements, € U; lead to a valueS(u) larger
maximal. Based on these two observations, several prigticar equal toy;. These elements having a valuefu) > 4; are
implementable randomized algorithms have been proposedften referred to in the CE literature as the 'elite elememts
These algorithms often exploit the following iterativeelite samples’. The main reason for usifigrather thany, to
scheme. Since the value 6f(u*) is unknown, they start by define the rare-event problem solved at iteratids to ensure
drawing a random samplé, according to a pm#; (-) given as that this problem does not correspond to a too small value of
input of the algorithm (and often chosen as the uniform pmf) Indeed, ifl is too small, one would be required to draw a
and from thisU; computey; = irée[x}fS(u). Afterwards, they prohibitively large sample to have a stochastic counter(@ar

solve the rare-event simulation proble., () [Is(=-,;] VNOSE Solution is accurate enough. o

from which they deduce by solving expression (7), where the Y& note also that the algorithm uses at iteratitine sample
setg is an input of the algorithm, a pmf(-). At the second U; to deflne.the stochastic counterpart (8) of (7).

iteration, they usg»(-) to draw a new sampl&’, from which The algorithm has two parametefsand o. The parameter

they deducey, = maxS(u). Then, they solve the rare-evenC determines the size of the samplés in a way that
uel #U; = C x n. The rationale behind adopting sampl€s

%
simulation problem defined by, (-), 72 and Us. From the hose cardinality is growing with is that usually, the larger
solution of this rare event problem, they deduce a pif). he search space is, the larger the samplesne has to draw
By proceeding like this, they compute a sequence of Py the algorithm to be able to output an element, .
91(), 92(-), g3("), ... . By assuming, among others, thal ¢4 responding to a high-value of the functisf). We suggest

is large enough ang; not too far from the "ideal’ sampling 4 gefayit value for this parametr= 10. As explained before,
distribution corresponding to the rare-event problem aefiat . parametep determines the number of ‘elite samples’ and

iterationt, these pmfs become more likely to generate samplgs, adopt for this parameter a default valuegof 0.1.
U, having elements corresponding to high-value$ 6§ when When the stopping conditions are met, whatever

¢ increases. they are, the algorithm returns the element

C. A practically implementable algorithm Uoutput = ~ argmax S(u) which represents the best
weU,UUxU...UU;

Figure 1 gives the tabular version of a CE-based op#lements among those which have been evaluated throughout
mization algorithm for combinatorial problems whose skard¢he course the algorithm.
spaces are of the tygé = {0,1}". This algorithm is based We found out when carrying our simulations that the
on the iterative scheme described at the end of previossquence of Bernoulli pmfBer,, (-, p1), Bery (-, p2), ... gen-



erated by this algorithm was often converging in a relagivelAfter a few iterations, the best element bf always leads
small number of iterations to a degenerate pmf, that ista a value ofS(-) equal to—92210.5, which is actually the
pmf that assigns all the probability, i.e. probability 1, &0 maximum valueS(-) can achieve ovet/. At iterationt¢ =
single element ot/. When convergence to a degenerate pnéf the corresponding pmfBer,, (-, ps)) is a degenerate pmf
occurs, the algorithm can be stopped since it will only pauwhich assigns a probability 1 to the optimal elemefitand
identical degenerate pmfs afterwards. the algorithm is stopped.

I1l. SIMULATION RESULTS C. Performances of the CE-based combinatorial algorithm

In this section, we discuss some simulation results obdaine siochastic optimization algorithms, such as the CE-based
by running the CE-based optimization algorithm described @ompbinatorial algorithm used in this paper, have esséytal
Fig. 1 on an academic unit commitment problem. anytime behaviour- that is, they can return the best answer

We start by giving a description of the main characteristiggyssiple even if they are not allowed to run to completion and
of this problem. Then, we comment on a typical single rugay improve on the answer if they are allowed to run longer.
of this algorithm. And finally, we study the performances ofynen studying performance of such algorithms, one is uguall
the algorithm for various sizes of this problem. All the ®SU jhterested in establishing the relation that exists betwbe
have been generated by using the algorithm with its defagiality of their answer and the time they are allowed to run
values:p = 0.1 andC' = 10. as well as in establishing how this relation evolves with the
size of the problem.

To illustrate the performances of the CE-based combinato-

The unit commitment problem is the problem of schedulingy algorithm on the benchmark unit commitment problem,
at minimum cost the production of electricity under variouge have chosen to run simulations to determine for several
constraints. Many for_mulauons _of thl_s problgm have beef; o5, of the optimization problem (i) the relation that
proposed (e.g., security constraint unit commitment @bl represents the distance between the solution the CE-based
[6], profit-based unit commitment [15]). We adopt here giqorithm would provide if stopped after iterations (u; =
simple formulation of this problem which, among others, haasrgmaxueUluUzu uu, S(u)) and the optimal solutiorfu*)
no explicit constraints and assumes that the power prodmped(ii) the CPU time associated with an iteration of the aldorit
a generator can only be either zero or maximal. We give, fQlhich for a given sizen of the optimization problem is
the sake of reproducibility of the results, a detailed deson essentially constant whatever the iteratton
of this benchmark unit commitment problem in the AppendiX. e results of these experiments are reported on Fig. 3. We

The problem has been stated in a way that 'its size’ depend$.q as distance measure betweerand u* the expression
on a parameter that represents both th_e nurr_1ber of generat0(§(u*)_S(ut))/(s(u*)) rather thar(:S(u*) — S(u;)) to make
and the dimensionality of the combinatorial search Spagis measure of suboptimality somehow independant of the
These generators are indexed by a numb@r=1,2,....n) sjze , of the optimization problem. An analysis of Fig. 3
and produce ele(_:trlcal power at a cost which grows lineardy, ;s that for every value of,, the suboptimality of the
with 7. By assuming that is a multiple of10, one can gbow solution seems to decreaseftavhent increases. It also shows
that it is optimal to schedule only generatdrs2, ..., 55" that to reach a given degree of suboptimality, one needs to
(see the Appendlx for more details). carry out more iterations when increases. Finally, one can

The ith component of an elementu = geg'that the CPU time per iteration grows more that linearly
(u[t],u[2],...,u[n]) € U is binary and determines whether iy, the size of the optimization problem. Actually, one
the generator is scheduled for production or not. Itis equalan show that the CPU time per iteration grows quadratically
to 1 if the machine is scheduled and zero otherwise. with n. This quadratic growth of the CPU times withis a
consequence of the fact thatU, increases linearly witm
. . . i and that the time needed to generate each elemetit ahd

Figure 2 describes a typical single run of CE-based corgy, | ate its performancs(.) also grows linearly withn.
binatorial algorithm with its default values on the benchkna v ran the CE-based optimization algorithm one thousand
unit commitment problem defined by = 20. This leads to ; es for different values of (25, 50, 100, 200 and400) and

a combinatorial optimization problem having a rath.er smallyserved that it converged every time to degenerate pfnirs wit
search_ spag:e#(u =1 048’ 576) a_md, therefqre, for which W€ 4 reasonable number of iterations. Figure 4 reports foeddfit
could identify the optimal solution by r_elymg on eXhau_et'Vvalues ofn (i) the average number of iterations to convergence,
search. However, we found out that for illustrative puroise (ii) the average suboptimality of the solution outputtedtby

was more convenient to consider here a small value.of 10 ithn? and (iii) the probability that the algorithm identifies

The first colulmn of tEe table gives thefge(rjatrl]onlnumbehi an optimum. The main two observations to be drawn from this
next twenty columns the componentggland the last one the 1,10 416 the following. First, we observe that the number of
largest value thab(-) takes onlU;. As one can see, the pmfs

Ben}(ypt) .have g_eneratEd samples whose beslt elem?ms ¥ nis average suboptimality is here equivalent to the asgtigpsubopti-
leading to increasing values 6f(-) whent starts increasing. mality since we only stop the algorithm when it has converged

A. The benchmark unit commitment problem

B. An illustration of a typical single run of the algorithm



plI] pd2] pd3] pl4] pd5] pd6] pd7 pd8] pd9] pII0] pd11] p{12] pd13] pd14] p{15] pd16] p{17] pI18] pd19] pf20]  maxS(u)

05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 0W» 05 05 -100316.0
0.75 0.75 0.8 0.7 09 08 08 06 08 065 065 06 095 05 3L 05 06 05 045 -95526.3
09 1 1 1 0909 1 08 09 09 075 08 1 03 045 0.75 04 0.6% 005 -92578.9

O ULk W N | o+

1 1 1 1 1 1 1 092 096 0.9 089 1 1 042 0.64 0.67 032 0.60 0.046 0. -92210.5
1 1 1 1 1 1 1 1 1 1 1 1 1 054 090 0.80 0.06 0.58 0.06 0.03 -92210.5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 -92210.5
Fig. 2. A typical run of the cross-entropy based algorithm dombinatorial optimization.
distance ..
to optimum to0 S.ecor_wd, and per.haps s_u.rprls!ngly, the accuracy of the algo-
R rithm in asymptotic conditions is the best for the largestiea
05| T 2007 of n. In particular, we found out that ovel000 runs, the
n = 100 —* algorithm was only once unable to identify the optimum when
0-2] n was equal t@00 or 400.
n = 50>
o average number of average probability
0.1 n  iter. for Ber,(-,p:) suboptimality of identifying the
to degenerate the algorithm optimuunt
0.05] 25 8.02 7.833 x 107° 0.98
50 11.86 2.222 x 1075 0.974
0 — —————————— 100 17.63 1.678 x 107° 0.99
t 200 26.57 3.792 x 1078 0.999
CPU time (s) 400 40.45 9.455 x 1077 0.999

Fig. 4. Influence of the size of the combinatorial optimization problem on
(i) the average number of iterations after whider, (-, p:) degenerates,
(i) the average suboptimality of the algorithm measured (8%u*) —

0-2 maxyev; uv,u..uu,, | S(w))/(S(u*)) (iii) the probability the algorithm
identifies «* over oné ‘run, that is the probability that® € U; U Uy U
0.15 ... UUs,,,, Wheret,,q refers to the first iteration to which corresponds a
degenerate pmf. These results have been generated bygdonievery value
0.1 of n the CE-based combinatorial algorithm one thousand times.

IV. CONCLUSIONS

50 100 150 200 250 300 350 400

" In this paper, we reported some results obtained by running
Fig. 3. Some insights into the computational complexity & CE-based @ Combinatorial algorithm based on the CE method on an
optimization algorithm for solving the unit commitment ptems. The figure academic class of unit commitment problems. We found out

on the top-row plots for different values of the expected distance betweenthat the algorithm. with its suagested default parameteas
the elementu; = arg max,cv, uv,u...uv, S(u) and the optimumu* as g ’ . 99 P !
a function of the number of iterations. The distance betweénand v, 900d performances for this class of problems.

is definetd ?hS(S(U*) - i(gé))t_/(s(u’f))- Thedﬁgure OnAtl\f/\leD té%té%%ow The experiments suggest that CE-based tools can certainly
:)ergzzzssigrs) peei i?t\e/res;t?(?r? of the Cllnlﬂliefﬁaggds(e);(tjirrlliiact)ignar;@n as a functiozn be us_efpl_for solving power system combinatorial problems,
of the sizen of the unit commitment problem. The results have been aeerag€Ven if it is not clear whether these methods would perform
over 1000 runs of the algorithm. better that other stochastic optimization algorithms.(eyg-
netic algorithms, nested partitioning, ant colony optiatian).

In this respect, it would certainly be interesting for theveo
iterations to convergence increases slightly less tharatly system community to define a library of benchmarks for power
with n. Moreover, the number of elementsigffor which the system combinatorial problems that researchers could aise t
performanceS(-) must be evaluated is equal 1@ x n per assess the performances of their approaches, something we
iteration, whereC' is a constant. As a result, the number ofound out was missing.
evaluations of the performance functiéif-) required before ~ We underline that the CE-based concepts could be exploited
convergence grows less than quadratically withKnowing to solve other power system related problems than combina-
that #U grows exponentially withn, we have therefore an torial optimization ones. For example, by assuming we have
exponential decrease with of the percentage of elementsa probabilistic description of the operating conditions aof
u € U whose performances are assessed throughout the cop@ger system and of the possible contingencies, we could
of the algorithm. This percentage is equal on average ¢aploit these concepts in the rare-event framework to @sém
5.97x1072if n = 25 and drops t&.26 x 10719, 1.39x 10~24,  the (small) probability that the integrity of the system may
3.30 x 1075 and6.26 x 10~ whenn is equal to50, 100, be lost and also to identify the pairs “operating condition-
200 and 400, respectively. contingency” that lead to this loss of integrity. The CE noeth



could also be applied to the resolution of continuous ang]

mixed-variable power system optimization problems.

APPENDIX

We describe in this appendix the unit commitment problerr[17

used in our simulations.

(6]

This unit commitment problem has generators indexed [g]

by 1, 2, ..., n. Generator can be turned on or off. If turned

on, it produces a power equal #®[:] MW at a costC[i| $

M. Dorigo, V. Maniezzo, and A. Colorni. The ant systemtiopzation
by a colony of cooperating agent&EE Transactions on Systems, Man,
and Cybernetics - Part B26(1):26—-41, 1996.

Y. Fu, M. Shadidehpour, and Z. Li. Security-constrainedit com-
mitment with AC constraints.IEEE Transactions on Power Systems
20(3):1538-1550, August 2005.

1 R.S. Garfinkel and G.L. Nemhausénteger ProgrammingJohn Wiley

& Sons, New-York, 1972.
F. Glover. Tabu search - part iDRSA Journal on Computin@:4-32,
1990.

] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-

per Megawatt hour (MWh). We associate to every generaao

i a so-calledutility variable u[i], which is equal tol if the

generator is on and if it is off. We want to determine the

value of the vector € {0,1}" that minimizes

cost Production(u) =

e o [0 i S Pliuli] > P
;CMP [ulel + {(PL — S Plijuli]) x plenalty otherwise .

(11

(11]

[12]

(23]

Expression (11) represents the sum of the production costs
over one hour to which a penalty term is added if the schedulidl

generators cannot cover the lo&d

The symbolsn, P[i], C[i], P, penalty are parameters of [15)
the optimization problem. They have been chosen as follows

in our simulations:

1) the number of generators is equal to a multiplel @f
2) the powersP[i] are equal tol00 MW whateveri.
3) Cli] = 30 + U=2

n—1

(16

. N Y
x 70, that is the cost of productlon[

per MWh grows linearly with the index number of a[18]

generator. It is equal t80$/MWh for generatorl and
100$/MWh for generatom.

[19]

] R. Romero, R.A. Gallego, and A. Monticelli.

4)

5)

the value ofP; is equal toglx—O" x 100, which means
that, sincen is a multiple of10, eighty percents of the 20]
generators need to be turned on to cover the load. |27
the penalty factor is equal tol103/MWh. The penalty

to be paid for not covering a certain amount of the load
P, is therefore larger than the cost of producing this
amount of load with the generators whose production
costs are the highest.

With such a choice of parameters, the optimal solution ciiSi
of dispatching the machinds 2, ..., Slx—O" and the minimum

8xn .
cost is equal to:>, X9 [(30 + % x 70) x 100]. While

the unit commitment problem has been formulated here as
a minimization problem, we treat it in our simulation result
section as a maximization problem by taking a performance

function S(u) equal to—cost Function(u) everywhere orf.
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