
Nash equilibrium as the minimum of a function.
Application to electricity markets with large number

of actors.
E.V. Beck∗, R. Cherkaoui,Senior Member, IEEE,†, A. Minoia‡ and D. Ernst§

∗ EPFL-STI-LRE, Switzerland, Email: elena.vdovina@epfl.ch
† EPFL-STI-LRE, Switzerland, Email: rachid.cherkaoui@epfl.ch

‡ Email: anna.minoia@gmail.com
§ Supélec, France, Email: damien.ernst@supelec.fr

Abstract—We introduce in this paper a new approach for
efficiently identifying Nash equilibria for games composedof
large numbers of players having discrete and not too large
strategy spaces. The approach is based on a characterization
of Nash equilibria in terms of minima of a function and relies
on stochastic optimization algorithms to find these minima.The
approach is applied to compute Nash equilibria of some electricity
markets and, based on the simulation results, its performances
are discussed.

Index Terms—Electricity market, Nash equilibrium computa-
tion, combinatorial optimization

I. I NTRODUCTION

Game theory studies decisions that are made in an environ-
ment where various players interact. The most widely ”solu-
tion concept” in game theory is called Nash Equilibrium (NE),
after Nobel Laureate in economics and mathematician John
Nash. A Nash equilibrium in games represents a joint strategy
with the property that no player can benefit by changing his
strategy while the other players keep their strategy unchanged.

This concept of Nash equilibrium has been vastly adopted
to analyze electricity markets. In particular, references[3],
[5], [7], [8], [9], [13], [15], [16], [18], [20], [21] are only
a small sample of the scientific papers which rely on some
NE concepts to model the behavior of the different actors of
an electricity market.

We address in this paper the problem of computation of pure
Nash equilibria for electricity markets having a large number
of players and for which the players have a discrete set of
strategies. Identification of pure NE in such type of games can
be done in principle by relying on an exhaustive search process
which consists of checking whether every single joint strategy
corresponds to a Nash equilibrium. However, the number of
operations that are required for identifying with such a process
the NEs of a game grows exponentially with the number
of players, making such an approach rapidly computationally
impractical.

In this paper, we introduce a new approach for efficiently
identifying Nash equilibria for such type of games. The
approach is based on an alternative characterization of theNEs
of a game in terms of minima of a function defined over the

joint strategy space. With such a characterization, the problem
of finding a sample Nash equilibrium is transformed into a
pure combinatorial optimization problem:

u∗ = arg min
u∈U

D(u) (1)

whereD is a cost function andU the joint strategy space. Solv-
ing such a combinatorial problem by simple enumeration has
still a complexity which grows exponentially with the number
of players. However, by writing the NE search problem under
this form, one can exploit state-of-the-art stochastic optimiza-
tion algorithms, such as genetic algorithms [12], simulated
annealing [1], ant colony optimization [10], tabu search [11] or
nested partitioning [19], to curb this exponential computational
growth with the number of actors.

We have used Genetic Algorithms (GAs) to solve the com-
binatorial problems and validated the approach on a problem
of computation of NEs for an electrical spot market modeled
as a normal-form game.

Simulations results have shown that, even when the number
of power producers bidding to the spot market is large,
the approach is still able to identify NEs within reasonable
computing times. In particular, we have been able to identify,
within a few minutes of computation time, NEs for a spot
market composed of30 power producers and where each
power producer can choose between at least20 different
bidding strategies1.

While this alternative characterization of NEs is not unique
to this paper (see e.g. [17] where several alternative char-
acterizations of Nash equilibria are proposed), this paperis
however the first one which uses this characterization together
with stochastic optimization algorithms. Also, to our best
knowledge, this characterization of NEs as the minima of a
function has not been exploited before in the electricity market
literature.

1This leads to a space of combined strategies composed of morethan3020

elements !
‡ Anna Minoia works for an electricity trading company and collaborated

with the other authors for this work. This paper does not necessarily reflect
the viewpoint of her company. Any error or omission is the sole responsibility
of the authors.

The paper is organized as follows. In the next section
(Section II), we introduce in the context of normal-form game
a characterization of Nash equilibria in terms of minima of a
function and describe a methodology, built upon this charac-
terization, to identify multiple Nash equilibria of a game.In
Section III, we describe the stochastic combinatorial algorithm
used in our simulations. Section IV gathers the simulation
results. We underline that this section will only present results
related to the computation of one Nash equilibrium of a game.
Finally, Section V concludes and gives directions for future
research.

II. GAME THEORY AND NASH EQUILIBRIUM

A. The classical definition of a pure Nash equilibrium

We consider a normal-form gameG whose description is the
following. The game is composed ofN players{1, 2, . . . , N}.
Each playeri can play a strategyui ∈ Ui whereUi is supposed
to be a finite set. Letu = (u1, u2, . . . , uN) ∈ U denote the
players’ combined strategy andJi(u) the payoff of a playeri
if the combined actionu is played.

In such a context, the classical definition of a pure Nash
equilibrium for G is:
The combined strategyu∗ = (u∗

1, . . . , u
∗

N) is a Nash equilib-
rium for G if for all i ∈ {1, 2, . . . , N} and for all ui ∈ Ui we
have

Ji(u
∗

1, . . . , u
∗

N) ≥ Ji(u
∗

1, . . . , u
∗

i−1, ui, u
∗

i+1, . . . , u
∗

N) (2)

B. Nash equilibrium as the minimum of a function

We introduce hereafter a functionD defined over the joint
strategy spaceU which, as shown later in Theorem 2.1, is
always positive whenu ∈ U is not a NE and zero otherwise.

The functionD(u) : U → R
+ is defined as follows:

D(u) = (3)
∑N

i=1[max
u′

i
∈Ui

Ji(u1, . . . , ui−1, u
′

i, ui+1, . . . , uN)− Ji(u)]

We have the following theorem:
Theorem 2.1:The function D is strictly positive if the

combined strategyu is not a Nash equilibrium and equal to
zero otherwise.

The proof of Theorem 2.1 follows directly from the classical
definition of a Nash equilibrium.

As direct consequence of this theorem, we can say that, in
the presence of NEs, the functionD has a number of global
minima equal to the number of NEs.

C. A methodology for identifying multiple NEs in a game

In principle, by using a combinatorial algorithm able to
identify all the minima of the functionD, we could compute
all the NEs of the generic gameG. However, when using
genetic algorithms as optimization algorithms, we found out
by carrying simulations on our benchmark test problem that,in
the presence of multiple Nash equilibria, they were converging
with a high probability to the same equilibrium. Therefore,

we suggest to adopt for identifying multiple NEs an approach
which interlaces the resolution of combinatorial optimization
problems with appropriate penalization of the functionD.
Each time a Nash equilibriau∗ is found by the optimization
algorithm, a neighborhoodN of u∗ is defined and strategies
in this neighborhood are penalized by adding a large positive
value penalty to the function D (i.e., if u ∈ N then
D(u) ← D(u) + penalty). Once the functionD has been
penalized, the combinatorial optimization algorithm is run
again. Similar penalization schemes could also been used to
mitigate the effects of local minima. Since the number of NEs
is usually not known, we could for example stop the NE search
process when the genetic algorithms converge several timesin
a raw to non-zero values of the functionD.

III. G ENETIC ALGORITHM

We will in our simulation result section rely on some genetic
algorithms to solve the optimization problem (1) whereD(u)
is defined by Eqn (3).

The first paragraph of this section gives a general description
of the genetic algorithms. The subsequent paragraphs define
specific elements associated with the genetic algorithms used
in our simulations. These are the fitness function, the genetic
representation which is also called coding scheme and the
genetic operators.

A. General description

Genetic algorithms are a class of heuristic search methods
and computational models of adaptation and evolution based
on natural selection. They became a widely recognized opti-
mization method as a result of the work of John Holland in
the early 1970s [14].

Genetic algorithms are implemented as a computer simula-
tion in which a population of abstract representations (called
chromosomes or the genotype or the genome) of candidate
solutions (called individuals, creatures, or phenotypes)to an
optimization problem evolves iteratively toward better solu-
tions.

At each iteration, one uses three main operators (repro-
duction, crossover and mutation) to create a new population
of candidate solutions whose performances are, in principle,
better that those of the previous one.

A typical genetic algorithm requires three things to be
defined:

• a genetic representation of the elements of the search
domain

• a fitness function to evaluate the individuals of a popula-
tion

• the genetic operators

B. Genetic representation of an elementu ∈ U

In our simulations, we have used as representation of an
element of the search domainU , a string of bits of lengthm,
which is the standard representation [6].

Each component of a joint actionu ∈ U corresponds to a
segment of the string of bits. Such a segment is named gene

and its length is equal tolength gene. Since an element of
u hasN components, the number of players in the game, we
have therefore:m = N × length gene.

Let s denote a binary string of lengthm and sb the bth
component of this string. LetS denote the set of all binary
strings of lengthm.

Let C be the binary coding function andC−1 the decoding
function. More specifically,C(u) gives the binary string which
codesu and C−1(s) gives the element ofU to which the
binary strings corresponds. We assume that:

C−1(C(u)) = u ∀u ∈ U. (4)

In our test problems, every component ofu corresponds to
an integer. We have chosen as coding functionC a standard
approach for coding an integer into a string of bits. More
specifically, we have chosen as a functionC−1 defined by:

(C−1(s))i = (5)
length gene×i

∑

b=1+length gene×(i−1)

sb × 2b−1−length gene×(i−1)

∀i ∈ {1, 2, . . . , N}. From Eqn (5) one can deduce in a
straightforward wayC by exploiting Eqn (4).

In our simulations, every componentui of u corresponds
to a price equal to an integer number of dollars and this price
has been coded by using a7 bit string (length gene = 7).

C. Fitness function

Thefitness function is a function defined overS and gives
’the quality’ of an individuals of the population. We have
chosen this function equal to:

fitness(s) = −D(C−1(s)) (6)

With such a choice, the ’fitter’ an individual, the ’closer’ it
stands from a Nash equilibrium, at least if we assume that the
notion of distance between a elementu ∈ U and its closest
Nash equilibrium is given byD(u).

D. The operators

Let us denote byP (t) the population at iterationt. The size
of the population remains constant whatever the iterationt and
can therefore be described throughout the iterations by a set
of K individuals{s1, s2, . . . , sK}.

The genetic algorithm starts with an initial populationP (0).
Each element of this population is the binary representation
of an elementu chosen at random inU .

At iteration t ≥ 0, the algorithm creates an empty set
P (t + 1) and uses sequentially the reproduction operator, the
crossover operator and the mutation operator to fill this set
with K new individuals. Usually, the quality of the individuals
tends to increase witht, − that is the fitness of individuals of
P (t) increase whent grows. In our simulation results section,
we stopped only the algorithm when an individuals of P (t)

was such thatfitness(s) = 0, − that is whenC−1(s) is a
Nash equilibrium of the game.2

1) Reproduction operator: The reproduction operator se-
lects with replacementnbreproduction individuals fromP (t).
This operator is such that the chances that an individuals

has to be selected grow with its fitness value (fitness(s)).
More specifically, the operator will repeatnbreproduction the
following sequence of instructions: (i) select an individual in
P (t) such that the probability of selectingsj is equal to

p(sj) =
fitness(sj)

∑

s∈P (t) fitness(s)
(7)

(ii) copy this individual and add it to the populationP (t+1).
In our simulations,nbreproduction is always chosen equal

to 2 if K is an even number and1 otherwise.
2) Crossover operator: The crossover operator performs a

partial exchange of characteristics (genetic material) between
two individuals selected randomly from the current population
and create from this exchange a ’new’ individual which
inherits the characteristics of both ’parents’.

This operator repeatsnbcrossover times the following in-
structions: (i) draw with replacement two stringss1 and s2
from P (t) according to the probability distribution defined by
Eqn (7) (ii) build two new strings (ns1, ns2) according to the
following rule:

ns1 = s1(1, cp) ⊕ s2(cp + 1, m)
ns2 = s2(1, cp) ⊕ s1(cp + 1, m)

}

with probability pco

ns1 = s1
ns2 = s2

}

with probability 1 − pco

(8)

wherecp is the crossing point selected at random and with
uniform probability in {1, 2, . . . , m}, ⊕ is a concatenation
operator between strings andpco the ’crossover probability’
(iii) add these two individuals intoP (t + 1).

In our simulations, we have modified in a straightforward
way step (ii) in order to have crossover points which stand
only in between genes represented here by groups of7 bits.

The crossover probabilitypco is equal to0.8 in our sim-
ulations while the value ofnbcrossover is chosen equal to
K−nbreproduction

2 .
3) Mutation operator: The mutation operator introduces

random modifications in the population. These modifications
help to preserve the diversity and prevent the algorithm from
premature convergence. The mutation operator is the last
operator to be used at iterationt. For every individuals of
P (t+1), except thenbreproduction individuals generated by the
reproduction operator, the algorithm chooses with probability
pmo whether to apply a mutation to the individuals of P (t+1).
If yes it selects at random a bit of the strings and changes
its value.

2Without entering into the details, it can be shown that if a NEindeed exists,
then with the operators we have adopted, our GA algorithm will identify with
probability one a Nash equilibrium.

Fig. 1. Mutation operator.

In our simulations we wanted to ensure that after applying a
mutation to an individual, the individual was still correspond-
ing to an element ofU . To do so, rather than to select at
random a bit, we selected at random a genei corresponding
to the actionui. Then, we selected an element at random in
Ui, we converted it into a string by using the functionC(·)
and, finally, we replaced the genei by this string.

The value ofpmo is chosen equal to0.2 in our simulations.

IV. SIMULATION RESULTS

We assess in this section the performances of our approach
when applied to the computation of one Nash equilibrium
of an electricity market. We stress that, as explained in
Section II-C, the approach can in principle be applied to the
computation of several Nash equilibria of a game by using
appropriate penalization schemes. However, since we found
out that the penalization schemes we developed were not yet
mature enough, we preferred to focus in this section on the
computation of only one Nash equilibrium.

The first paragraph of this section details the application of
our approach to the computation of one Nash equilibrium of
a market having only two power producers and has mainly a
didactic purpose.

In the second paragraph, we study for an electricity market
whose number of generators depends on a parameterN , the
performances of our approach.

A. An illustrative example

We illustrate our approach on a problem of computation of
one Nash equilibrium for a spot market where two generators
(generator1 and generator2) bid strategically to maximize
their profits.

Both generators have a constant marginal production cost
and a limited production capacity. These values are defined in
Table I where the symbolCMi denotes the marginal produc-
tion cost of generatori and Qmax

i its maximum production
capacity.

We assume a uniform-price spot market with a price cap
of 50$/MWh and an elastic load. The equationPrmarket =
−0.083×Qtot+58.33 gives the amount of powerQtot the load
is ready to buy at a price per MWh equal toPrmarket. Bids are
submitted in the form of “price per MWh”-”quantity” pairs.
For the sake of simplicity, we consider here that the generators
always bid their full capacity. The strategy spacesU1 and
U2, which are defined in Table I, are therefore composed of
elements which correspond to prices per MWh.

The profit (or payoff) of a generatori is computed by using
the following expression:

Ji(u) = Qi × Prmarket −Qi × CMi (9)

where Prmarket is the market clearing price andQi the
electrical power the generatori is scheduled to produce.

Qmax

i
CMi Ui

[MW] [$/MWh] [$/MWh]
Gen.1 200 25 {25, 26, . . . , 50}
Gen.2 300 30 {25, 26, . . . , 50}

TABLE I
GENERATION DATA AND PRICE STRATEGY SPACE

This process of interaction between the two generators
through the spot market can be modelled as a normal form
game. The functionD (see Eqn (3)) associated with this
normal form game is drawn of Fig. 2. As we may observe,
this function has seven global minima. The functionD(u) is
equal to0 whenu corresponds to one of these global minima.
They correspond therefore, by virtue of Theorem 2.1, to Nash
equilibria.

25 30 35 40 45 50

25

35

45

0

500

1000

1500

2000

2500

3000

3500

4000

Strategy space for GEN 1

Strategy space for GEN 2

V
al

ue
 o

f
D

(u
)

fu
nc

tio
n

Fig. 2. A plot of the functionD defined by Eqn (3).

Since the joint strategy space is here rather small (26 ×
26 elements), there is certainly no need to use combinatorial
algorithms for computing the minima ofD(·). However, for
didactic purpose, we have run on this example the genetic
algorithm with a population of ten individuals. The evolution
of the population in the joint strategy spaceU is drawn on Fig.
3. As we observe, all the individuals coincide at iteration72
with an elementu = (u1, u2) = (27, 36) which is actually a
Nash equilibrium. Actually, this Nash equilibrium was already
found before iteration72 by our approach and the algorithm
could therefore have been stopped earlier.

B. Performances of the approach for markets with large joint
strategy spaces

We now evaluate the performances of our approach when
applied to markets having many actors.

First, we have set up a procedure which takes as input
the number of actorsN and defines automatically the data
of a uniform-price spot market which hasN generators that
can bid strategically. We note that the market is cleared by
computing the intersection between the supply and the demand
curves. Then, we have by using this procedure generated
markets of various sizes and run our algorithm to compute

25 30 35 40 45 50

30

40

50
Evolution pattern of population # 1

25 30 35 40 45 50

30

40

50
Evolution pattern of population # 5

25 30 35 40 45 50

30

40

50
Evolution pattern of population # 10

25 30 35 40 45 50

30

40

50
Evolution pattern of population # 15

25 30 35 40 45 50

30

40

50
Evolution pattern of population # 20

bidding price - generator1

bi
dd

in
g

pr
ic

e
-

ge
ne

ra
to

r2

25 30 35 40 45 50

30

40

50
Evolution pattern of population # 72

Fig. 3. Representation of the populationP (t) at different iterationst (1, 5
10, 15, 20, 72).

a Nash equilibrium for every of these markets. Finally, we
have analyzed the different runs of our algorithm.
Procedure used to generate the data of aN actor electricity
market. The marginal cost (maximum productionQmax

i) of
a generatori is determined by drawing at random and with
uniform probability a value in the set{20, 21, 22, . . . , 30}
({100, 110, . . . , 500}). Its strategy spaceUi is set equal to
{CMi, CMi + 1, . . . , price cap} where price cap is the
value of the market price cap. This value is chosen equal to
50 $/MWh.

The market has an elastic load demand which responds to
the following equation:

Prmarket = k1×Qtot + b1 (10)

wherePrmarket is the market price,Qtot is the quantity of
power the load is ready to buy for a pricePrmarket, k1 is
a parameter chosen equal to−0.11 and b1 is a parameter
whose value depends on the total installed capacity. This
dependence has been introduced to have an elastic load
demand which is correlated with the size of the generation
park. More specifically, we have chosen this coefficientb1
equal to−k1× 0.8×Qinst whereQinst =

∑N

i=1 Qmax
i .

Figure 4 represents for several values ofN some typical
elastic load demand curves and supply curves.
Simulation results. By using the procedure described previ-
ously, we have generated for various values ofN the data of
different markets and run on each of this market our algorithm
to compute a Nash equilibrium. Figure 5 reports the simulation
results obtained by this procedure as well as those obtainedby
an approach relying on an exhaustive search process to find
all the Nash equilibria of the system.

We explain hereafter the content of this figure.
Column I: Number of generators in the market (N). This

number ranges from2 to 30.
Column II: Total number of NEs in the market. These NEs

have been found by relying on an exhaustive search process.
We note that the total number of NEs is only reported for

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

20

40

60

80

100

120

140

Quantity

P
ric

e

E

load 10 GENs

load 2 GENs

bids 10 GENs
bids 2 GENs

price cap

Fig. 4. Some typical elastic load demand curves and supply curves.

values ofN smaller or equal to4. Determining the number of
NEs for larger values ofN was leading to too high computing
times.

Column III: CPU time needed to carry out this exhaustive
search. The number between brackets reports the value of this
CPU time divided by the number of NEs in the game. This
number can in some sense be seen as the average time needed
to compute a NE by relying on an exhaustive search process.

Column IV: Average CPU time needed by the genetic
algorithm to find a minimum ofD(·), i.e. to find a NE. The
genetic algorithm has been run with a population sizeK = 40.

Column V: Average number of iterations needed by the
genetic algorithm to find a minimum ofD(·).

The values of Columns IV and V have been computed by
averaging the results obtained over10 runs of our algorithm.
Analysis of the simulation results. Different observations
can be drawn from Figure 5. At first, one should note that the
number of NEs grows with the number of generatorsN . At
second, one should observe that the time required to find the
NEs by exhaustive search grows extremely rapidly withN ,
making this approach rapidly too computationally demanding
whenN increases. Moreover, an analysis of the fourth column
of this table shows that the average CPU time for finding a
NE with our approach does not grow ’too rapidly’ withN .
This allows us to tackle much larger problems than with the
exhaustive search approach. It should be noted that the growth
in CPU times is the combination of two factors: (i) the increase
with N of the CPU time required to carry out one iteration
of our algorithm (ii) the growing number of iterations that are
needed for identifying a NE whenN increases, as illustrated
in the last column of the table.

It is clear that the performances of our approach depend on
the different parameters of the GA algorithm. For example,
we found out that by usingK = 10 rather thanK = 40,
the algorithm was performing better for small values ofN .
However, whenN was greater than10, it was preferable
to work with K = 40. Numerous papers have addressed
the problem of fine tuning of some stochastic optimization
algorithms (see, e.g. [2], [4]). We refer the reader to them for
a complement of information about this subject.

Number Number CPU Time for finding Average CPU Average number of
of GENs (N) of NEs every (a) NE for finding a NE iter. for finding a NE

by exhaustive search (GA based approach) (GA based approach)
2 3 85.78 (28.60) 12.058 14.3
3 6 5025.42 (837.57) 19.948 14.667
4 16 296102.31 (18506.39) 13.579 14.8
5 / / 24.15 17.5
10 / / 33.297 18.1
20 / / 133.858 16.5
30 / / 2234.415 53.5

Fig. 5. An analysis of the performances of an exhaustive search approach which computes every Nash equilibrium and of theGA based approach which
computes a Nash equilibrium by finding a zero ofD(·). The CPU times are given in seconds on an Intel Pentium 4 2.40 GHz processor.

V. CONCLUSIONS

We have proposed and evaluated in this paper a new
approach for computing Nash equilibria for games having a
large number of actors. While standard approaches to this
problem rely on some best-response type strategies, the pro-
posed methodology was reformulating the problem as a stan-
dard minimization problem and using stochastic optimization
algorithms to solve this problem. In principle, the methodology
is also able to identify every equilibrium of the game by using
an iterative scheme together with a proper penalization of the
cost function.

We validated our approach on electricity markets having
an elastic load demand and found out that the approach
was able to identify with ’reasonable computing times’ a
Nash equilibrium of a game, even when dealing with a large
number of power producers. Some side simulations showed
us that designing an appropriate penalization scheme for
identifying multiple Nash equilibria was however challenging.
Therefore, we propose as first research direction to design
well-performing penalization schemes able to identify in an
efficient way every Nash equilibrium of a game or at least a
high percentage of them.

As second research direction, we suggest to extend our
approach to games where the actors have strategy spaces de-
scribed by continuous or mixed integer-continuous variables.
While the philosophy behind the extension is straightforward,
we expect that state-of-the art optimizers may run into diffi-
culties when solving the corresponding minimization problem
since it is, among others, generally non-convex.

Finally, we underline that it would be pertinent to compare
the performances of our approach with those of some other
approaches for computing Nash equilibria. In this respect,it
would certainly be interesting for the power system community
to define a library of benchmarks for problems of computation
of Nash equilibria for electricity markets, something we found
out was missing.

REFERENCES

[1] E.H.L. Aarts and J.H.M. Korst. Simulated Annealing and Boltzmann
Machines.John Wiley & Sons, 1989.

[2] B. Adenso-Diaz and Manuel Laguna. Fine-tuning of algorithms using
fractional experimental design and local search.Operation Research,
54(1):99–114, 2006.

[3] C.A. Berry, B.F. Hobbs, W.A. Meroney, and R.P. O’Neill. Understanding
how market power can arise in network competition: a game theoretic
approach.Utility Policy, 8(3):139–158, September 1999.

[4] M. Blesa and F. Xhafa. Using parallelism in experimenting and fine
tuning of parameters for metaheuristics. InComputational science -
ICCS 2004, volume 3036 ofLecture Notes in Computer Science, pages
429–432. Springer Berlin / Heidelberg, 2004.

[5] D. Chattopadhyay. Multicommodity spatial sournot model for generator
bidding analysis.IEEE Transactions on Power Systems, 19(1):267–275,
February 2004.

[6] M. Coli, G. Gennuso, and P. Palazzari. A New Crossover Operator for
Genetic Algorithms.Proceeding of the IEEE International Conference
on Evolutonary Computation ICEC 96, pages 201–206, May 1996.

[7] J. Contreras, M. Klusch, and J. B. Krawczyk. Numerical solutions to
Nash Cournot equilibria in coupled constraint electricitymarkets.IEEE
Transactions on Power Systems, 19(1):195–206, February 2004.

[8] Pedro F. Correia, Thomas J. Overbye, and Ian A. Hiskens. Searching
for noncooperative equilibria in centralized electricitymarkets. IEEE
Transactions on Power Systems, 18(4):1417–1424, November 2003.

[9] Lance B. Cunningham, Ross Baldick, and Martin L. Baughman. An
empirical study of applied game theory : transmission constrained
Cournot behavior. IEEE Transactions on Power Systems, 17(1):166–
172, February 2002.

[10] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: optimization
by a colony of cooperating agents.IEEE Transactions on Systems, Man,
and Cybernetics - Part B, 26(1):26–41, 1996.

[11] F. Glover. Tabu search - part ii.ORSA Journal on Computing, 2:4–32,
1990.

[12] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley, 1989.

[13] R. Green and D. M. Newbery. Competition in the British electricity spot
market. Journal of Political Economy, 100(5):929–953, October 1992.

[14] J. H. Holland.Adaptation in Natural and Artificial Systems. MIT Press,
Cambridge, MA, USA, 1992.

[15] Kwang-Ho Lee and Ross Baldick. Solving three - player games by the
matrix approach with application to an electric power market. IEEE
Transactions on Power Systems, 18(4):1573–1580, Nov. 2003.

[16] Kwang-Ho Lee and Ross Baldick. Tuning of discretization in bimatrix
game approach to power pystem market analysis.IEEE Transactions on
Power Systems, 18(2):830–836, May 2003.

[17] R.D. McKelvey and A. McLennan.Handbook of computational eco-
nomics, volume 1, chapter Computation of equilibria in finite games,
pages 87–142. North-Holland, 1996.

[18] A. Minoia, D. Ernst, M. Dicorato, M. Trovato, and M. Ilic. Reference
transmission network: a game theory approach.IEEE Transactions on
Power Systems, 21:249–259, February 2006.

[19] L. Shi and S. Olafsson. Nested partitioning for global optimization.
Operations Research, 48(3):390–407, 2000.

[20] You Seok Son and Ross Baldick. Hybrid coevolutionary programming
for Nash equilibrium search in games with local optima.IEEE Trans-
actions on Evolutionary Computation, 8(4):305–315, August 2004.

[21] W. Xian, L. Yuzeng, and Z. Shaohua. Oligopolistic equilibrium analysis
for electricity markets: a nonlinear complementarity approach. IEEE
Transactions on Power Systems, 19(3):1348–1355, August 2004.

