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Summary

Mutations in IKBKAP, encoding a subunit of Elonga-

tor, cause familial dysautonomia (FD), a severe neuro-
developmental disease with complex clinical charac-

teristics. Elongator was previously linked not only
with transcriptional elongation and histone acetyla-

tion but also with other cellular processes. Here, we
used RNA interference (RNAi) and fibroblasts from

FD patients to identify Elongator target genes and
study the role of Elongator in transcription. Strikingly,

whereas Elongator is recruited to both target and non-
target genes, only target genes display histone H3 hy-

poacetylation and progressively lower RNAPII density
through the coding region in FD cells. Interestingly,

several target genes encode proteins implicated in
cell motility. Indeed, characterization of IKAP/hELP1

RNAi cells, FD fibroblasts, and neuronal cell-derived
cells uncovered defects in this cellular function upon

Elongator depletion. These results indicate that de-
fects in Elongator function affect transcriptional elon-

gation of several genes and that the ensuing cell motil-

ity deficienciesmay underlie the neuropathology of FD
patients.

Introduction

FD is an autosomal recessive disease, ranging among
the most frequent hereditary sensory and autonomic

neuropathies (Slaugenhaupt andGusella, 2002; Axelrod,
2004). Affected individuals are born with the disease and
abnormally low numbers of neurons in the autonomic
and sensory nervous systems, which initially triggered
a search for the disease gene among candidates in-
volved in neuronal differentiation and cell migration. FD
turned out to be caused by mutations in a splice site of
the IKBKAP gene, which causes tissue-specific exon
skipping, andexpressionof a truncatedmRNA transcript
(Anderson et al., 2001; Slaugenhaupt et al., 2001). The
predicted, shorter form of the encoded IKAP protein
cannot be detected in patients (Slaugenhaupt et al.,
2001), because the truncated transcript is degraded by
the nonsense-mediated decay pathway (Slaugenhaupt
et al., 2004). FD mutations are incompletely penetrant,
so that normal IKAP protein is still synthesized in pa-
tients, albeit at lower levels, depending on cell type. In-
deed, IKAP levelsarevery low inbrain tissues fromFDpa-
tients (Slaugenhaupt et al., 2001; Cuajungco et al., 2003).

IKAPwas initially described as a scaffold protein of the
IKK complex involved in NF-kB activation (Cohen et al.,
1998). However, a role for IKAP protein in this pathway
was later disproved (Krappmann et al., 2000). The IKAP
protein and its yeast homolog, Elp1, are components
of the highly conserved transcription elongation factor
complex Elongator (Hawkes et al., 2002; Kim et al.,
2002). Elongatorwasoriginally identifiedasacomponent
of a hyperphosphorylated RNA polymerase II (RNAPII)
holoenzyme isolated from budding yeast chromatin
(Otero et al., 1999). Significantly, another subunit of Elon-
gator, Elp3, harbors motifs found in the GNAT family of
histone acetyltransferases (HATs) (Wittschieben et al.,
1999). Both yeast and human Elongator have HAT activ-
ity in vitro, primarily directed toward histone H3 (Winkler
et al., 2002; Hawkes et al., 2002; Kim et al., 2002), and
yeast elp3 mutation results in decreased histone H3
acetylation levels in chromatin in vivo (Winkler et al.,
2002; Kristjuhan et al., 2002). In agreement with a role
in transcript elongation, Elongator is associated with
the nascent RNA emanating from elongating RNAPII
along the coding region of several yeast genes (Gilbert
et al., 2004), and chromatin immunoprecipitation (ChIP)
experiments have also demonstrated an association
of Elongator with genes in human cells (Metivier et al.,
2003; Kouskouti and Talianidis, 2005).

Surprisingly, a substantial fraction of Elongator is cy-
toplasmic (Hawkes et al., 2002; Holmberg et al., 2002;
Kim et al., 2002), suggesting that the complex performs
additional distinct functions in the cell (Gilbert et al.,
2004). For example, a role as a scaffold protein involved
in cytoplasmic JNK activation in response to extracellu-
lar stress has been proposed for the IKAP/hELP1 pro-
tein in mammalian cells (Holmberg et al., 2002). In yeast,
genetic data have implicated the Elongator complex in
processes as diverse as exocytosis and tRNA modifica-
tion (Rahl et al., 2005; Huang et al., 2005). The relation-
ship between Elongator’s role in transcription and these
other processes remains poorly understood.

To gain further insight into the role played by Elonga-
tor in transcription in human cells, and concomitantly

*Correspondence: j.svejstrup@cancer.org.uk (J.Q.S.); alain.chariot@

ulg.ac.be (A.C.)



learn about the molecular defects underlying FD, we
used an RNAi strategy to deplete the IKAP/hELP1 sub-
unit of Elongator. Using DNA microarray analysis, we
then identified Elongator-dependent genes. Here, we
show that Elongator depletion affects the expression
of a number of genes, with correlating effects on histone
H3 acetylation and transcriptional elongation. Several of
the affected genes are implicated in cell motility, and
cells with decreased IKAP/hElp1 levels indeed display
defects in this cellular function. These data open the in-
triguing possibility that impaired cell motility/migration
in the nervous system underlies the neuropathology of
FD patients.

Results

IKAP/Elongator Regulates the Expression
of Genes Involved in Cell Migration

In order to investigate the biological role of IKAP/Elonga-
tor in human cells, HeLa cellswere infectedwith a lentivi-
rus delivering small interfering RNAs targeting either
the IKAP/hELP1 transcript or GFP as a negative control.
Because IKAP/hELP1 had previously been implicated in
assembling stress-induced and cytoplasmic kinase
complexes (Cohen et al., 1998; Holmberg et al., 2002),
we first addressed the potential role of IKAP/hELP1 in
these pathways (Figure S1 available in the Supplemental
Datawith this article online). Anumberofdifferent assays
investigating the involvement of IKAP/hELP1 in Erk, p38,
andJNKactivation, aswell as in the IKK-mediatedNF-kB
activation pathway, failed to uncover significant effects
(Figure S1). Similarly, no effect on cytoplasmic kinase
signaling was uncovered in fibroblasts derived from FD
patients (Figure S1). Taken together, our data indicate
that, in these cells, stress-induced MAPK and NF-kB
signaling pathways can proceed through IKAP/hELP1-
independent mechanisms.
Because there is substantial evidence linking IKAP/

hELP1 to transcriptional elongation in the context of
the Elongator complex, we next sought to identify genes
whose normal expression requires IKAP/hELP1. HeLa
cells were transfected with RNAi oligos that target either
the IKAP/hELP1 transcript or the GFP transcript as
a negative control. Decreased IKAP/hELP1 mRNA and
protein expression in response to IKAP/hELP1 RNAi
treatment of HeLa cells was confirmed (Figures 1A and
1B, respectively). Total mRNA was then extracted from
the RNAi-treated cells and subjected tomicroarray anal-
ysis. The expression of about 100 genes was signifi-
cantly downregulated as a result of IKAP/hELP1 RNAi
(Figure 1C and Figure S2A), whereas some 15 genes
were upregulated (Figure S2B). The expression of
TNFa and NF-kB-regulated target genes such as IL-1b
and IkBa was not altered in TNFa-stimulated IKAP/
hELP1 RNAi cells (P.C. and A.C., unpublished data),
further supporting the conclusion that these signaling
pathways are insensitive to IKAP/hELP1 levels.
Interestingly, a significant proportion (15 out ofw100)

of the downregulated genes encode proteins regulating
cell motility, such as those coding for the integrin recep-
tor CD61, the ligand tenascin-C, and the actin cytoskele-
ton modulators gelsolin, paxillin, and caveolin-1 (Fig-
ure 1C). Genes coding for proteins involved in cell
proliferation, such as thymidylate synthetase and the

cyclin-dependent kinase inhibitor p57, kip2, as well as
various genes coding for proteins playing critical roles
in cellular processes such as autophagy (beclin-1), me-
tabolism (transglutaminase 2), and DNA repair (hMSH2)
were downregulated as well (Figure 1C and Figure S2A).

We examined the validity of our microarray results by
performing quantitative real-time PCR with total RNA
extracted from untransfected cells or from cells trans-
fected with RNAi. Hereby, the decreased expression of
several target genes in IKAP/hELP1-depleted cells was
confirmed (Figure 2A). Moreover, reduced expression
of paxillin and calreticulin was also confirmed at the pro-
tein level in these cells (Figure 2B).

To investigate the physiological importance and pos-
sible disease relevance of the observed effect of IKAP/
hELP1 RNAi on transcription, total RNA was also ex-
tracted fromFDpatient-derived fibroblasts (where IKAP/
hELP1 levels are reduced through the IKBKAP splice site
mutation) and subjected to quantitative real-time PCR
analysis. In support of the results obtained with RNAi-
transfected cells, decreased expression of gelsolin, pax-
illin, laminin b3, and beclin-1, but not a-tubulin, was also
observed in FD fibroblasts (Figure 2C). Interestingly,

Figure 1. Identification of Genes Regulated by IKAP/Elongator

(A and B) Decreased IKAP mRNA (A) and protein (B) expression in

HeLa cells transfected with IKAP/hELP1 RNAi (lane 2), as compared

to untransfected cells (lane 1) or cells transfected with a GFP control

RNAi (lane 3), as judged by real-time PCR (A) or by anti-IKAP/hELP1

Western blot analysis (B). An anti-a-tubulin Western blot is shown in

(B) for normalization purposes.

(C) Identification of IKAP/hELP1-dependent genes. Total RNA was

isolated from HeLa cells transfected with either IKAP/hELP1 or

GFP RNAi, as well as from untransfected control cells. The RNA

was then subjected to microarray analysis. Examples of affected

genes are shown. The full list of affected genes is shown in Figure S2.

Error bars in (A) denote standard deviation.
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some cell type specificity in the expression patterns
might occur because the expression of genes such as te-
nascin-C andMMP2did not appear to be significantly al-
tered in FD fibroblasts (data not shown).
Decreased gelsolin expression in fibroblasts is known

tobeassociatedwithenhancedexpressionof theGTPase
Rac in compensation for the reduced cell motility of
these cells (Azuma et al., 1998). We indeed observed
increased Rac expression in FD fibroblasts compared
to control cells, whereas IKAP/hELP1 expression as
expected was decreased (Figure 2D, compare top two
panels).
Taken together, these results demonstrate that low

IKAP/hELP1 levels, resulting from either RNAi or from
the splicing mutation in FD cells, similarly affect the ex-
pression of several genes.

Impaired IKAP/hELP1 Expression
Alters Cell Migration

The gene expression data suggest that IKAP/hELP1 de-
pletion leads to lower levels of expression of numerous
genes, including several implicated in cell motility. Be-
cause normal cell motility is of crucial importance for
the developing nervous system (reviewed by da Silva
and Dotti [2002] and Dent and Gertler [2003]) and there-
fore of obvious relevance to FD, we characterized the
potential role of IKAP/hELP1 in cell motility at the cellular
level. IKAP/hELP1 shRNA and control shRNA cells were
first compared in a wound-healing assay. This assay
measures the ability of cells to migrate (cell proliferation

being inhibited by mitomycin C) and fill the gap left by
physical disruption of cell monolayers (West et al.,
2001). Significantly, adelay incomplete ‘‘woundclosure’’
was observed in IKAP/hELP1 shRNA HeLa cells com-
pared to control cells. Whereas complete closure was
observed after 22 hr with the control cells, gaps in the
cell monolayers remained open in the IKAP/hELP1
shRNA cells (Figure 3A). Next, the ability of IKAP/
hELP1 shRNA cells to migrate in response to a serum
gradient was investigated by using Boyden chambers
(Riedy et al., 1999). Again, a clear defect in cell migration
was observed in IKAP/hELP1 shRNA HeLa cells (Fig-
ure 3B).

To further correlate the observed migration defects
with decreased IKAP/hELP1 expression and FD,wound-
healing assayswere alsoperformedwith twodistinct cell
lines from FD patients and control fibroblasts. Although
significant closure of the gaps in cell monolayers had oc-
curred after 14 hr in control fibroblasts, a clear defect in
gap closure by cell migration was observed in FD fibro-
blasts (Figure 3C).

Cell motility of fibroblasts has been extensively stud-
ied by collagen gel contraction assays, inwhich contrac-
tion occurs as a consequence of motile activity of cells
migrating through the matrix (Grinnell, 1994). We took
advantage of such experiments to further characterize
the cell motility defects in FD fibroblasts. Experiments
over a 10 day period showed that control fibroblasts
were significantly more potent than FD cells in contract-
ing collagen gels (Figure 3D), indicating that the ability of

Figure 2. IKAP/Elongator Regulates the Ex-

pression of Genes Involved in Cell Migration

(A) Decreased expression of a subset of

genes involved in cell migration in IKAP/

hELP1 RNAi cells. RNA was extracted from

untransfected HeLa cells (2) or HeLa cells

transfected with IKAP/hELP1 RNAi (IKAP) or

GFP RNAi (GFP), respectively, and gene ex-

pression was measured by quantitative real-

time RT-PCR. Expression in the untrans-

fected cells was set to 100. b-glucuronidase

(GUS) expression is shown as a control.

(B) Levels of paxillin and calreticulin proteins

in IKAP/hELP1 RNAi cells examined byWest-

ern blot analysis. An a-tubulin Western blot is

shown as loading control.

(C) Decreased expression of a subset of

genes in FD fibroblasts (FD) versus wild-type

cells (wt) measured by quantitative real-time

RT-PCR. a-tubulin expression is shown as

a control. Expression in the wt cells was set

to 100.

(D) Rac expression in FD fibroblasts exam-

ined by Western blot analysis, probing with

the antibodies is indicated below the panels.

Error bars in (A) and (C) denote standard devi-

ation.
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the mutant cells to spread and elongate is significantly
perturbed. Similar results were obtained with cells in
which IKAP/hELP1 levels had been depleted by RNAi

(P.C. and A.C., unpublished data). Therefore, decreased
IKAP/hELP1 expression correlates with a cell migration
defect in fibroblasts from FD patients as well.

Figure 3. Cell Migration Defect in IKAP/hELP1 RNAi Cells, as Well as in FD Fibroblasts

(A) Wound-healing assays performed with shRNA GFP or shRNA IKAP/hELP1 in HeLa cells (left and right, respectively). Pictures were taken at

the indicated times after wounding.

(B) Chemotaxis assays using a Boyden chamber carried out with shRNA GFP (large, open squares; Ctr) or shRNA IKAP HeLa (small, filled

squares; IKAP). Cells migrating to the lower membrane were counted. The figure shows the total number of migrating cells after the indicated

times. Three independent experiments were performed in triplicate, with similar results. The average, with standard deviation, of one such ex-

periment is shown.

(C) Wound-healing assays performed with wt or FD fibroblasts (left and right, respectively). Pictures were taken at the indicated time points after

wounding.

(D) Contraction of free-floating collagen lattices seeded with either wt or FD fibroblasts. Photographs taken during the course of a representative

experiment are shown on the left. A graphic representation of the experiment is shown on the right, with standard deviations indicated.

(E) Top, an anti-IKAP/hELP1 Western blot performed on cell lysates derived from shRNA GFP or shRNA IKAP/hELP1 SK-N-BE cells. Bottom, as

in (A) but using SK-N-BE cells.

(F) As in (B) but using SK-N-BE cells. Two independent experiments were performed in triplicate, with similar results. The average, with standard

deviation, of one such experiment is shown.
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Because FD mainly affects the development of neu-
rons in the autonomic and sensory nervous systems, it
was of great interest to also assess cell migration in an
IKAP/hELP1-depleted neuronal cell-derived cell line.
To do so, we infected neuroblastoma-derived SK-N-BE
cells with the IKAP/hELP1 or GFP shRNA constructs.
The infected cells were then plated on fibronectin-
coated plates and subjected to wound-healing assays.
Significantly, a clear delay in wound closure was ob-
served in SK-N-BE cells expressing lower amounts of
IKAP/hELP1 (Figure 3E). A similar cell migration delay
was also obtained with IKAP/hELP1-depleted glioblas-
toma-derived U373 cells (data not shown). Moreover,
cell motility defects as judged by chemotaxis assay us-
ing Boyden chambers were observed in SK-N-BE and in
U373 Elongator-depleted cells as well (Figure 3F and
data not shown). Taken together, these functional as-
says strongly suggest that the transcription defects in
IKAP/hELP1 cells have cell functional consequences
so that a number of different cell types with lower levels
of IKAP/hELP1 have significantly reduced cell motility. In
particular, the reduced motility of neuronal cell-derived
cell lines may be highly relevant to the neurodevelop-
mental disorder of FD patients.

Elongator and Its Association with the Coding

Region of Human Genes Are Altered
by the FD Mutation

The data above show that cells with reduced levels of
IKAP/hELP1 have decreased transcription of several
genes and that this has consequences for cell function.
However, precisely how these defects relate to the Elon-
gator complex and its cellular role was still not clear. Our
previous experiments performed in the analogous yeast
system showed that deletion of ELP1 leads to loss of
Elp3 and Elongator integrity (Petrakis et al., 2004). Ex-
tending from yeast to human cells, this result predicts
that the amount of functional Elongator should also be
altered in FD cells because of their decreased IKAP/
hELP1 production. Indeed, we found that the protein
level of the catalytic hELP3 subunit was significantly de-
creased in cells where lowered IKAP/hELP1 levels were
caused by either RNAi or the FDmutation (Figure 4A, left
and right, respectively). This indicates that, as expected
from the results in the yeast system, hElp3 levels are in-
deed affected by the removal of IKAP/hELP1. This sug-
gests that the lower levels of transcription observed in
cells depleted for IKAP/hELP1 are due to lower levels
of Elongator. To more directly investigate this possibil-
ity, we generated a hELP3 cellular loss of functionmodel
by transfecting ELP3, or GFP, RNAi into fibroblasts. Un-
fortunately, although the ELP3 mRNA level was clearly
reduced (data not shown), ELP3 RNAi did not lead to
a very efficient depletion of this protein from cells (Fig-
ure 4B). Nevertheless, our experiments showed that gel-
solin and beclin-1, but not a-tubulin, expression was
consistently decreased in ELP3 RNAi fibroblasts, al-
though to a smaller extent than in IKAP/hELP1 RNAi
cells (Figure 4C). Therefore, these results suggest that
cell expression deficiencies of two Elongator subunits,
namely IKAP/hELP1 and ELP3, have similar conse-
quences for gene expression.
Elongator is detected in both the cytoplasm and nu-

cleus of human cells (see, for example, Hawkes et al.

[2002], Kim et al. [2002], and Kouskouti and Talianidis
[2005]).We found that, not surprisingly, the protein is de-
pleted to a similar extent in both compartments in FD
cells (Figure S3). In theory, the effect of IKAP depletion
on gene expression could be either indirect or direct. If
the effect was direct, it would be expected that Elonga-
tor is present at the target genes and that its absence
has a specific effect on transcription at these genes. If,
in contrast, the effect was indirect, for example through
signaling from the cytoplasm, such effects would not be
expected. To address the possibility that the effect of re-
duced IKAP/hELP1 levels on transcription was direct,
standard ChIP technique in conjunction with quantita-
tive real-time PCR was used to detect the Elongator
complex at genes in normal and FD fibroblasts. The
use of FD fibroblasts served as an excellent control for
the specificity of the antibodies used, as lower levels
of IKAP would be expected to result in significantly de-
creased ChIP signals in these cells. Interestingly, we de-
tected IKAP/hElp1 not only in the coding region (and to

Figure 4. IKAP/hELP1 and ELP3 Depletion Have Similar Conse-

quences for Gene Expression

(A) Decreased hELP3 levels in human cells with low IKAP/hELP1

levels. Cell extracts from HT29 cells infected with the indicated

shRNA lentivirus (left panels) or from control or FD cells (right panels)

were subjected to Western blot analysis. The asterisk indicates

a nonspecific band obtained with the anti-ELP3 antibody in the

RNAi cells. This band serves as a loading control in this experiment.

(B) hELP3 depletion after IKAP/hELP1 and hELP3 RNAi in human

cells. Fibroblasts were transfected with GFP, IKAP/hELP1, or

hELP3 RNAi as indicated, and protein extracts were subjected to

anti-IKAP/hELP1, hELP3, and a-tubulin Western blot analysis.

(C) Gene expression of previously identified IKAP/hELP1-dependent

genes in GFP, IKAP/hELP1, and hELP3 RNAi fibroblasts. Real-time

PCR using primers to amplify the gelsolin, beclin-1, or a-tubulin tran-

scripts was performed by using total RNAs extracted from the GFP,

IKAP/hELP1, or ELP3 RNAi fibroblasts.

Error bars denote standard deviation.
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a smaller extent the promoter) of the gelsolin and beclin-1
target genes, but also at the tubulin gene, whose ex-
pression is not affected by IKAP/hELP1 depletion
(Figure 5B). Experiments with fibroblasts derived from
FD patients showed that, as expected, the amount of
IKAP on the genes was indeed significantly decreased
in these cells (Figure 5B, compare wt and FD). Impor-
tantly, in agreement with the idea that IKAP is crucial
for Elongator function through targeting of the catalytic
hELP3 subunit, the recruitment of the hELP3 protein to
the coding region of the genes was indeed dramatically
affected by IKAP/hElp1 depletion. Likewise, recruitment
of other Elongator subunits, such as hELP4 and hELP5,
was decreased as well (Figure 5C, and Figure S4). These
data further indicate that recruitment of the whole Elon-
gator complex, not just the IKAP/hELP1 protein itself, is
affected by the mutation in FD cells.
To further characterize the association of Elongator

with active genes, we also investigated the relative den-
sity of IKAP/hELP1 and hELP3 across the beclin-1 gene
(see Figure 5A for the location of primer pairs across the
gene). The overall density profile of the proteins was

remarkably similar (Figure 5D), further supporting the
idea that the cellular level and function of the entire Elon-
gator complex is affected by decreasing the level of
IKAP/hELP1.

Decreased Elongator Levels Affect Histone H3
Acetylation in the Coding Region of Target Genes

To more precisely define the effects of IKAP/hELP1 mu-
tation on transcription, we now analyzed the density of
various histone modifications by ChIP analysis. In these
experiments, the FD cells were used as a tool to investi-
gate the effects of lower IKAP/Elongator levels. Interest-
ingly, histone H3-K9 acetylation, but not histone H4
acetylation, in the coding region of the gelsolin and be-
clin-1 genes was indeed reduced in cells with reduced
Elongator levels (Figures 6A and 6B, left and middle). A
similar reduction in acetylation was observed at histone
H3 K18 in the beclin-1 and gelsolin coding regions
(Figure 6C). It is important to note that reduced acetyla-
tion was not due to a loss of histone H3-DNA contacts in
the target genes, as histone acetylation levels were nor-
malized for histone content (using antibodies specific

Figure 5. Elongator Is Present on the Coding Region of Target and Nontarget Genes and Its Recruitment Is Affected by IKAP/hELP1 Depletion

(A) Schematic representation of the genes investigated by ChIP. Exons are depicted by boxes and transcription initiation sites (arrow with +1);

ORF start codons (ATG) and stop codons (STOP) are also indicated. The localization of primers used for ChIP analysis is illustrated by arrows

below. Numbers show the positions of these primers relative to the transcription initiation site.

(B) ChIP assays with an anti-IKAP/hELP1 antibody (Figure S7) were performed with normal (wt) or FD (FD) fibroblasts. Associated DNA was an-

alyzed by real-time PCR using primers derived from the promoter or the coding region of the indicated genes (gelsolin coding region primer, 62

kb; beclin-1, 8 kb; and a-tubulin, 6 kb). For ease of comparison, IKAP/hELP1 density in the coding region in normal fibroblasts was set to 100 and

the other values expressed relative to that. See the Experimental Procedures for details.

(C) ChIP assays with the Elongator antibodies indicated above the graphs were performed as in (A), using primers derived from the coding region

(62 kb) of the gelsolin gene. The fact that these antibodies coprecipitate less gelsolin DNA in FD cells indicates that recruitment of the whole

Elongator complex is reduced and that the antibodies are specific.

(D) ChIP assays with the Elongator antibodies indicated above the graphs were performed by using primers derived from the regions of the

beclin-1 gene indicated on the x axis. For ease of comparison, density at the promoter was set to 100 for each primer set and the other values

expressed relative to that.

Error bars denote standard deviation.
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for the C terminus of histone H3) before tabulation. Im-
portantly, these effects were specific for the Elongator
target genes, as no significant change in histone modifi-
cation was observed at the a-tubulin control gene in FD
fibroblasts (Figures 6A, 6B, and 6C right). The lack of
effect of Elongator on histone acetylation at a-tubulin
is intriguing. Presumably, residual Elongator activity or
other HATs fulfill the requirements for histone acetyla-
tion at this gene, but not at the target genes in FD cells
(see Discussion).
Having established that Elongator affects the level of

H3 acetylation of target genes, we next more precisely

defined the spatial distribution of histone H3 acetylation
across the genes. Interestingly, histone H3 acetylation
at the promoter and the beginning of the coding region
was more or less unaffected by the absence of IKAP/
Elongator. However, further into the open reading frame,
more dramatic decreases were observed (Figure 6C).
Again, histone acetylation in the coding region corre-
lated with the lower activity of IKAP/hELP1 target genes
in FD cells; it was lowered in the beclin-1 and gelsolin
genes but remained unchanged in the a-tubulin gene
(Figure 6C).

Previous results have shown that transcription is as-
sociated with increased acetylation of both histones
H3 and H4 (see, for example, Kouskouti and Talianidis
[2005]), but Elongator HAT activity primarily targets his-
tone H3 in vitro, and in vivo in yeast (Hawkes et al., 2002,
Kim et al., 2002; Wittschieben et al., 2000; Winkler et al.,
2002). The finding that histone H3, but not histone H4,
acetylation is decreased by IKAP/hELP1 depletion is
thus consistent with the idea that the observed change
in H3 acetylation levels is a direct effect of Elongator
depletion.

Progressively Decreased RNAPII Density

through Elongator Target Genes
We finally compared the density of RNAPII across the
tested genes.We surmised that if Elongator is indeed in-
volved in transcriptional elongation, then the density of
RNAPII might be expected to be relatively lower in the
30 endof the gene than at the promoter upon IKAPdeple-
tion. Remarkably, RNAPII density was indeed progres-
sively decreased in FD cells across both the gelsolin
and beclin-1 genes (Figure 7), with an RNAPII density
similar to wild-type observed at the promoter, but only
w30% density observed at the end of the gene. In con-
trast, the RNAPII density at the a-tubulin control gene
was largely unaffected by the decrease in IKAP/Elonga-
tor levels, as expected (Figure 7). Together, these data
indicate that Elongator affects transcript elongation,
but not recruitment of RNAPII to the promoter, of genes
whose expression is affected by decreased IKAP/hELP1
levels. The very specific effects of IKAP depletion on his-
tone acetylation andRNAPII density across target genes
are consistent with a direct effect of Elongator on tran-
scriptional elongation rather than with an indirect effect
caused by its role in the cytoplasm.

Discussion

The data presented here provide several key insights
into Elongator function. First, they demonstrate a role
for Elongator in histone H3 acetylation and transcrip-
tional elongation of human genes. Second, they indicate
that the mutation carried by individuals suffering from
FD causes abrogation of Elongator function, not just of
IKAP/hELP1 expression. Third, normal levels of Elonga-
tor are important for normal expression of several hu-
man genes, including some implicated in cell motility.
Indeed, HeLa and neuronal-derived IKAP/hELP1 RNAi
cells, as well as FD fibroblasts, exhibit defects in cell
motility in vitro. Cell motility is crucial for the normal
development and maintenance of the nervous system,
so our data also point to molecular defects that may
underlie FD.

Figure 6. Low Levels of Elongator Result in Histone H3 Hypoacety-

lation through the Coding Region of Target Genes

(A) ChIP assays with an anti-histone H3K9ac-specific antibody were

performed with normal (wt) or FD (FD) fibroblasts. For ease of com-

parison, density in normal fibroblasts was set to 100 for each primer

set and the FD values expressed relative to that.

(B) As in (A) but using an anti-histone H4tetraAc-specific antibody.

(C) ChIP assays with an anti-histone H3K18ac-specific antibody

were performed with normal (wt) or FD (FD) fibroblasts. Primers

were derived from the indicated regions of the beclin-1, gelsolin,

and a-tubulin genes (see Figure 5A). For ease of comparison, density

in normal fibroblasts was set to 100 for each primer set and the FD

values expressed relative to that. Error bars denote standard devia-

tion. For a presentation of the data where the level of acetylation at

the promoter in wt cells was set to 100, see Figure S5. The reason for

the apparently normal level of acetylation observed at the very end

of the gelsolin gene in FD cells is unknown but might be due to the

next gene downstream being relatively near (w6 kb).
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IKAP/hELP1 Depletion Affects Elongator

Integrity and Function

In yeast, the Elp1 protein assembles the Elongator com-
plex, which also includes the histone acetyltransferase
Elp3 and four additional subunits. The crucial impor-
tance of Elp1 for Elongator integrity is underscored by
the fact that deletion of ELP1 in yeast results in the cat-
alytic Elp3 subunit becoming undetectable (Petrakis
et al., 2004). Here, we show that IKAP/hELP1 depletion
also results in lower hELP3 levels in human cells. More-
over, hELP3 depletion through RNAi also results in de-
creased mRNA levels of the tested IKAP/hELP1-depen-
dent genes, supporting the idea that the uncovered
effects are due to defects in the function of the Elongator
complex. However, although we consider it unlikely,
it cannot be ruled out that hELP1/IKAP also has roles
distinct from that in the Elongator complex.
It is essential to emphasize that althoughRNAi and the

FDmutation affect IKAP/hELP1 levels, there are still sig-
nificant levels of the protein in these cells. We believe
this residual amount may be important for transcription
of a larger number of genes, as well as for cellular viabil-
ity. Indeed, the ELP1/IKBKAP gene, as well as the ELP3
gene, is essential in Drosophila melanogaster, and the
mutants die with a remarkably similar terminal pheno-
type (Jane Walker and J.Q.S., unpublished data; James
Gusella, personal communication).

It is worth pointing out that we detected Elongator not
only on genes whose expression was affected by de-
creased IKAP/hELP1 levels but also on the unaffected
a-tubulin gene. Other researchers have previously re-
ported that Elongator was detected on three genes ex-
amined by ChIP but that factors such as FACT, CBP,
PCAF, and SNF2H were only found at one or two of
the genes studied (Kouskouti and Talianidis, 2005).
Elongator was also detected at the estrogen-inducible
pS2 gene (Metivier et al., 2003). Elongator is thus present
at several genes, yet our expression data suggest that
only relatively few are affected by IKAP/Elongator deple-
tion. Interestingly, this finding fits well with recent data
on other chromatin modifying factors. For example, his-
tone acetyltransferases such as Gcn5 and Esa1 are both
generally recruited to promoters of active genes in yeast
yet only affect the expression of a small percentage of
these genes (Robert et al. [2004] and references therein).
So, although the mechanism underlying the lack of ef-
fects of Elongator depletion at, for example, the a-tubu-
lin gene remains unknown, the finding is not unex-
pected. Possibly, histone acetylation may simply not
be essential for the expression of this and other genes,
or more likely, residual Elongator activity and/or other
HATs/chromatin remodelers fulfill the requirements.

Elongator Functions in Transcript Elongation
in Human Cells

The data presented here provide evidence in support of
the previously proposed model for Elongator function
(Otero et al., 1999; Wittschieben et al., 1999). According
to this model, Elongator acetylates histones during tran-
scription as a component of an elongating RNAPII holo-
enzyme. Our ChIP experiments thus clearly show that
Elongator is present in the coding region of genes and
that histone H3 acetylation is significantly reduced in
the coding region, but not at the promoter, of affected
genes in its absence. Moreover, RNAPII density is pro-
gressively lowered through the coding region of target
genes. Elongator depletion leaves RNAPII recruitment
to the promoter largely unaffected, and RNAPII density
in the first few hundred to several thousand nucleotides
of the open reading frame is also normal. This supports
the idea that Elongator assists RNAPII during transcript
elongation through chromatin as the polymerase moves
further and further away from apromoter and the activity
sphere of HATs such as PCAF and p300/CBP (Kouskouti
and Talianidis, 2005), whose activity are likely overlap-
ping with that of Elongator in the 50 end of genes. To
our knowledge, these results represent the first demon-
stration of a role specifically in the transcript elongation
phase for an elongation factor in human cells.

Because data from ChIP experiments can only show
a correlation between the presence of a factor and ef-
fects at sites of action, our ChIP data from human cells
do not in themselves prove that Elongator acetylates
histones during transcriptional elongation. However, it
is of importance not to view these new results out of
context. First, recent results have shown that both his-
tone H3 and H4 acetylation is measurably increased in
the coding region of several human genes as a conse-
quence of active transcription (Kouskouti and Talianidis,
2005). We have shown that Elongator is primarily a his-
tone H3 acetyltransferase in vitro (Winkler et al., 2002;

Figure 7. Low Levels of Elongator Result in Progressively Lower

Density of RNAPII through the Coding Region of Target Genes

ChIP assays with an anti-RNAPII antibody (4H8) were performed

with normal (wt) or FD (FD) fibroblasts. Primers were derived from

the indicated regions of the gelsolin, beclin-1, and a-tubulin genes

(see Figure 5A for localization of primers). For ease of comparison,

density in normal fibroblasts was set to 100 for each primer set

and the FD values expressed relative to that. Error bars denote stan-

dard deviation. For a presentation of the data where the level of acet-

ylation at the promoter in normal cells was set to 100, see Figure S6.
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Hawkes et al., 2002; Kim et al., 2002). In this context, it is
therefore striking that histone H3, but not H4 acetylation,
was decreased by Elongator depletion in FD cells. Sec-
ond, previous data from yeast showed that mutations in
Elongator are synthetic lethal with mutations in the N-
terminal tail of histone H4, suggesting that Elongator
function is required for normal histone H3 function
in vivo (in the absence of the H4 tail, correct function
of the H3 tail is essential) (Wittschieben et al. [2000]
and references therein). Third, yeast cells lacking both
ELP3 and the gene encoding another histone H3 acetyl-
transferase, GCN5, have severe growth defects, and
these growth defects can be suppressed specifically
by concurrently deleting the histone deacetylases
HDA1 and HOS2 (Wittschieben et al., 2000). Although
the data reported here support the idea that human
Elongator targets both lysine H3 K9 and H3 K18
in vivo, this does not rule out the possibility that lysine
H3 K14, which is a primary target site of purified yeast
Elongator in vitro, is targeted in human cells as well
(see Kristjuhan et al. [2002] for a discussion of the site
specificity of HATs). Taken together with the data from
the yeast model, our results using human cells strongly
point to a function for Elongator in histone acetylation
during transcript elongation.

IKAP/Elongator DepletionResults in Downregulation
of Genes Required for Normal Cell Motility

Several models for the function of IKAP/hELP1 and
Elongator have been proposed. Cohen et al. (1998) and
Holmberg et al. (2002) suggested that IKAP/hELP1
might be involved in cytoplasmic signaling in the NF-kB
and JNK pathways, respectively. Our data, and those
of others (Krappmann et al., 2000), failed to support an
involvement of IKAP/hELP1 in these cytoplasmic signal
transduction pathways. The name IKAP is therefore in all
likelihood a misnomer, and we suggest that the protein
should be designated human ELP1 (hELP1) instead.
In yeast, Elongator has been implicated in cellular re-

actions as diverse as tRNA modification (Huang et al.,
2005) and exocytosis (Rahl et al., 2005). Indeed, Rahl
et al. proposed that FD is caused by an exocytosis de-
fect. These authors showed that a defect in yeast exocy-
tosis resulting from sec2-52 mutation (which creates
a premature stop codon after the first 374 residues of
the essential Sec2 protein) could be overcome by Elon-
gator gene deletion. Unfortunately, the data in support
of this unusual suppression effect being direct were un-
persuasive. For example, an interaction between full-
length Elp1 and Sec2 could only be demonstrated by
the use of a potent protein-protein crosslinker. In our
experience, the use of such crosslinkers in crude ex-
tracts requires several specificity controls, which were
not provided. Interestingly, the reported involvement
of Elongator in tRNA modification (translation fidelity)
raises the possibility that the sec2-52 suppression is
caused by increased stop codon readthrough in elp
strains, as elp mutation can affect the recognition of
ochre codons (Huang et al., 2005). elp mutation might
obviously also affect expression of exocytosis genes
via Elongator’s role in transcription. It thus remains un-
clear if the effect of Elongator on exocytosis is direct
and if the yeast exocytosis data are relevant for FD.
In any case, it remains a possibility that translational

imprecision might contribute to FD (and to the defects
resulting from Elongator disruption in yeast).

In general, the most plausible explanation for the pre-
viously reported cellular localization data seems to be
that Elongator plays roles in distinct cellular processes,
in distinct cellular compartments, as previously pro-
posed (Gilbert et al., 2004). The complex nature of Elon-
gator function and its relationship with basic cellular
functions are further underscored by the data presented
here. We thus demonstrated that Elongator plays a key
role in transcription of several genes that regulate the
actin cytoskeleton and cell motility/migration and that
decreases in Elongator levels indeed result in cell migra-
tion defects in four different tested cell types, including
neuronal-derived cells. It is worth noting that although
the data presented here strongly argue that the cell mi-
gration defect is a consequence of lowered expression
of genes required for this process, we cannot rule out
the possibility that Elongator also plays a more direct
role in cell motility, for example via its cytoplasmic local-
ization.

Impaired Cell Motility May Underlie FD

FD is a neurodevelopmental and neurodegenerative ge-
netic disorder with severe pathological consequences
(reviewed by Slaugenhaupt andGusella [2002] and Axel-
rod [2004]). IKAP/hELP1 mutation affects the develop-
ment and maintenance of neurons, resulting in neuro-
pathological and clinical progression. To appreciate
the potential importance of the connection between im-
paired cell motility observed in cells with decreased
levels of IKAP/hELP1 protein and the neuropathology
of FD patients, it is important to realize that the actin cy-
toskeleton and cell motility play crucial roles in nerve cell
growth cone motility, axon outgrowth, and guidance.
Moreover, cell motility and the actin cytoskeleton also
play central roles at the level of neuritogenesis (the
sprouting of neurites, which will later become axons
and dendrites) and in the migration of neurons to their fi-
nal destination in the brain (reviewed byDent andGertler
[2003] and da Silva and Dotti [2002]). Our data thus sug-
gest an intriguing model to explain FD at the molecular
level: the mutation in the gene encoding IKAP/hELP1 re-
sults in a tissue (brain)-specific decrease in the ability of
cells to migrate, which in turn leads to neuro-develop-
mental abnormalities and the neuropathology of FD pa-
tients. Obviously, other genes that are downregulated in
cells upon Elongator depletion may contribute to the
disease as well.

FD is a devastating disease, and in spite of significant
advances in prognosis due to better supportive treat-
ment, only about 40%of patients aremore than 20 years
old (Axelrod, 2004). The data presented here will hope-
fully provide important clues to future treatment of the
disorder.

Experimental Procedures

Cell Culture and Reagents

HeLa and 293T cells were maintained in DMEM supplemented with

10% fetal bovine serum (Life Technologies) and antibiotics, whereas

fibroblasts (Slaugenhaupt et al., 2001) were cultured in DMEM sup-

plemented with 20% FBS, 1% antibiotics, and 1% L-glutamine.

HT29 cells were cultured in EMEM supplemented with 10% NEAA,

Elongator Depletion Affects Transcript Elongation
529



antibiotics, and L-glutamine. SK-N-BE and U373 cells were cultured

in RPMI supplemented with 10% FCS and antibiotics.

Monoclonal anti-IKAP for Western blot analysis was purchased

from BD Biosciences Pharmingen. Anti-IKAP antisera for ChIP

analysis were raised in rabbits against an IKAP peptide. Anti-paxillin

and -Rac antibodies were from Upstate Biotechnology; anti-p38,

-phospho p38, -Akt, and -phospho Akt antibodies from Cell Signal-

ing; anti-Erk1, -phosphoErk1, -JNK, -IkBa, -a-tubulin, and -calreticu-

lin antibodies from Santa Cruz Biotechnologies; rabbit polyclonal

anti-acetyl H3 K9, anti-acetyl H3 K18, and anti-acetyl H4 antibody,

as well as 4H8 antibody used to precipitate RNAPII, were from Up-

state Biotechnology; and rabbit polyclonal anti-H3 (C-terminus anti-

body) was from Abcam. Antibodies directed against Elp3, Elp4, and

Elp5 have been described previously (Petrakis et al. [2004] and refer-

ences therein). GST-c-Jun was from BIOMOL.

RNAi Transfection and Lentiviral Cell Infection

RNAi oligos were synthesized by Dharmacon Research (sequences

available upon request) and were transfected into HeLa or HT29

cells by using the oligofectamine reagent (Invitrogen) or by calcium

phosphate in fibroblasts. Cells were lyzed 48 hr posttransfection,

and anti-IKAP/hELP1 and -ELP3 Western blots performed. The

pLL3.7 lentivirus and instructions on its use was kindly provided

by Dr. L. van Parijs (MIT, Boston, MA) (Rubinson et al., 2003). Details

are available upon request.

Total RNA Extraction, Microarray Analysis, and Real-Time PCRs

Total RNA extraction from RNAi cells was carried out by using the

RNeasy Mini kit (Qiagen). Double-stranded cDNAs were generated

by using the superscript II RT kit (Invitrogen). Subsequently, bio-

tin-labeled cRNA was generated with the Bioarray High Yield RNA

Transcript Labeling Kit (Enzo Life Science). cRNAs were hybridized

with the Human Genome U133A array, which harbors >22,000 probe

sets (Affymetrix). Data were processed with GeneChip Operating

Software (Affymetrix). Quantitative real-time PCR was performed

with TaqMan 7000 SDS (Applied Biosystems), using SybrGreen

detection. Primers sequences are available upon request.

Wound-Healing, Chemotaxis Assays, and Collagen

Matrix Contraction

For wound-healing assays, HeLa, SK-N-BE, or U373 cells stably in-

fected with lentivirus-delivering RNAi, or wild-type and FD fibro-

blasts, were grown until confluence. SK-N-BE and U373 cells were

plated on fibronectin-coated plates. Mitomycin C (1 mg/ml) was

added to the culturemedia 2 hr before ‘‘wounding’’ to inhibit cell pro-

liferation. Wound areas were generated by scraping with a pipette

tip, and disrupted monolayers were randomly photographed in mul-

tiple fields (T = 0). Cell migration/wound healing was similarly as-

sessed over the following hours.

For chemotaxis assays using a Boyden chamber (Riedy et al.,

1999), HeLa or SK-N-BE and U373 cells were added to serum-free

medium in 24-wellmultiwell plates (Corning Incorporated). The lower

compartment was filled with medium supplemented with 10% FBS.

Cells were incubated at 37ºC. Cells on the upper surface were re-

moved, and membranes were fixed in ethanol at220ºC and stained

with Giemsa 4%. Migrated cells were randomly photographed

(10 fields/insert) and counted.

Collagen gel contraction experiments were performed as de-

scribed (Lambert et al., 1992), using 1 mg collagen lattice.

Kinase Assays

Anti-JNK immunoprecipitates were used in kinase assays per-

formed at 30ºC for 30min with 1 mg of purified GST-c-Jun fusion pro-

tein and 10 mCi of [g32P] ATP in 20 ml kinase buffer (20 mM HEPES

[pH 7.4], 10 mM MgCl2, 25 mM b-glycerophosphate, 50 mM

Na3VO4, and 50 mM DTT). Phosphorylated c-Jun proteins were de-

tected by autoradiography after 10% SDS-PAGE.

ChIP Assays

ChIP assayswere performed by standard techniques (see, for exam-

ple, Kouskouti and Talianidis [2005]). Extracts were precleared by 1h

incubation with protein A or G/Herring sperm DNA, and immunopre-

cipitation was performed by incubating overnight at 4ºC with the rel-

evant antibody, using HA antibody or preimmune serum as negative

controls, and then 1 hr with protein A or G/Herring sperm DNA. Pro-

tein-DNA complexes were washed as per standard ChIP tech-

niques. After elution, proteinase K treatment, and reversal of cross-

links, DNA fragments were analyzed by real-time PCR with SYBr

Green detection. Input DNA was analyzed simultaneously and

used as normalization. For normalization of the RNAPII ChIPs, the

signal obtained from a noncoding region (downstream from the al-

bumin gene [see Kouskouti and Talianidis (2005)]) was used to com-

pensate for possible fluctuations arising during handling. For the

histone-related ChIPs, acetyl-histone-specific ChIP values were

normalized according to the total H3 signal (as detected with the C

terminus-specific anti-histone H3 antibody).

Supplemental Data

Supplemental Data include Supplemental References and seven fig-

ures and can be found with this article online at http://www.

molecule.org/cgi/content/full/22/4/521/DC1/.
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the Centre Anti-Cancéreux, and the Belgian Federation against Can-

cer. Work in the Svejstrup lab was supported by a grant from the

Familial Dysautonomia Foundation and by an in-house grant from

Cancer Research UK.

Received: July 5, 2005

Revised: March 6, 2006

Accepted: April 18, 2006

Published: May 18, 2006

References

Anderson, S.L., Coli, R., Daly, I.W., Kichula, E.A., Rork, M.J., Volpi,

S.A., Ekstein, J., and Rubin, B.Y. (2001). Familial dysautonomia is

caused by mutations of the IKAP gene. Am. J. Hum. Genet. 68,

753–758.

Axelrod, F.B. (2004). Familial dysautonomia. Muscle Nerve 3,

352–363.

Azuma, T., Witke, W., Stossel, T.P., Hartwig, J.H., and Kwiatkowski,

D.J. (1998). gelsolin is a downstream effector of rac for fibroblast

motility. EMBO J. 17, 1362–1370.

Cohen, L., Henzel, W.J., and Baeuerle, P.A. (1998). IKAP is a scaffold

protein of the IkappaB kinase complex. Nature 395, 292–296.

Cuajungco, M.P., Leyne, M., Mull, J., Gill, S.P., Lu, W., Zagzag, D.,

Axelrod, F.B., Maayan, C., Gusella, J.F., and Slaugenhaupt, S.A.

(2003). Tissue-specific reduction in splicing efficiency of IKBKAP

due to the major mutation associated with familial dysautonomia.

Am. J. Hum. Genet. 3, 749–758.

da Silva, J.S., and Dotti, C.G. (2002). Breaking the neuronal sphere:

regulation of the actin cytoskeleton in neuritogenesis. Nat. Rev. Neu-

rosci. 3, 694–704.

Dent, E.W., and Gertler, F.B. (2003). Cytoskeletal dynamics and

transport in growth cone motility and axon guidance. Neuron 40,

209–227.

Gilbert, C., Kristjuhan, A., Winkler, G.S., and Svejstrup, J.Q. (2004).

Elongator interactions with nascent mRNA revealed by RNA immu-

noprecipitation. Mol. Cell 14, 457–464.

Grinnell, F. (1994). Fibroblasts, myofibroblasts, and wound contrac-

tion. J. Cell Biol. 124, 401–404.

Hawkes, N.A., Otero, G., Winkler, G.S., Marshall, N., Dahmus,

M.E., Krappmann, D., Scheidereit, C., Thomas, C.L., Schiavo,

G., Erdjument-Bromage, H., et al. (2002). Purification and charac-

terization of the human Elongator complex. J. Biol. Chem. 277,

3047–3052.

Holmberg, C., Katz, S., Lerdrup, M., Herdegen, T., Jaattela, M.,

Aronheim, A., and Kallunki, T. (2002). A novel specific role for I

Molecular Cell
530



kappa B kinase complex-associated protein in cytosolic stress

signalling. J. Biol. Chem. 277, 31918–31928.

Huang, B., Johansson, M.J., and Bystrom, A.S. (2005). An early step

in wobble uridine tRNA modification requires the Elongator com-

plex. RNA 11, 424–436.

Kim, J.-H., Lane,W.S., and Reinberg, D. (2002). Human Elongator fa-

cilitates RNA polymerase II transcription through chromatin. Proc.

Nat’l. Acad. Sci. USA 99, 1241–1246.

Kouskouti, A., and Talianidis, I. (2005). Histone modifications defin-

ing active genes persist after transcriptional andmitotic inactivation.

EMBO J. 24, 347–357.

Krappmann, D., Hatada, E.N., Tegethoff, S., Li, J., Klippel, A., Giese,

K., Baeuerle, P.A., and Scheidereit, C. (2000). The I kappa B kinase

(IKK) complex is tripartite and contains IKK gamma but not IKAP

as a regular component. J. Biol. Chem. 275, 29779–29787.

Kristjuhan, A., Walker, J., Suka, N., Grunstein, M., Roberts, D.,

Cairns, B.R., and Svejstrup, J.Q. (2002). Transcriptional inhibition

of genes with severe histone h3 hypoacetylation in the coding

region. Mol. Cell 10, 925–933.

Lambert, C.A., Soudant, E.P., Nusgens, B.V., and Lapiere, C.M.

(1992). Pretranslational regulation of extracellular matrix macromol-

ecules and collagenase expression in fibroblasts by mechanical

forces. Lab. Invest. 66, 444–451.

Metivier, R., Penot, G., Hubner, M.R., Reid, G., Brand, H., Kos, M.,

and Gannon, F. (2003). Estrogen receptor-alpha directs ordered, cy-

clical, and combinatorial recruitment of cofactors on a natural target

promoter. Cell 115, 751–763.

Otero, G., Fellows, J., Li, Y., de Bizemont, T., Dirac, A.M.G., Gustafs-

son, C.M., Erdjument-Bromage, H., Tempst, P., and Svejstrup, J.Q.

(1999). Elongator, a multi-subunit component of a novel RNA poly-

merase II holoenzyme for transcriptional elongation. Mol. Cell 3,

109–118.

Petrakis, T.G.,Wittschieben, B.Ø., and Svejstrup, J.Q. (2004). Molec-

ular architecture, structure-function relationship, and importance of

the Elp3 subunit for the RNA binding of holo-Elongator. J. Biol.

Chem. 279, 32087–32092.

Rahl, P.B., Chen, C.Z., and Collins, R.N. (2005). Elp1p, the yeast ho-

molog of the FD disease syndrome protein, negatively regulates

exocytosis independently of transcriptional elongation. Mol. Cell

17, 841–853.

Riedy, M.C., Brown, M.C., Molloy, C.J., and Turner, C.E. (1999). Ac-

tivin A and TGF-beta stimulate phosphorylation of focal adhesion

proteins and cytoskeletal reorganization in rat aortic smooth muscle

cells. Exp. Cell Res. 251, 194–202.

Robert, F., Pokholok, D.K., Hannett, N.M., Rinaldi, N.J., Chandy, M.,

Rolfe, A., Workman, J.L., Gifford, D.K., and Young, R.A. (2004).

Global position and recruitment of HATs and HDACs in the yeast

genome. Mol. Cell 16, 199–209.

Rubinson, D.A., Dillon, C.P., Kwiatkowski, A.V., Sievers, C., Yang, L.,

Kopinja, J., Rooney, D.L., Ihrig, M.M., McManus, M.T., Gertler, F.B.,

et al. (2003). A lentivirus-based system to functionally silence genes

in primary mammalian cells, stem cells and transgenic mice by RNA

interference. Nat. Genet. 33, 401–406.

Slaugenhaupt, S.A., and Gusella, J.F. (2002). Familial dysautonomia.

Curr. Opin. Genet. Dev. 12, 307–311.

Slaugenhaupt, S.A., Blumenfeld, A., Gill, S.P., Leyne, M., Mull, J.,

Cuajungco, M.P., Liebert, C.B., Chadwick, B., Idelson, M., Reznik,

L., et al. (2001). Tissue-specific expression of a splicing mutation

in the IKBKAP gene causes familial dysautonomia. Am. J. Hum.

Genet. 68, 598–605.

Slaugenhaupt, S.A., Mull, J., Leyne, M., Cuajungco, M.P., Gill, S.P.,

Hims, M.M., Quintero, F., Axelrod, F.B., and Gusella, J.F. (2004).

Rescue of a human mRNA splicing defect by the plant cytokinin

kinetin. Hum. Mol. Genet. 13, 429–436.

West, K.A., Zhang, H., Brown, M.C., Nikolopoulos, S.N., Riedy, M.C.,

Horwitz, A.F., and Turner, C.E. (2001). The LD4 motif of paxillin reg-

ulates cell spreading and motility through an interaction with paxillin

kinase linker (PKL). J. Cell Biol. 154, 161–176.

Winkler, G.S., Kristjuhan, A., Erdjument-Bromage, H., Tempst, P.,

and Svejstrup, J.Q. (2002). Elongator is a histone H3 and H4

acetyltransferase important for normal histone acetylation levels in

vivo. Proc. Natl. Acad. Sci. USA 99, 3517–3522.

Wittschieben, B.O., Otero, G., de Bizemont, T., Fellows, J.,

Erdjument-Bromage, H., Ohba, R., Li, Y., Allis, C.D., Tempst,

P., and Svejstrup, J.Q. (1999). A novel histone acetyltransferase

is an integral subunit of elongating RNA polymerase II holoenzyme.

Mol. Cell 4, 123–128.

Wittschieben, B.O., Fellows, J., Du,W., Stillman, D.J., and Svejstrup,

J.Q. (2000). Overlapping roles for the histone acetyltransferase

activities of SAGA and Elongator in vivo. EMBO J. 19, 3060–3068.

Accession Numbers

The data from the microarray experiments have been deposited

in the arrayexpress database (EMBL) under accession number

E-MEXP-641.

Elongator Depletion Affects Transcript Elongation
531



Supplemental Data 

Transcription Impairment and Cell Migration  

Defects in Elongator-Depleted Cells:  

Implication for Familial Dysautonomia 

Pierre Close, Nicola Hawkes, Isabelle Cornez, Catherine Creppe, Charles A. Lambert, 

Bernard Rogister, Ulrich Siebenlist, Marie-Paule Merville, Susan A. Slaugenhaupt, 

Vincent Bours, Jesper Q. Svejstrup, and Alain Chariot 

 

Supplemental References 

Hayden, M.S., and Ghosh, S. (2004). Signalling to NF- B. Genes Dev. 18, 2195–2224. 

 



 



 
 

 



 



 



 



 



 












































