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Abstract

In this paper we compare Nash equilibria analysis and agent-based modelling for assessing the market dynamics of network-con-
strained pool markets. Power suppliers submit their bids to the market place in order to maximize their payoffs, where we apply rein-
forcement learning as a behavioral agent model. The market clearing mechanism is based on the locational marginal pricing scheme.
Simulations are carried out on a benchmark power system. We show how the evolution of the agent-based approach relates to the exis-
tence of a unique Nash equilibrium or multiple equilibria in the system. Additionally, the parameter sensitivity of the results is discussed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the early 1990’s the power supply industries worldwide
started to undergo a period of extensive changes. Electricity
markets moved away from vertically integrated monopolies
towards liberalized structures with power delivery being a
bundle of several services mainly including generation,
transmission and distribution. The main reason for restruc-
turing lied in the expectation that competition could lead to
a reduction of electricity prices and could stimulate the
emergence of new technologies. However, several national
markets (e.g., in California, the United Kingdom and
Spain) were suspected to allow for ‘gaming’ and the exercise
of market power. Thus, electricity markets have been re-
reorganized and will continue to be subject to structural
changes, as observed with the recent introduction of the
New Electricity Trading Arrangements (NETA) in the
UK and the upcoming inauguration of a market regulator
in Germany. Ideally, the effects of such market restructuring
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proposals should be known prior to their implementation.
Hence, there is a need for appropriate modelling and anal-
ysis concepts, where at least four distinct approaches can
be distinguished [1]: (a) ex post analysis of existing markets,
(b) market concentration analysis using current market
data, (c) equilibria analysis, and (d) multi-agent modelling,
where either individuals are interacting or artificial agents.
The above concepts may be used to study effects concerning
market concentration, efficiency, and market power. Never-
theless, in [1] it is pointed out that the different concepts are
significantly sensitive to the underlying assumptions, the
choice of the behavioral agent-models and the set of param-
eters used for the algorithms. Bunn and Oliveira in [2]
state ‘‘that with the process of daily experimentation and
learning of the market players multiple transient equilibria
are likely to occur’’, where it has to be investigated how
the different concepts ‘cope’ with this constellation.

The contribution of this paper is a comparison of Nash
equilibria analysis and agent-based modelling in conjunc-
tion with reinforcement learning for a network-constrained
pool market. We show the interdependencies of the two
approaches, i.e., we focus on the assessment of the market
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1 In this work we consider a particular class of repeated-game strategies
such as an open-loop strategy. This is a simple class of history-independent

dynamic games.
2 (d)t refers to d to the power of t while rt

i refers to the reward observed
by agent i at time t.
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dynamics obtained through an agent-based model with
respect to the existence of Nash equilibria in the system.
This paper is a further development of [3]. For sake of con-
sistency and clarity we outline our previous findings, but
then extend our analysis and describe the parameter-depen-
dencies of the results.

The paper is organized as follows. In Section 2 we intro-
duce matrix and repeated games, define the notion of Nash
equilibrium and introduce a behavioral agent model known
as Q-learning. Section 3 describes the implementation of a
pool market and shows how the process of bidding to a
spot market may be formalized as a repeatedly played
matrix game. In Section 4 we set up a benchmark electricity
market and discuss the simulation results obtained. Even-
tually, Section 5 concludes the paper.

2. Matrix games, Nash equilibrium and agent-based

modelling

2.1. Matrix games and repeated play

Game theory is a branch of economic science focusing on
the behavior related to interactive decision making prob-
lems. There are a vast variety of games that are analyzed
in depth in literature (e.g., [4,5]) and several types of games
have been used by electricity market researchers (e.g. [6,7]).
In this paper, we consider non-cooperative games played
repeatedly a finite number of times. First we outline the
basic matrix game in a normal form defined through:

• a set of n agents {1 , . . . ,n}
• A1 , . . . , An finite sets of pure actions available to the

agents (Ai is the space of actions for agent i)
• pi denotes the mixed strategy used by agent i to select its

actions. pi(ai) represents the probability for agent i to
select action ai 2 Ai. A pure strategy is a degenerate case
of a mixed strategy for which $ai 2 Ai such that
pi(ai) = 1. p = (p1 , . . . ,pn) denotes the strategy profile
for the matrix game.

• ri:A! R is the reward function of the stage game for
agent i where A = A1 · � � � · An. In the case of mixed
strategy the expected reward is calculated as:

riðp1; � � � ; pnÞ ¼
X

a2Ai

p1ða1Þ � . . . � pnðanÞ � riða1; . . . ; anÞ

ð1Þ
where a = (a1 , . . . ,an). In the repeated game repetition
means that exactly the same single stage game is played
a certain number of times [8]. The space of actions and
corresponding payoffs is kept invariant. The choice of
strategy might be influenced by the history of the game.

• t 2 {1,. . .,T} refers to a particular period of the game.
• at ¼ ðat

1; . . . ; at
nÞ is the action profile being played at t.

• Let ht = (a1,a2 , . . . ,at�1) denote a specified history of the
game at period t (in other words it is the collections of
actions that have been chosen in all previous iterations
by all the agents).
• si denotes the mixed strategy used by agent i to select its
actions. Si is the set of possible mixed strategies for
agent i. This strategy may be such that the probability
to select an action at time t may depend on the history
of the game ht.1 s = (s1,. . .,sn) denotes the repeated game
strategy profile.

• The payoff of each agent is a weighted cumulative sum
of payoffs it obtains in every period:2
ui ¼ r1
i þ dr2

i þ � � � þ ðdÞ
T�1rT

i ¼
XT

t¼1

ðdÞt�1rt
i ð2Þ

where d is a discount factor (commonly a ‘‘time’’ factor).
A discount factor close to 0 means that the agent puts
most weight on the payoffs from the first periods (impa-
tient about near-future profits). If this factor is close to 1
than the player is rather indifferent between the out-
comes of any rounds. It does not affect much our discus-
sions because the analysis of results is mostly based on
winning strategies rather than on cumulative payoff’s
comparison.

2.2. Nash equilibrium

The fundamental solution concept in game theory is a
Nash equilibrium (NE) point where each agent’s strategy
is a best response to the strategies of the others. A player
has no motivation to deviate from NE strategy since it
would lead to a decrease of its expected payoff. Nash equi-
librium of the stage game is formally defined as follows:
The strategy profile p� ¼ ðp�1; . . . ; p�nÞ is a Nash equilibrium

if for all i 2 {1 , . . . ,n} we have

riðp�1; . . . ; p�nÞP riðp�1; . . . ; p�i�1; pi; p
�
iþ1; . . . ; p�nÞ ð3Þ

Several algorithms have been developed for computing
Nash equilibria. The interested reader may refer to [3,9].
In the case of finite repeated games the subgame consists
of a sequence of single stage-game equilibria. The repeated

game strategy profile s* is a subgame-perfect Nash equilib-
rium if for all i 2 {1,. . . ,n} we have

s�i2si2Si arg max riðsi; s��iÞ: ð4Þ

If there is a unique stage-game equilibrium then it is re-
peated over whole game.

For the particular problems studied in this paper we
have only observed the presence of pure stage-game Nash
equilibria (see Section 4). Since the action spaces Ai are
finite in our examples, these Nash equilibria at every stage
were computed by enumeration of all n-tuples of A and
selection of those which were satisfying Eq. (3).
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2.3. Agent-based modelling and reinforcement learning

Most economies incorporate a large number of market
participants (also referred to as agents) interacting locally
with each other by, e.g. selling or buying goods, where
every participant may follow a set of individual objectives.
This interaction on the micro-level determines to a large
extent the overall market dynamics, i.e. the evolution of
market characteristics, such as market prices, price volatil-
ity, overall trading volume etc. Hence, we observe a feed-
back between the micro- and the macro-level of markets.3

One concept to account for this feedback is agent-based
computational economics, where systems are described
through a bottom-up approach by modelling the different
market participants and letting them interact within a
defined macro-structure. In Section 3 we will describe the
macro-structure of the studied electricity market, whereas
in this section we outline reinforcement learning as one
concept to be applied for the behavioral modelling of the
agents.

Reinforcement learning is the problem faced by an agent
that learns behavior from experience acquired from inter-
action with its environment (see [10] for a survey). In the
context of reinforcement learning, we suppose that the
matrix game defined in Section 2.1 is played several times,
and that each time the game is played the different agents
observe their rewards and use these observations to adjust
their strategy in order to maximize their next reward. We
propose to use here for the problem of learning in matrix
games the well-known Q-learning algorithm [11], which
was initially designed for learning through interaction with
a Markov Decision Process. There are several papers,
which discuss extensions of Q-learning algorithm to vari-
ous types of games and study under which conditions the
behavior of the players converge to a Nash equilibrium
[12,13].

When an agent i is modelled by a Q-learning algorithm,
it keeps in memory a function Qi:Ai! R such that Qi(ai)
represents the expected reward it believes it will obtain by
playing action ai. It then plays with a high probability
the action it believes is going to lead to the highest reward,
observes the reward it obtains and uses this observation to
update its estimate of Qi. Suppose that the tth time the
game is played, the joint action ðat

1; . . . ; at
nÞ represents the

actions the different agents have taken. After the game is
played and the different rewards ri have been observed,
agent i updates its Qi-function according to the following
expression:

Qiðat
iÞ  Qiðat

iÞ þ at
iðriðat

1; � � � ; at
nÞ � Qiðat

iÞÞ ð5Þ
3 The feedback is mutual. Changes within the macro-structure, e.g.
trading protocols, quotas, etc. will certainly influence the micro-level as
the market players may adopt to the respective changes by modifying their
objectives.
where at
i 2 ½0; 1� is the degree of correction. If at

i ¼ 1, the
agent supposes that the expected reward it will get by tak-
ing action ai ¼ at

i in the next game is equal to the reward it
just observed. If at

i ¼ 0, it means the agent does not use its
last observation to update the value of its Qi-function.

We will suppose in this paper that the agents select their
actions according to the so-called �-Greedy policy. When
an agent i uses an �-Greedy policy to choose its action, it
selects with probability 1 � � the action which maximizes
its believed expected reward ðarg maxai2Ai QiðaiÞÞ, and
chooses with probability � an action at random in Ai.
The main reason for an agent to adopt a policy that selects
from time to time an action that it believes does not lead to
the highest expected reward, is to guarantee that all actions
have been tried a sufficient number of times to be able to
correctly assess their expected reward.

Even if the value of � is chosen to be constant for each of
the agents, they will constantly update their Qi-functions
and their policies become time-variant. Therefore, nothing
can be firmly said about the convergence of these reinforce-
ment learning algorithms. However, as we have observed in
our simulations (see Section 4), the learned Qi-functions
sometimes remained almost unchanged after a certain
learning time, and their corresponding greedy actions—
the actions that maximize their Qi-functions—corre-
sponded to a pure Nash equilibrium or said otherwise,
after playing several games, the joint pure strategies
ðarg maxa12A1

Q1ða1Þ; . . . ; arg maxan2An QnðanÞÞ corresponded
to a pure Nash equilibrium.

Fig. 1 shows a tabular version of the algorithm that sim-
ulates reinforcement learning driven agents interacting with
a matrix game. The number of games after which the sim-
ulation should be stopped (step 8 of the algorithm) depends
on the purpose of the study. For example, one may be
interested in studying the dynamics of the system for a pre-
defined number of games, or to simulate it until the differ-
ent agents have learned a rational behavior.
Fig. 1. Simulation of reinforcement learning agents interacting with a
matrix game.



Fig. 2. True marginal cost and markup.

4 The constraints represent a power flow using the usual DC power flow
approximations.

602 T. Krause et al. / Electrical Power and Energy Systems 28 (2006) 599–607
2.4. Agents use subgame-perfect Nash equilibria to select

actions

Later in this paper, we will suppose that the different sets
Si are composed only of history-independent strategies and
that the agents play T times the matrix game and use the
knowledge of the subgame-perfect Nash equilibria of the
corresponding repeated game to select their strategies. If
the matrix game has just one single Nash equilibrium p*,
there is only one subgame-perfect Nash equilibrium. There-
fore, by using the knowledge of the subgame-perfect Nash
equilibrium to select at period t its action, agent i will
choose an action according to the mixed strategy p�i .
Now, if the matrix game has nbEq Nash equilibria, it
implies that there are TnbEq subgame-perfect Nash equilib-
ria. We suppose in this case that every agent selects at ran-
dom one of these subgame-perfect Nash equilibria to
determine its strategy. By proceeding like this, agents will
not necessarily have strategies which correspond to the
same subgame-perfect Nash equilibrium and do not seek
to select equilibria having some particular properties (e.g.
Pareto optimality). Note that selecting at random a sub-
game-perfect Nash equilibrium or selecting T times at ran-
dom a Nash equilibrium of the stage game are two
‘‘equivalent things’’. Therefore, we may consider that,
when using subgame-perfect Nash equilibria to select its
actions, agent i selects at every t a Nash equilibrium p* at
random and play an action according to the mixed strategy
p�i .

3. Market structure and corresponding matrix game

3.1. Market structure

We assume a mandatory spot market, where the suppli-
ers submit bids in the form of linear marginal price func-
tions. Besides the spot market no other transactions are
allowed (no bilateral agreements etc.). We suppose dealing
with a power system in which we have nbGen generators
(G1,. . .,GnbGen), nbNodes nodes (1,. . ., nbNodes) and inelas-
tic and constant loads. Below the decision problem of the
power suppliers (generators) is outlined, where we assume
linear marginal cost for the suppliers.

3.2. Decision problem of the power suppliers

In contrast to perfectly competitive markets where par-
ticipants are assumed to be price takers and prices are
equal to the marginal cost of supply we assume in our
model an oligopoly market. Thus, suppliers may bid strate-
gically above their marginal cost as they realize their possi-
ble influence on market prices. Subsequently, we consider
that generators may deviate their bids from marginal cost
(unknown to the outside world) to increase their profits
where in [1] two ways of deviating are discussed: (a) chang-
ing the slope sGi of the submitted function or (b) changing
the intercept icGi . In our model the latter choice is imple-
mented, generators only manipulate the intercept of their
bid function. The line of argument follows the description
in [1]: ‘‘Slopes of marginal cost function for individual gen-
erators are usually very shallow, so the very steep slopes
that would result from manipulating s would not be credi-
ble. [� � �]’’. To manipulate the intercept icGi generators set a
certain markup mupGi

in order to maximize their payoffs
(see Fig. 2).

3.3. Optimization problem of the independent system

operator

Above it was described that generators will submit a lin-
ear marginal cost or a parallel translated function (deter-
mined by the markup) to show their willingness to
supply. The ISO collects all bids and is then in charge of
clearing the market by minimizing the sum of the produc-
tion costs while satisfying network constraints. To realize
this objective, the ISO solves the following quadratic pro-
gramming problem:

Determine

ðP G1
; . . . ; P GnbGen

; h1; . . . ; hnbNodesÞ 2 RnbGenþnbNodes

that minimizes

X

Gi

1

2
P Gi diagðsGiÞP Gi þ icGi P Gi ð6Þ

subject to the constraints4

P loadðkÞ ¼ P producedðkÞ þ
X

nbNodes

yklðhl � hkÞ

P Gi 6 P max
Gi

jyklðhk � hlÞj 6 P max
kl

Here P Gi denotes the power injected by generator Gi, hk the
voltage angle at node k, P max

kl the maximum flow allowed in
the line connecting node k to node l, ykl the admittance
of the line connection node k to node l, and Pload(k)
(Pproduced(k)) the power consumed (injected) at node k.

By solving this quadratic programming problem, the
ISO can determine the power each generator Gi should



Fig. 3. Power system description.

Table 1
Generation data and sets of markups

P max
Gi

MW icGi [$] sGi [$/MW] mupGi
[$]

G1 300 10 0.02 {0, 10, 20, 30}
G2 300 10 0.02 {0, 10, 20, 30}
G3 250 20 0.04 {0, 10, 20}
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be dispatched ðP GiÞ, and through the knowledge of the
Lagrangian multipliers associated with this optimization
problem, the nodal prices at each node k of the system
are given.5 We denote by nGi the nodal price at the node
at which generator Gk is connected. After the market is
cleared, each generator Gi is dispatched P Gi and is paid
nGi per MW produced.

3.4. Corresponding matrix game

In our problem the one-stage matrix game consists of:

• nbGen active agents (G1,G2,. . .,GnbGen) (the generators)
• their corresponding finite sets of pure actions AGi

• corresponding reward functions rGi that are actually
functions of joint actions of all participants since the
power dispatch and nodal prices depend on bid submit-
ted by every generator. The reward function rGi is
defined by:

rGi ¼ nGi � P Gi �MCGi � P Gi ð7Þ
where P Gi is a dispatched quantity for generator Gi, nGi

is its nodal price and MCGi marginal cost of production.

4. Case studies

4.1. Test market description and simulation conditions

We have carried out simulations on the power system
shown in Fig. 3. The market is cleared according to the
procedure detailed in the previous section. This system
has four loads and three generators. The loads are assumed
to be inelastic and constant, and every generator Gi is
assumed to have a maximum production capacity of
P max

Gi
, a linear marginal cost function CGiðP GiÞ ¼ icGiþ

sGi � P Gi and a finite set of markups mupGi
. The values of

these production limits and these marginal cost functions
as well as the description of these sets of markups are given
in Table 1. Note that the lowest markup of each generator
is zero, while its highest possible markup is set to not
exceed the price cap of 60$/MW at any possible production
level. The line connecting nodes 2 and 5 can only transfer
100 MW, and as a result may be subject to congestion.
For the other lines of the system, we suppose that there
exist no power dispatches that may lead to flows greater
than their transfer capacity. The numbers close to the lines
denote the value of their reactance expressed in pu.

We consider two different cases in our simulations. In
the first case, we suppose that only generators G1 and G3

behave as active agents,6 while G2 always bids its marginal
cost function to the ISO. In the second case, all three
5 The nodal price at node k may be seen as the price for extracting one
additional MW at this node.

6 By active agent, we mean an agent that selects its actions in order to
maximize its rewards.
generators are considered as being active agents. For each
case we simulate the market dynamics when the active
agents are modelled through reinforcement learning algo-
rithms (see Fig. 1), and discuss several characteristics of
this dynamics at the light of the information derived from
the Nash equilibria analysis, i.e the direct computation of
the different pure Nash equilibria. When using reinforce-
ment learning algorithms, the update of the different Qi-
functions of the agents depends on the value of the para-
meters at

i. We will first carry out our simulations with these
parameters set to 0.1 "i,t. Furthermore, the value of �, the
parameter that determines the degree of randomness in the
action selection process, is initially chosen equal to 0.1 for
all agents. This means that each agent selects the action
that maximizes its Qi-function with a probability of 0.9
and with a probability of 0.1 an action at random.

4.2. Two generators behaving as active agents

In the following, for assessing our case studies we will
distinguish between the agent-based model and Nash equi-
libria analysis. We will outline both approaches in separate
paragraphs and then compare the results obtained focus-
sing on the interdependencies between the two concepts.
For the present case with two generators being modelled
as active agents, we start with the Nash equilibria analysis.

4.2.1. Nash equilibria analysis

For computing the Nash equilibria of the market we
clear the market for all combinations of bids (determined
by the respective markups chosen by each generator).
Thereby, we compute the reward functions for G1 and
G3, and the corresponding results are gathered in Table
2. We then explicitly search for the bids (and thus for the
markups) which satisfy expression (3). Table 2 follows



Fig. 5. Evolution of the Q-function for G1 (2 active agents).

Table 2
Reward functions when G1 and G3 are the only active agents

0$ 10$ 20$

0$ 140 0 290 1400 430 2800
10$ 480 0 480 1520 480 3050
20$ 0 0 1000 1520 1000 3050
30$ 0 0 0 2000 1430* 3050*
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the layout of a payoff table as generally used in game the-
ory to describe matrix games. In the present case, G1 is the
row player and G3 the column player. As an example, if G1

chooses a markup of 30$ and G3 sets the markup to 20$ the
reward of G1 will be 1430$ and respectively 3050$ of G3.

4.2.2. Agents use subgame-perfect Nash equilibria to select

actions
Now if we consider that the agents select actions from

the knowledge of the subgame-perfect Nash equilibria
and this according to the procedure outlined in Section
2.4, it is obvious that agent G1 will always select as action
the markup of 30$ and agent G3 the markup of 20$.
Indeed, there is only one Nash equilibrium for the matrix
game which implies a unique subgame-perfect Nash equi-
librium for the repeated game.

4.2.3. Agent-based model

Fig. 4 shows the evolution of the Q-function for G3.
Each curve in this figure represents the evolution of the
expected reward for the different markups. Thus, each
curve shows what G3 believes it will obtain by choosing a
certain markup and submitting the resulting supply func-
tion to the ISO.

From Fig. 4 it can be read that G3 rapidly learns that it
should choose its highest possible markup of 20$. G3 obvi-
ously ‘realizes’ its advantageous position in the network.
Due to the limited transfer capacity of the line between
nodes 2 and 5 and a power consumption of 250 MW at
node number 5, there is a high likelihood for G3 to be dis-
patched. Hence, G3 receives market power, which it
exploits by choosing the highest possible markup. G1 learns
that its best strategy is to choose a markup of 30$ (see
Fig. 5). In comparison to G3 the learning is somewhat
Fig. 4. Evolution of the Q-function for G3 (2 active agents).
slower, since only after approximately 100 clearings of
the market 20$ becomes the markup that maximizes its
Q-function.

The dips observed in the evolution of the different curves
drawn in Fig. 5 result from the �-greedy strategies used by
the different agents of the system. In one out of ten times,
on the average, the generators will submit a bid (markup)
totally at random. This may modify the power dispatches
and the nodal prices and ‘‘perturb’’ therefore the previous
estimates of the different Q-functions, where the perturba-
tion influences G1 much stronger than G3. Table 3 gathers
the information if indeed G1 and G3 would have submitted
their greedy bid functions (determined by the respective
markups). In the same table the corresponding power dis-
patches, nodal prices and rewards are given. Although with
such power dispatches the line connecting nodes 2 and 5 is
congested, we observe the same nodal prices, as the next
MW will either be produced by G1 or G3, both manipulat-
ing the intercept of their bid functions to 50 $ by choosing
their highest markup. Although, the cost functions are not
constant, the slope is so small that variations of the pro-
duction level do not significantly influence nodal prices.

4.3. Three generators behaving as active agents

We now assess the market dynamics with all generators
being modelled as active agents. Thus, G2 is no longer lim-
ited to bid its marginal cost function, but can now deter-
mine a markup mup2 out of the discrete action set
{0$,10$,20$,30$}. We first focus on Nash equilibria analy-
sis and then use the results obtained to describe the evolu-
tion of the system with respect to the agent-based
approach.
Table 3
Market input and output when after 1000 of market clearings the
generators select their greedy bids

mupGi
½$� P Gi ½MW� nGi ½$= MW� Reward [$]

G1 30 48 50 1430
G2 0 300 50 9000
G3 20 152 50 3050



Table 4
Payoff Table for G1 (row) and G2 (column) with G3 choosing a markup of
20 $

0$ 10$ 20$ 30$

0$ 430 0 3290 600 6140 1200 9000* 1800*

10$ 480 2690 3290 600 6140 1200 9000 1800
20$ 1000 5850 1000 5850 6140 1200 9000 1800
30$ 1430* 9000* 1430 9000 1430 9000 5400 5230

Fig. 6. Evolution of the payoffs and of the actions when subgame-perfect
Nash equilibria are used to model the agents’ strategies.
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4.3.1. Nash equilibria analysis

Consistent with the previous case we clear the market for
all combination of bids and then compute the reward func-
tions for G1, G2 and G3. So we construct the payoff matrix
for the one-shot game. We will restrain from presenting this
table completely as it is a three dimensional matrix given by
r1 · r2 · r3 with ri denoting the generators’ reward func-
tions. Searching for Nash equilibria we find the following
two pure equilibrium points: (I) G1 bidding its marginal cost
function (mupG1

¼ 0$) and G2 and G3 choosing their highest
markups of mupG2

¼ 30$ and mupG3
¼ 20$ and (II) G2 bid-

ding its marginal cost function ðmupG2
¼ 0$Þ and G1 and G3

choosing their highest markups of mupG1
¼ 30$ and

mupG3
¼ 20$. The computation shows that for this particu-

lar case there exists no equilibrium in mixed strategies. At
both equilibrium points G3 always chooses its highest
markup, thus we may draw a payoff matrix assuming G3

sets its markup mupG3
to 20$. Table 4 displays the results.

The two equilibrium points are highlighted by (*).

4.3.2. Agents use subgame-perfect Nash equilibria to select

actions

We consider here that the agents know the different
Nash equilibria and use them to select their actions accord-
ing to the procedure outlined in Section 2.4.

By repeating the matrix game, we observe that agents G1

and G2 are switching between mup = 0$ and mup = 30$
whereas G3 permanently adheres to his dominant strategy
ðmupG3

¼ 20$Þ (see Fig. 6). There are two stable Nash equi-
libria in the system and agents unilaterally assess what
strategy to play in order to get into one of these equilibria.
Due to the lack of coordination between these agents, dif-
ferent situation may occur. Either they play the (0, 30, 20)
equilibrium, the (30, 0, 20) equilibrium or no equilibrium at
all (in which case either (30, 30, 20) or (0, 0, 20) is played).

4.3.3. Agent-based model

In the two active agent case we found that for one pure
Nash equilibrium the Q-functions indeed converged to this
equilibrium. We will now assess the development of the Q-
functions with all generators modelled as active agents. For
G3 we observe that the evolution of the Q-function is similar
to the evolution displayed in Fig. 4.7 G3 learns that it has
market power and that it should choose a markup of 20$
to maximize its reward. This development is in accordance
7 Because of the similarity we do not provide an additional figure.
with the results obtained by Nash equilibria analysis. At
both equilibrium points the greedy action for G3 is to
choose the highest markup. However, the development of
the Q-functions for G1 and G2 differs significantly. If when
only G1 and G3 were active agents, we observed (see Figs.
4 and 5) that the Q-function learned by G1 was clearly
indicating that a markup of 30$ was the greedy action, it
is no longer the case here. In the present case the greedy
action always changes. Furthermore, the evolution of the
Q-function seems now to respond to a cyclic process. Figs.
7 (G1) and 8 (G2) show the evolution of the Q-functions. We
see, that when a markup of 30$ is the greedy action for G1,
G2 chooses a markup of 0$ and vice versa. These two com-
binations of markups indeed correspond to the single stage
Nash equilibria (see Table 4). We will now assess why the
cycling occurs. It is helpful to keep in mind, that actions
of one generator influence not only its own reward but also
the reward of the others and that the randomness (intro-
duced by the �-parameter) plays an important role. For
argumentation we use Table 4, Fig. 7 (displaying time
instants t1–t3) and Fig. 9 (displaying time instants t3–t5).
Let us assume that after an arbitrary number of market
clearings we are at time instant t1, with mupG1

¼ 0$ and
mupG2

¼ 30$ being the greedy actions (determining the first
Fig. 7. Evolution of the Q-function for G1 (3 active agents).



Fig. 8. Evolution of the Q-function for G2 (3 active agents).

Fig. 9. Variation of greedy strategies with time for G1 and G2.
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Nash equilibrium point), where for G1 the expected payoffs
of the non-greedy actions are all below 4000$. We now
move on to time instant t2, where G1 and G2 still keep their
greedy actions of mupG1

¼ 0$ and mupG2
¼ 30$, but in case

of G1 the expected rewards for mupG1
¼ 10$ and

mupG2
¼ 20$ develop close to the reward of the greedy

action.8 Thus, we are facing a situation where due to ran-
dom actions of G2 the greedy action of G1 might change.

This indeed happens at time instant t3. Due to a random
bid of G2, choosing a markup of either 0$, 10$ or 20$, the
expected reward of mupG1

¼ 0$ for G1 falls below the
expected reward of mupG1

¼ 10$. Thus, mupG1
¼ 10$

becomes the greedy action of G1. In Table 4 we see that
given a markup of mupG1

¼ 10$, G2 can do better by choos-
ing a markup mupG2

¼ 0$. This behavior is indeed learned
(time instant t4). The same consideration applies to G1.
With mupG2

¼ 0$ G1 can do better by bidding at
mupG1

¼ 30$ (time instant t5). Eventually, we reach the sec-
ond Nash equilibrium.9 Fig. 9 provides a sample of the cyc-
lic variation of the greedy actions for G1 and G2. For the
other half of the cycle a similar line of argument applies.
As the mechanism follows the considerations above, we
do not deliver a detailed explanation. The path is displayed
as dotted line in Fig. 9.

Note, that the paths might deviate slightly as for a num-
ber of bid-tuples we face identical rewards. Thus, the gen-
erators are indifferent between those bids and the action is
determined by random influence. Nevertheless, this does
not change the overall cycling mechanism. Furthermore,
due to the randomness, cycles may not be fully completed
and the generators may instead revert at any state back to
the previous equilibrium point (see Figs. 7 and 8).
8 From Table 4 it can be read that the rewards for mup = 0$, mup = 10$
and mup = 20$ are all equal to 9000$, assuming G2 is bidding at 30$.

9 The transits at time instants t4 and t5 are occurring very fast. Thus,
they can not be observed in the displayed Q-functions.
4.4. Parameter dependency of agent-based approach

In our previous analysis we kept the experimentation
parameter � and the learning rate a constant – both at values
of 0.1. However, one may argue that a different choice of
parameters will influence the model outcome. Hence, we
carried out simulations with different discrete sets of para-
meters. For a and � being smaller than 0.1, we observe less
frequently oscillatory behaviors, and, when observed, the
periods of oscillation seem to be larger as the generators
act less randomly and the learning is slower. The frequency
of the cycles tends to increase with a and � but, with too
large values for these parameters, the oscillatory behavior
disappears and the evolution of the Q-functions seems to
be driven by a totally random process. To explain this, let
us first take � large. In that case no learning takes places,
as all actions are totally selected at random. A learning rate
of 1 has a similar influence. As only the last reward received
determines the value of the Q-function (the expected
reward) learning can not evolve over time. Hence, we face
an almost arbitrary development of the Q-functions.

Nevertheless, a cyclic or oscillatory model behavior
occurred for almost every combination of a and � in the
three active agent case (two Nash equilibria). For one Nash
equilibrium (two active agent case) we found that with
smaller values of a and � the learning is slower but the equi-
librium is still approached, whereas for values close to 1 the
Q-functions may not evolve to the equilibrium point and
seem to develop in an almost arbitrary way as described
above.

5. Conclusions

To compare Nash equilibria analysis and agent-based
modelling we defined a pool market as a repeatedly played
matrix game. Generators may act strategically, i.e. by bid-
ding above their marginal production cost. To assess this
behavior we employed a Q-learning algorithm as a behav-
ioral agent model and carried out simulations on a bench-
mark power system. We analytically computed the Nash
equilibria of the system and then compared the results with
those obtained by the agent-based approach. We showed
that in case of one Nash equilibrium there is high likeli-
hood for the Q-learning algorithm to indeed converge to
this equilibrium, whereas in case of two Nash equilibria
we observe a cyclic behaviors. We have checked that these
phenomena are robust with respect to different parameters.
Therefore, we conclude that in the presence of multiple
equilibria cyclic phenomena are likely to occur.
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