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ABSTRACT
In main-sequence stars, the periods of high-order gravity modes are sensitive probes of stellar

cores and, in particular, of the chemical composition gradient that develops near the outer edge

of the convective core. We present an analytical approximation of high-order g modes that

takes into account the effect of the μ gradient near the core. We show that in main-sequence

models, similarly to the case of white dwarfs, the periods of high-order gravity modes are

accurately described by a uniform period spacing superposed to an oscillatory component.

The periodicity and amplitude of such component are related, respectively, to the location and

sharpness of the μ gradient.

We investigate the properties of high-order gravity modes for stellar models in a mass

domain range between 1 and 10 M�, and the effects of the stellar mass, evolutionary state and

extra-mixing processes on period spacing features. In particular, we show that for models of a

typical Slowly Pulsating B (SPB) star, a chemical mixing that could likely be induced by the

slow rotation observed in these stars is able to significantly change the g-mode spectra of the

equilibrium model. Prospects and challenges for the asteroseismology of γ Doradus and SPB

stars are also discussed.
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1 I N T RO D U C T I O N

It is well known that a stratification in the chemical composition of

stellar models directly influences the properties of gravity modes.

The signatures of chemical stratifications have been extensively in-

vestigated theoretically, and observed, in pulsating white dwarfs

(see e.g. Kawaler 1995, for a review). The influence of chemi-

cal composition gradients on g modes in main-sequence stars has

been partly addressed and suggested in the works by Berthomieu &

Provost (1988) and Dziembowski, Moskalik & Pamyatnykh (1993).

Inspired by these works and following the approach of Berthomieu

& Provost (1988) and Brassard et al. (1992), we study the properties

of high-order, low-degree gravity modes in main-sequence stellar

models.

High-order gravity modes are observed in two classes of main-

sequence stars: γ Doradus and Slowly Pulsating B (SPB) stars.

The former are main-sequence stars with masses around 1.5 M�
(see e.g. Guzik et al. 2000) that show both photometric and

line profile variations. Their spectral class is A7–F5 and their ef-

fective temperature is between 7200–7700 K on the zero-age main

sequence (ZAMS) and 6900–7500 K above it (Handler 1999). γ

Dor stars are multiperiodic oscillators with periods between 8 h and

3 d (high-order g modes). The modulation of the radiative flux by

convection at the base of the convective envelope was proposed as
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the excitation mechanism for such stars (see e.g. Guzik et al. 2000;

Dupret et al. 2004).

SPB stars are multiperiodic main-sequence stars with masses

from about 3 to 8 M� and spectral-type B3–B8 (Waelkens 1991).

High-order g modes of periods typically between 1 and 3 d are

found to be excited by the κ-mechanism acting in the region of the

metal opacity bump located at T ∼ 2 × 105 K in the stellar inte-

rior (see e.g. Dziembowski et al. 1993). Recent observations (see

Jerzykiewicz et al. 2005; Chapellier et al. 2006; Handler et al. 2006)

and theoretical instability analysis (Pamyatnykh 1999; Miglio,

Montalbán & Dupret 2007) also suggest high-order g modes being

excited in a large fraction of the more massive β Cephei pulsators:

the seismic modelling of these hybrid pulsators looks very promis-

ing as it would benefit from the information on the internal structure

carried by both low-order p and low-order g modes (β Cephei type

oscillation modes) and high-order g modes (SPB-type pulsation).

The seismic modelling of γ Doradus and SPB stars is a formidable

task to undertake. The frequencies of high-order g modes are in fact

closely spaced and can be severely perturbed by the effects of rota-

tion (see e.g. Dintrans & Rieutord 2000; Suárez et al. 2005). None

the less, the high scientific interest of these classes of pulsators has

driven efforts in both the observational and theoretical domain. Be-

sides systematic photometric and spectroscopic ground-based sur-

veys carried out on γ Dor (see Mathias et al. 2004) and SPB stars

(see De Cat & Aerts 2002), the long and uninterrupted photomet-

ric observations planned with COnvection, ROtation & Planetary
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Transits (CoRoT; Baglin et al. 2006; Mathias et al. 2006) will allow

to significantly increase the number and accuracy of the observed

frequencies.

On the theoretical side, as suggested by Suárez et al. (2005) in the

case of γ Dor stars, a seismic analysis becomes feasible for slowly

rotating targets. In these favourable cases, the first-order asymptotic

approximation (Tassoul 1980) can be used as a tool to derive the

buoyancy radius of the star (see Moya et al. 2005) from the observed

frequencies. Nevertheless, the g-mode spectra of these stars contain

much more information on the internal structure of the star. In this

paper, we describe in detail the information content carried by the

periods of high-order g modes, and show that the effect of chemical

composition gradients can be easily included as a refinement of the

asymptotic approximation of Tassoul (1980).

After an introduction to the properties of gravity modes in main-

sequence stars (Section 2), we present in Section 3 the analytical

approximation of high-order g-mode frequencies that will be used in

the subsequent sections. In Section 4, we describe the properties of

numerically computed g-mode frequencies in main-sequence stars

in the mass domain 1–10 M�. The effect of adding extra-mixing

at the outer edge of the convective core (rotationally induced tur-

bulence, overshooting, diffusion) is investigated in Section 4.2. In

Section 5, we estimate how the effects of rotation and of current ob-

servational limitations affect asteroseismology of main-sequence

high-order g-modes pulsators. A summary is finally given in

Section 6.

2 T H E P RO P E RT I E S O F T R A P P E D g M O D E S

As is well known, the period spectrum of gravity modes is deter-

mined by the spatial distribution of the Brunt–Väisälä frequency (N)

which is defined as

N 2 = g

(
1

�1 p

dp

dr
− 1

ρ

dρ

dr

)
. (1)

N can be approximated, assuming the ideal gas law for a fully ionized

gas, as

N 2 � g2ρ

p
(∇ad − ∇ + ∇μ), (2)

where

∇ = d ln T

d ln p
, ∇ad =

(
∂ ln T

∂ ln p

)
ad

and ∇μ = d ln μ

d ln p
. (3)

The term ∇μ gives the explicit contribution of a change of chemical

composition to N. The first-order asymptotic approximation devel-

oped by Tassoul (1980) shows that, in the case of a model that

consists of an inner convective core and an outer radiative envelope

(we refer to the work by Tassoul 1980, for a complete analysis of

other possible cases), the periods of low-degree, high-order g modes

are given by

Pk = π2

L
∫ 1

x0

|N |
x dx

(2k + ne) , (4)

where L = [	(	 + 1)]1/2 (with 	 the mode degree), ne the effective

polytropic index of the surface layer, x the normalized radius and

x0 corresponds to the boundary of the convective core. In order to

avoid confusion with ne, the radial order of g modes is represented

by k.

Following equation (4), the periods are asymptotically equally

spaced in k and the spacing decreases with increasing L. It is there-

fore natural to introduce, in analogy to the large frequency separation

Figure 1. Upper panel: hydrogen abundance in the core of 6 M� models on

the main sequence. Xc � 0.5 (dotted line) and at Xc � 0.3 (dashed line). The

convective core recedes during the evolution and leaves behind a chemical

composition gradient. Lower panel: buoyancy frequency N as a function of

the normalized mass.

of p modes, the period spacing of gravity modes, defined as


P = Pk+1 − Pk . (5)

In the following sections, we will show that deviations from a con-

stant 
P contain information on the chemical composition gradient

left by a convective core evolving on the main sequence.

We consider as a first example two models of a 6 M� star evolv-

ing on the main sequence. The behaviour of N and of the chemical

composition profile is represented in Fig. 1. The convective core is

fully mixed and, therefore, the composition is uniform (∇μ = 0).

However, in stars in this mass range, the convective core shrinks

during the evolution, leaving behind a steep gradient in the hydro-

gen abundance X. This causes a sharp peak in ∇μ and in N: does

this feature leave a clear signature in the properties of g modes?

This question was addressed by Brassard et al. (1991) while study-

ing the seismic effects of compositional layering in white dwarfs.

The authors found that a sharp feature in the buoyancy frequency

could lead to a resonance condition that may trap modes in different

regions of the model.

A first indicator of such a trapping is the behaviour of 〈x〉 defined

by

〈x〉 =
∫ 1

0
x |δr |2 dm∫ 1

0
|δr |2 dm

, (6)

where x = r/R and δr is the total displacement vector. As shown in

Fig. 2, modes of different radial order k are periodically confined
closer to the centre of the star.

In Fig. 3, we show the behaviour of the eigenfunctions for modes

of radial orders around a trapped mode: the partly trapped mode has,

compared to ‘neighbour’ modes, a larger amplitude in the region of

mean molecular weight gradient.

In white dwarfs, it has been theoretically predicted and observed

(see e.g. the recent work of Metcalfe, Montgomery & Kawaler 2003)

that the period spacing 
P(k) = Pk+1 − Pk is not constant, contrary

to what is predicted by the first-order asymptotic approximation of

gravity modes. This has been interpreted as the signature of chem-

ical composition gradients in the envelope and in the core of the

star. In analogy with the case of white dwarfs, in models with a
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Figure 2. 〈x〉 for 6 M� models on the main sequence at two different points

in the evolution: Xc � 0.5 (dotted lines) and at Xc � 0.3 (dashed line). Modes

of different radial order are periodically trapped in the region of chemical

composition gradient. Trapped modes are marked with open symbols.

Figure 3. We consider a 6 M� model with Xc � 0.5. Upper panel: N against

fractional radius. Central panel: horizontal component of the displacement

for three 	 = 1 gravity modes of radial order 18 (dotted line), 20 (continuous

line) and 22 (dashed line). The eigenfunction corresponding to k = 20 is

partly trapped in the region of mean molecular weight where the sharp

variation of N is located. Lower panel: as in the central panel, this time the

radial displacement is shown. The eigenfunctions corresponding to different

modes are normalized to have the same total pulsation energy.

convective core, we expect the formation of a non-uniform period
distribution; this is in fact the case as is presented in Fig. 4. In that

figure, we plot the period spacing derived by using the adiabatic

oscillation code LOSC (Scuflaire et al. 2007a) for models of 6 M�
at two different stages in the main-sequence evolution. The period

spacing presents clear deviations from the uniformity that would be

expected in a model without sharp variations in N. How these devi-

ations are related to the characteristics of the chemical composition

gradients will be studied in the following sections.

3 A P P ROX I M AT E A NA LY T I C A L E X P R E S S I O N
O F G - M O D E S P E R I O D S PAC I N G

In this section, we derive two approximate expressions that relate

deviations from a uniform period distribution to the characteristics

of the μ-gradient region. These simplified expressions could also

represent a useful tool to give a direct interpretation of an observed

Figure 4. Period spacing for the same 6 M� models as in Fig. 2. The periods

of the components (in terms of k) are approximately 7 and 3. Horizontal

dotted lines represent constant period spacing predicted by the asymptotic

approximation (equation 4).

period spectrum. Though a first description of these approximated

expressions was outlined in Miglio (2006) and in Miglio, Montalbán

& Noels (2006), we present here a more detailed analysis.

We recall that deviations from the asymptotic expressions of the

frequencies of high-order pressure modes have been widely studied

in the context of helioseismology. The oscillatory features in the os-

cillation spectrum of solar oscillation modes allowed modes to infer

the properties of localized variations of the solar structure, for exam-

ple, at the base of the convective envelope and in the second helium

ionization region (see e.g. Gough 1990; Christensen-Dalsgaard,

Gough & Thompson 1991; Monteiro, Christensen-Dalsgaard &

Thompson 1994; Basu & Antia 1995; Monteiro & Thompson 2005;

Houdek & Gough 2007).

3.1 Variational principle

A first and simple approach to the problem is to make use of the

variational principle for adiabatic stellar oscillations (see e.g. Unno

et al. 1989). The effect of a sharp feature in the model (a chemical

composition gradient, for instance) can be estimated from the peri-

odic signature in 
P, defined as the difference between the periods

of the star showing such a sharp variation and the periods of an

otherwise fictitious smooth model.

We consider a model with a radiative envelope and a convective

core whose boundary is located at a normalized radius x0. N− and

N+ are the values of the Brunt–Väisälä frequency at the outer and

inner border of the μ-gradient region. We define α = ( N+
N− )1/2 with

N+ � N−. Then, α = 1 describes the smooth model and α → 0 a

sharp discontinuity in N.

To obtain a first estimate of δP, we adopt (following the approach

by Montgomery, Metcalfe & Winget 2003) the Cowling approx-

imation that reduces the differential equations of stellar adiabatic

oscillations to a system of the second order. Furthermore, since we

deal with high-order gravity modes, the eigenfunctions are well de-

scribed by their Jeffreys–Wentzel–Kramers–Brillouin approxima-

tion (see e.g. Gough 1993). We can therefore express δP as

δPk

P
= 20

∫ −1
0

0

(
δN

N

)
cos

(
L Pk

π x
+ π

2

)
d−1

x , (7)
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Figure 5. Left-hand panel: we model the sharp variation of N at x = xμ

by means of equation (11) for different values of α: α2
1 = 0.5 (continuous

line), α2
2 = 0.3 (dashed line). Right-hand panel: a smoother variation of N is

modelled following equation (15).

where L = [	(	 + 1)]1/2, the local buoyancy radius is defined as

−1
x =

∫ x

x0

|N |
x ′ dx ′, (8)

and the total buoyancy radius as

−1
0 =

∫ 1

x0

|N |
x ′ dx ′. (9)

The buoyancy radius of the discontinuity is then

−1
μ =

∫ xμ

x0

|N |
x ′ dx ′. (10)

We model the sharp feature in δN
N located at x = xμ as

δN

N
= 1 − α2

α2
H (xμ − x), (11)

where H(x) is the step function (see left-hand panel of Fig. 5).

Retaining only periodic terms in 
P and integrating by parts, we

obtain

δPk ∝ 0

L

1 − α2

α2
cos

(
L Pk

π μ

+ π

2

)
. (12)

For small δP, we can substitute the asymptotic approximation for

g-modes periods derived by Tassoul (1980) in the above expression:

Pk = π2
0

L
(2k + φ′),

where φ′ is a phase constant that depends on the boundary conditions

of the propagation cavity (see Tassoul 1980), and find

δPk ∝ 0

L

1 − α2

α2
cos

(
2π

0

μ

k + π
0

μ

φ′ + π

2

)
. (13)

From this simple approach, we derive that the signature of a sharp

feature in the Brunt–Väisälä frequency is a sinusoidal component
in the periods of oscillations, and therefore in the period spacing,

with a periodicity in terms of the radial order k given by


k � μ

0

. (14)

The amplitude of this sinusoidal component is proportional to the

sharpness of the variation in N and does not depend on the order of

the mode k.

Such a simple approach allows us to easily test the effect of hav-

ing a less sharp ‘glitch’ in the Brunt–Väisälä frequency. We model

δN (Fig. 5, right-hand panel) as a ramp function instead of a step

function:

δN

N
= 1 − α2

α2

(xμ − x)

xμ − x0

H (xμ − x). (15)

In this case, integration by parts leads to a sinusoidal component

in δPk whose amplitude is modulated by a factor 1/Pk and therefore

decreases with increasing k, i.e.

δPk ∝ 1

Pk

0

L

1 − α2

α2

1

−1
μ

cos

(
2π

0

μ

k + π
0

μ

φ′ + π

2

)
. (16)

The information contained in the amplitude of the sinusoidal com-

ponent, as will be presented in Section 4.2, is potentially very inter-

esting. It reflects the different characteristics of the chemical com-

position gradient resulting, for example, from a different treatment

of the mixing process in convective cores, from considering micro-

scopic diffusion or rotationally induced mixing in the models.

Equation (13) was derived by means of a first-order perturba-

tion of the periods neglecting changes in the eigenfunctions. This

approximation is valid in the case of small variations relative to a

smooth model, therefore it becomes questionable as the change of

N at the edge of the convective core becomes large. A more accurate

approximation is presented in the following section.

3.2 Considering the effects of the μ gradient
on the eigenfunctions

We present in this section a description of mode trapping considering

the change in the eigenfunctions due to a sharp feature in N. As a

second step, we derive the effects on the periods of g modes.

Brassard et al. (1992) studied the problem of mode trapping in μ-

gradient regions inside white dwarfs. In this section, we proceed as

Brassard et al. (1992), applying the asymptotic theory as developed

in Tassoul (1980) to the typical structure of an intermediate-mass

star on the main sequence.

Tassoul (1980), assuming the Cowling approximation, provided

asymptotic solutions for the propagation of high-order g modes in

convective and radiative regions, located in different parts of the

star. In order to generalize the expression for these solutions, she

introduced two functions S1 and S2 related to the radial displacement

(ξ r) and pressure perturbation (p′) as follows:

σ 2ξr = ρ−1/2x−2|φ|−1/4 S1 (17)

and

σ	(	 + 1)p′/ρ = ρ−1/2|φ|1/4 S2 , (18)

where x is the normalized radius, σ the angular frequency of the

oscillation and

φ = 	(	 + 1)N 2

x2
. (19)

The expressions for S1, S2 for different propagation regions are

given in equations [T79] to [T97].1

The only difference from the derivation of Brassard et al. (1992),

who assumed an entirely radiative model, is that here we consider

a model that consists of a convective core and a radiative envelope.

The solutions should then be described by [T80] close to the centre,

[T96] in the convective core (x0), [T97] in the radiative region with

[T82] close to the surface (where the structure of the surface layers

of the model is described by an effective polytropic index ne).

Now, as explained in Fig. 6, we assume that at x = xμ in the

radiative zone there is a sharp variation of N due to a μ gradient and,

as in the previous section, we model it as a discontinuity weighted

by α, where α = (N+/N−)1/2 (see equation 11).

1 Henceforth on [Ti] indicates equation number i in the paper by Tassoul

(1980).
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Figure 6. A schematic view of the simplified model we consider. The radia-

tive region outside the convective core (x > x0) is divided in two zones: one

below and the other above the discontinuity in N located at x = xμ. In each of

these regions, we consider the asymptotic expressions for the eigenfunctions

that are then joined continuously at x = xμ.

We define λ = σ−1,

v0(x) = L

∫ 1

x

|N |
x ′ dx ′ = L

(
−1

0 − −1
x

)

and v1(x) = L

∫ x

x0

|N |
x ′ dx ′ = L−1

x .

For large values of λv0 and λv1, we can write the eigenfunctions

in the radiative region above the discontinuity at xμ as

S1a ∝ ko sin (A) and S2a ∝ −ko cos (A), (20)

and in the ∇μ region below the discontinuity we have

S1b ∝ k1 cos (B) and S2b ∝ −k1 sin (B) , (21)

where

A = λv0(x) − ne

π

2
− π

4
, B = λv1(x) − π

4
, (22)

and k0 and k1 are arbitrary constants. Note that A and B are functions

of x.

The eigenfrequencies are now obtained by continuously match-

ing the individual solutions in their common domain of validity. In

particular, imposing the continuity of p′ and ξ r at the location of the

discontinuity in N we obtain the following conditions (as in Brassard

et al. 1992):

S+
1 = αS−

1 , (23)

S+
2 α = S−

2 , (24)

where S1,2 is evaluated above (S+
1,2) and below (S−

1,2) x = xμ.

This finally leads to a condition on the eigenfrequencies 1/λ:

cos (A + B) = 1 − α2

1 + α2
cos (A − B), (25)

with A and B (equation 22) evaluated at x = xμ, this condition can

also be explicitly written as

cos

(
λ

L

0

− neπ

2
− π

2

)

= 1 − α2

1 + α2
cos

(
λL

[
1

0

− 2

μ

]
− neπ

2

)
. (26)

Figure 7. The Brunt–Väisälä frequency versus 0/r for 6 M� models

with Xc � 0.5 (dotted line) and Xc � 0.3 (dashed line).

3.2.1 Further approximations

A first extreme case for equation (26) is that corresponding to α = 1,

i.e. no discontinuities in the Brunt–Väisälä frequency. In this case,

equation (25) immediately leads to the condition cos (A + B) = 0

and therefore to the uniformly spaced period spectrum predicted by

Tassoul’s first-order approximation:

Pk = π2 0

L
(2k + ne). (27)

Another extreme situation is α → 0, in this case N is so large

in the μ-gradient region that all the modes are trapped there; the

periods of ‘perfectly trapped’ modes are then:

Pn =
(

n + 1

4

)
2π2 μ

L
, (28)

where n = (1, 2, 3, . . .).

The interval (in terms of radial order k) 
k between two consec-

utive trapped modes (
n = 1) can be obtained combining equations

(27) and (28) (see also Brassard et al. 1992), and is roughly given

by


k � μ

0

, (29)

which corresponds to equation (14).

We choose the 6 M� models considered in Section 2 to compare

the g-mode period spacings predicted by equations (14) and (26),

with the results obtained from the frequencies computed with an

adiabatic oscillation code.

Equation (14) relates the period of the oscillatory component

in the period spacing 
P to the location of the sharp variation in

N. In Fig. 4, the periods (in terms of k) of the components are

approximately 7 and 3 for models with Xc = 0.5 and 0.3. Following

equation (14), these periods should correspond to a location of the

discontinuity (expressed as 0/μ � k−1) of 0.14 and 0.3: as shown

in Fig. 7, these estimates very accurately describe the locations of

the sharp variation of N in the models.

Numerical solutions of equation (26), found using a bracketing-

bisection method (see Press et al. 1992), are shown in Fig. 8. As

is clearly visible when comparing Figs 8 and 4, we find that the

solutions of equation (26) better match the oscillatory behaviour of

the period spacing than the sinusoids of equation (13).

In the following section, we extend to a wider range of main-

sequence models the analysis presented for a 6 M� model.
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Figure 8. Period spacing 
P = Pk+1 − Pk calculated from numerical so-

lutions of equation (26). All solutions are calculated for 	 = 1 modes and

0 = 639 s. In the upper panel, we fix the value of 0/μ to 0.15 and vary

α: α = 0.35 (continuous line), α = 0.75 (dashed line) and α = 1 (dotted

line). In the lower panel, we fix the value of α to 0.35 and vary the value

of 0/μ: 0/μ = 0.15 (continuous line), 0.225 (dashed line) and 0.1

(dotted line).

4 A P P L I C AT I O N TO S T E L L A R M O D E L S

The occurrence of a sharp chemical composition gradient in the cen-

tral region of a star is determined by the appearance of convection

in the core and by the displacement of the convective core boundary

during the main sequence. For a given chemical composition, and

if no non-standard transport process is included in the modelling,

the transition from radiative to convective energy transport, as well

as the shape of the μ gradients in the central stellar region, is de-

termined by the mass of the model. On the other hand, additional

mixing processes may alter the evolution of the convective core and

the detailed properties of the chemical composition profile.

As shown in the previous section, the features of periodic signals

in the period spacing of high-order g modes can provide very im-

portant information on the size of the convective core and on the

mixing processes able to change the μ gradients generated during

the evolution.

In this section, we present a survey of the properties of adiabatic

	 = 1 high-order g modes in main-sequence stars with masses from

1 to 10 M�, and for four different evolutionary stages: those corre-

sponding to a central hydrogen mass fraction Xc of 0.7, 0.5, 0.3 and

0.1. All these models were computed with the same initial chemi-

cal composition (X0, Z0) = (0.70, 0.02). The adiabatic oscillation

frequencies were computed with LOSC (Scuflaire et al. 2007a).

We first study how the properties of high-order gravity modes

depend on the mass and the evolutionary stage of the model

(Section 4.1). In a second step, we evaluate the effects of the inclu-

sion of extra-mixing such as overshooting, diffusion and turbulent

mixing (Section 4.2). The behaviour of modes with different 	 will

be briefly addressed in Section 4.3.

4.1 Convective core evolution: stellar mass dependence

In our analysis of the signatures of the μ gradients on g modes, we

consider three stellar mass domains: (i) M < MLcc, with MLcc being

the minimum mass required to keep a convective core during the

main sequence; (ii) MLcc � M � Mgc, for which the mass of the

convective core increases during part of the main sequence and (iii)

M > Mgc for which the convective core recedes as the star evolves.

The situations described above are presented in Fig. 9, where the

size in mass of the convective core is shown as a function of the

central hydrogen abundance (and therefore of the age) of the star.

Figure 9. Fractional mass of the convective core as a function of central hy-

drogen abundance for models computed with (right-hand panel) and without

(left-hand panel) overshooting, for masses between 1.0 and 2 M�. β is the

overshooting parameter as defined in Section 4.2.1.

The exact values of MLcc and M > Mgc depend on the chemical

composition and, as we will see below, on extra-mixing processes.

4.1.1 Models with a radiative core

As a first example, we consider the evolution of the period spacing

on the main sequence in models without a convective core, e.g. in

a 1 M� star. The behaviour is substantially different from higher

mass models: 
P, as shown in Fig. 10, considerably decreases dur-

ing the main sequence: this can easily be understood recalling the

first-order asymptotic expression for the mean period spacing. The

increase of N near the centre of the star, due to the mean molecular

weight gradient developing in a radiative region (see upper panel

of Fig. 10), has a larger and larger contribution to
∫

N
x ′ dx ′, leading

to a significant reduction of the mean period spacing. The increase

of N near the centre is, however, not sufficient to produce any peri-

odic component of appreciable amplitude in the period spacing (see

lower panel of Fig. 10).

4.1.2 Models with a growing convective core on the main sequence

In models with masses between MLcc and Mgc, the contribution of

nuclear burning through CNO cycle becomes more and more im-

portant as the star evolves on the main sequence (see e.g. Gabriel

& Noels 1977; Crowe & Mitalas 1982; Popielski & Dziembowski

2005). The ratio L/m in the nuclear burning region becomes large

enough to alter the behaviour of ∇ rad: the latter increases and so

does the size of the convective core.

A growing convective core generates a discontinuity in the chem-

ical composition at its boundary (see Fig. 11), and may lead to

an inconsistency in the way the convective boundary is defined.

The situation is illustrated in Fig. 12: the discontinuous hydrogen

profile forces the radiative gradient to be discontinuous and to in-

crease outside the region that is fully mixed by convection, and

therefore, this region should be convective as well! If this is the

case, then we have a contradictory situation: if we allow this region

to have the same chemical composition as the core, then ∇ rad de-

creases and the region becomes radiative again. The question of the

semiconvection onset in models with masses in the range 1.1–1.6

was already addressed by Gabriel & Noels (1977) and Crowe &

Mitalas (1982) quite some time ago. Nevertheless, what happens
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Figure 10. Upper left panel: N as a function of the normalized radius in

1 M� models with decreasing central hydrogen abundance. Upper right

panel: hydrogen abundance profile versus r/R. Lower panel: g-modes period

spacing as a function of the radial order k. The asymptotic value of 
P
(predicted by equation 4) is represented, for each model, by dotted lines.

Figure 11. The discontinuous chemical composition profile generated by

a growing convective core in 1.3 M� (see Fig. 12) when no extra-mixing

outside the core is allowed.

in this so-called ‘semi-convective’ region is still a matter of de-

bate. Some mixing is likely to take place, so that the composition

gradients are adapted to obtain ∇ rad = ∇ad in the semiconvective

region.

Even if no specific mixing is added in the semiconvective region,

the μ gradient at the boundary of the convective core is very sensitive

to the details of the numerical algorithm used in describing the core

evolution. In fact, a strict discontinuity in chemical composition is

only obtained if the border of the convective region is treated with a

double mesh point (Fig. 11 for instance). This ‘unphysical’ frame-

work leads to a problem when computing the Brunt–Väisälä fre-

quency. The numerical difficulty can, however, be avoided keeping

a quasi-discontinuous chemical composition, with a sharp change

of X in an extremely narrow region (δ0 = xμ − x0) outside the con-

Figure 12. Upper panel: Radiative gradient in the inner regions of 1.3 M�
models at different stages on the main sequence. The adiabatic gradient is

represented with a short-dashed line. Middle panel: ratio L(r)/m(r). During

the evolution, the large increase of L/m at the former border of the convective

core dominates the behaviour of ∇rad. The vertical dashed line denotes the

border of the convective core in the ZAMS model. Lower panel: behaviour

of κ for the same models as in the other panels.

vective core (x0). From equations (10) and (13), it is evident that the

signal in the period spacing will then have an almost infinite period.

Of course, any treatment of the semiconvective region should

destroy the discontinuity leading to a wider μ-gradient region. The

chemical composition discontinuity may also be removed by a sort

of ‘numerical diffusion’ that appears when the grid of mesh points

(necessarily finite) in the modelling does not follow the convection

limits. That is the case of the evolution code (CLES; Scuflaire et al.

2007b) used to compute most of the stellar models presented in this

paper. In these models, the region where the discontinuity would be

located is assumed to have an intermediate chemical composition

between the one in the outermost point of the convective core and

the one in the innermost point of the radiative region. The final effect

is to have a partial mixing at the edge of the convective core, and

thus to remove the discontinuity in μ.

Furthermore, in models with a mass M � MLcc, e.g. M = 1.2 M�,

the convective core is so small (m/M ∼ 0.01) that the period spacing

resembles the behaviour of the 1 M� model. We note, however,

the appearance of oscillatory components in 
P in the model with

Xc � 0.1 (see Fig. 13). The sharp variation of N located at 0/r

� 0.1 is large enough to generate components with a periodicity of

10 k in 
P. In more massive models, the μ gradient becomes larger

and so does the amplitude of the components in the period spacing

(see e.g. Fig. 14).

4.1.3 Models with a receding convective core

In models with shrinking convective cores, the situation is much

simpler. If M > Mgc, the dominant term in the behaviour of the

radiative gradient is the opacity and, since κ ∝ (1 + X), ∇ rad de-

creases with time as X decreases: the boundary of the convective

core is displaced towards the centre. A receding convective core

leaves behind a chemical composition gradient that is responsible
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Figure 13. Behaviour of the Brunt–Väisälä frequency (upper left panel),

of the hydrogen abundance profile (upper right panel) and of the 	 = 1

g-mode period spacing in models of 1.2 M�. We consider, as in all the

following figures, several models on the main sequence with decreasing

central hydrogen abundance (Xc 0.7, 0.5, 0.3 and 0.1).

for an abrupt change in the N profile (as in Fig. 1). Such a sharp fea-

ture which is a direct consequence of the evolution of a convective

core leaves a clear signature in the periods of gravity modes.

That behaviour is shown in Figs 15 and 16 for models of 1.6 and

6 M� (for larger masses, the behaviour is almost identical to that

of 6 M�). The periodicity of the components in 
P can be easily

related to the profile of the Brunt–Väisälä frequency by means of

expression (14). For instance, the 
k = 7 in Fig. 16 (lower panel,

Xc = 0.50) corresponds to the sharp signal in N at 0/r ∼ 0.14. As

the star evolves, the sharp feature in N is shifted to higher 0/r,

and when 0/μ � 0.5 a kind of beating occurs in the period

spacing due to the fact that the sampling frequency is about half the

frequency of the periodic component.

The amplitude of the variation of 
P as a function of the mode

order is well reproduced by equation (26) (compare e.g. Figs 16

and 8), but not by equation (13) that predicts a sinusoidal behaviour.

However, having a simple analytical relation between the amplitude

of the components and the sharpness of δN/N is not straightforward

from equation (26).

It can also be noted that oscillatory components of small am-

plitude occur already in zero-age main-sequence stars with M �
6 M� (see e.g. Fig. 16, solid lines). Although a chemical com-

position gradient is not yet present in these models, the bump in

the Brunt–Väisälä frequency due to an increase of the opacity2 at

a temperature of ∼3 × 106 K (0/r � 0.8) is able to produce

such a deviation from constant 
P. It is not surprising that the

2 Mainly due to C, O, Ne and Fe transitions (see e.g. Rogers & Iglesias 1992;

Seaton & Badnell 2004).

Figure 14. Same as Fig. 13 for 1.4 M� models.

effects of a sharp feature located near the surface can mimic the

effect of a perturbation in the core: as shown by Montgomery et al.

(2003) the signature in high-order g modes of a perturbation in N
located at a normalized buoyancy radius rBV = 0/r is aliased

to a signal whose source is located at 1 − rBV. The signal shown

in Fig. 16 could indicate a source at 0.2 0/r which is in fact

Figure 15. Same as Fig. 13 for 1.6 M� models.
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Figure 16. Same as Fig. 13 for 6.0 M� models. In the homogeneous ZAMS

model (Xc � 0.7, full lines), a sharp variation in N located at 0/r � 0.8

generates a periodic signal of small amplitude in the period spacing. Note

that for this model, to make such a component more visible in 
P, the y-axis

scale has been modified.

approximatively an alias (1 − 0.2) of the source at 0.8 0/r. The

amplitude of this signal increases with the stellar mass as the contri-

bution of this opacity bump becomes dominant in the behaviour of

∇ rad (and therefore of N). In fact, for large enough stellar masses, a

convective shell can appear at a temperature ∼3 × 106 K. The ampli-

tude of such components is, however, less than 1000 s and therefore

much smaller than the amplitude due to the chemical composition

gradient at the edge of the convective core.

The g-mode period spacing is clearly different depending on the

mass and age of the models. While in models without (or with a

very small) convective core the mean value of the period spacing

decreases with age (see Section 4.1.1), for more massive models

the period spacing does not significantly change with age. In stars

with larger convective cores, the chemical composition gradient is

located at a larger fractional radius, giving a smaller contribution

to
∫

N
x ′ dx ′, and thus to 
P, as predicted from the asymptotic ex-

pression. In these models, the age effect is made evident, however,

through the appearance of the periodic signal in the period spacing,

whose periodicity is directly linked to the chemical gradient left by

the evolution of the convective core.

4.2 Effects of extra-mixing

The comparison between theoretical models and observations

clearly shows that the standard stellar modelling underestimates

the size of the central mixed region (see e.g. Andersen, Clausen

& Nordstrom 1990; Ribas, Jordi & Giménez 2000). This fact is

generally accepted, but there is no consensus about the physical

processes responsible for the required extra-mixing that is missing

in the standard evolution models: overshooting (e.g. Schaller et al.

1992), microscopic diffusion (Michaud et al. 2004), rotationally in-

duced mixing (see e.g. Maeder & Meynet 2000; Mathis, Palacios &

Zahn 2004, and references therein) or mixing generated by propa-

gation of internal waves (e.g. Young & Arnett 2005). The shape of

the composition transition zone is a matter of great importance as

far as asteroseismology is concerned. In particular, it significantly

affects the term ∇μ appearing in the Brunt–Väisälä frequency and

plays a critical role in the phenomenon of mode trapping.

It is therefore evident that the size and evolution of the convective

core, as well as the μ gradients that it generates, can be strongly af-

fected by the occurrence of mixing processes. In the following para-

graphs, we study how these effects are reflected on the high-order g

modes. We have computed models with overshooting, microscopic

diffusion, turbulent mixing, and we have compared their adiabatic

g-mode periods with those derived for models computed without

mixing and with the same central hydrogen abundance.

4.2.1 Overshooting

Penetration of motions beyond the boundary of convective zones

defined by the Schwarzschild stability criterion has been the subject

of many studies in an astrophysical context (see e.g. Zahn 1991).

Unfortunately, features such as extension, temperature gradient and

efficiency of the mixing in the overshooting region cannot be derived

from the local model of convection currently used in stellar evolution

computations. As a consequence, this region is usually described

in a parametric way. In the models considered here, the thickness

of the overshooting layer ov is parametrized in terms of the local

pressure scaleheight Hp: ov = β × (min (rcv, Hp(rcv))) (where rcv

is the radius of the convective core and β is a free parameter). We

assume instantaneous mixing both in convective and in overshooting

regions. The temperature gradient in the overshooting region is left

unchanged (i.e. ∇ = ∇ rad). Therefore, overshooting simply extends

the region assumed to be fully mixed by convection. The larger

hydrogen reservoir, due to an increase of the mixed region, translates

into a longer core-hydrogen burning phase.

The adopted amount of overshooting also determines the low-

est stellar mass where a convective core appears. For sufficiently

large values of β, the convective core that develops in the pre-main-

sequence phase persists during the main sequence in models with

M < MLcc (as in Fig. 9). In these models, the convective core is

maintained thanks to the continuous supply of 3 He that sustains the

highly temperature-dependent nuclear reaction 3He + 3He →4He +
1H + 1H, keeping the proton–proton chain in an out-of-equilibrium

regime. The inclusion of overshooting changes the value of the mass

corresponding to the transition between models with a convective

core that grows/shrinks during the main sequence (Fig. 9, right-hand

panel). Finally, the effect of overshooting on the μ gradients depends

on whether the nuclear reactions occur only inside the convective

core or also outside. In Fig. 17, we present the chemical composi-

tion profile, the behaviour of N and of the period spacing, in models

computed with overshooting (β = 0.2). These models have a larger

fully mixed region than those computed without overshooting. The

chemical composition gradient is then displaced to a higher mass

fraction. If we compare with models of similar central hydrogen

abundance, however, this does not necessarily imply that the sharp

feature in N is located at a different normalized buoyancy radius

(0/μ).

(i) In 6 M� models (right-hand column in Fig. 17), for instance,

neither the sharpness of the abrupt variation in N nor its location in

terms of μ changes when comparing models computed with and

without overshooting.
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Figure 17. Behaviour of the Brunt–Väisälä frequency (upper row), of the hydrogen abundance profile (central row) and of the 	 = 1 g-mode period spacing

(lower row) in models of 1.2, 1.6 and 6 M� computed with (thick lines) or without (thin lines) overshooting.

(ii) The situation changes in lower mass models, for example,

in 1.6 M� models (central column in Fig. 17). Here, the periodicity

of the components in 
P differs if we include overshooting or not.

A change in not only the location, but also in the value of the μ

gradient (as nuclear reactions take place outside the core as well), is

responsible for a different behaviour of the oscillatory components

in 
P.

(iii) In models with a mass M � MLcc, e.g. M = 1.2 M�, the

inclusion of overshooting dramatically increases the size of the fully

mixed region. The oscillatory components in 
P have different pe-

riods and much larger amplitudes than in the case of models without

overshooting (see left-hand column of Fig. 17).

As we mentioned above, not only the extension of the overshoot-

ing region, but also its temperature stratification is uncertain. How-

ever, the effect on 
P of considering convective penetration (∇ =

∇ad in the ‘extended’ convective core) instead of simple overshoot-

ing is found to be small (see Straka, Demarque & Guenther 2005;

Godart 2007).

4.2.2 Effects of microscopic diffusion

Other physical processes, different from overshooting, can lead to

an increase of the central mixed region or modify the chemical

composition profile near the core.

Michaud et al. (2004) and Richard (2005) have shown that mi-

croscopic diffusion can induce an increase of the convective core

mass for a narrow range of masses, from 1.1 to 1.5 M�, and that the

effect decreases rapidly with increasing stellar mass. In this mass

range, as previously described, the mass of the convective core in-

creases during the MS evolution instead of decreasing, as it occurs

for larger masses. As a consequence, a sharp gradient of chemical
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Figure 18. Behaviour of the Brunt–Väisälä frequency in models of 1.6 M�
with Xc � 0.3. The different lines correspond to models calculated with no

extra-mixing (continuous lines), overshooting (dashed) and helium diffusion

(dotted). The different location and sharpness of the chemical composition

profile determine the behaviour of N.

Figure 19. Period spacing of 	 = 1 g modes as a function of the radial order

k for the 1.6 M� models presented in Fig. 18.

composition appears at the border of the convective core, making

the diffusion process much more efficient in that region.

Fig. 18 shows the effect of including gravitational settling, ther-

mal and chemical diffusion of hydrogen and helium in a 1.6 M�
model. If only He and H diffusion is considered in the modelling,

we find that a smoother chemical composition profile is built up at

the edge of the convective core (see Fig. 18) preventing the pres-

ence of a discontinuity in μ caused by a growing convective core.

Comparing models calculated with or without diffusion, the loca-

tion of the convective core boundary is not significantly changed.

Nevertheless, a less sharp variation in the Brunt–Väisälä frequency

is responsible for a considerable reduction of the amplitude of the

components in the period spacing (see Fig. 19). It was in fact pre-

dicted in Section 3.1 that a discontinuity not in N itself, but in its first

derivative, would generate a periodic component whose amplitude

decreases with the period: this simplified approach is therefore suf-

ficient to account for the behaviour of 
P in models with a smoother

chemical composition gradient (see equation 16).

When diffusion of Z is also included, the overall effect of dif-

fusion is no longer able to erode the sharp chemical composition

gradient and to prevent the formation of a semiconvective zone, on

the contrary, diffusion of Z outside the core makes the occurrence of

semiconvection easier (see also Richard, Michaud & Richer 2001;

Michaud et al. 2004; Montalbán, Théado & Lebreton 2007). If chem-

ical diffusion is accountable for a smoother chemical composition

profile in intermediate- and low-mass stars, we find that such an

effect disappears as higher masses are considered and evolutionary

time-scales decrease. In fact, we find that in models with M � 4 M�
diffusion has no effect either on the Brunt–Väisälä frequency profile

near the hydrogen burning core, or on the behaviour of the period

spacing.

As higher masses are considered, the effect of microscopic dif-

fusion on the stellar structure near the core becomes negligible but,

other mixing processes can partly erode the chemical composition

gradients.

4.2.3 Rotationally induced mixing

Rotationally induced mixing can influence the internal distribution

ofμnear the energy generating core. Different approaches have been

proposed to treat the effects of rotation on the transport of angular

momentum and chemicals (see e.g. Heger & Langer 2000; Maeder

& Meynet 2000; Pinsonneault et al. 1989, and references therein).

Such an additional mixing has an effect on the evolutionary tracks

which is quite similar to that of overshooting, but it leads also to a

smoother chemical composition profile at the edge of the convective

core.

Since our stellar evolution code does not include a consistent

treatment of rotational effects, we simply include the chemical tur-

bulent mixing by adding a turbulent diffusion coefficient (DT) in the

diffusion equation. In our parametric approach, DT is assumed to be

constant inside the star and independent of age.

The simplified parametric treatment of rotationally induced mix-

ing used in this work has the aim of showing that if an extra-mixing

process, different from overshooting, is acting near the core it will

produce a different chemical composition profile in the central re-

gions of the star and leave a different signature in the periods of

gravity modes. The effects of such a mixing on the evolutionary

tracks (see Fig. 20) and on the internal structure clearly depend on

the value of DT.

Figure 20. HR diagram showing evolutionary tracks of 6 M� models cal-

culated with different extra-mixing processes. The evolutionary track com-

puted with DT = 500 is superposed to that without extra-mixing (continuous

line).
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Figure 21. Behaviour of the Brunt–Väisälä frequency (upper left panel), of

the hydrogen abundance profile (upper right panel) and of the 	 = 1 g-mode

period spacing in models of 6.0 M� computed with a turbulent diffusion

coefficient DT = 500.

As an example, we consider models of a 6 M� star computed

with three different values of the turbulent-diffusion coefficient

DT = 5 × 102, 5 × 103 and 5 × 104 cm2 s−1. The lowest DT value

provides an evolutionary track that overlaps the one computed with

no mixing; however, its effect on the chemical composition gradient

(see Fig. 21) is sufficient to affect 
P for high-order modes. In or-

der to significantly change the periods of low-order modes, a much

more effective mixing is needed. The value DT = 5 × 103 leads

to a slightly more luminous evolutionary track, but such a mixing

has a substantial effect on the period spacing: the amplitude of the

periodic components in 
P becomes a decreasing function of the

radial order k (see Figs 21 and 22). As in the case of helium diffu-

sion (see Section 4.2.2), this behaviour can be easily explained by

the analytical approximation presented in Section 3.1 (equation 16),

provided the sharp feature in N is modelled not as a step function

but, for instance, as a ramp (equation 15).

If a significantly more effective mixing is considered (e.g. DT =
50 000; see Figs 20 and 23), the corresponding evolutionary track is

close to that obtained by including a classical overshooting but the

periodic components in 
P are no longer present.

The effects of such a turbulent mixing on low-order gravity modes

and avoided crossings will be addressed in detail in a future work.

In order to check that our parametric approach is at least in qual-

itative agreement with the outcome of models where rotationally

induced mixing is treated consistently, we present for comparison a

sequence of models computed with the Geneva evolutionary code

(Meynet & Maeder 2000; Eggenberger et al. 2007). We considered a

6 M� model with an initial surface rotational velocity of 25 km s−1,

the typical v sin i for SPBs stars (Briquet et al. 2007). As the model

evolves on the MS, the effects on the HR diagram (Fig. 24) and

Figure 22. As in Fig. 22 but for models with DT = 5000.

on the chemical composition gradient in the core (Fig. 25) are very

similar to those of the model computed with a uniform turbulent

diffusion coefficient DT = 5 × 103. This is not surprising since, in

the central regions, the total turbulent diffusion coefficient shown

Figure 23. As in Fig. 22 but for models with DT = 50000. The effect of

such a mixing on the evolutionary track is shown in Fig. 20.
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Figure 24. HR diagram showing evolutionary tracks of 6 M� models cal-

culated with the Geneva evolutionary code. The full line evolutionary track

is computed without rotation, whereas in the models evolving on the dotted

track an initial surface velocity of 25 km s−1 is assumed.

Figure 25. Hydrogen abundance in the core of 6 M� models with an initial

surface velocity of 25 km s−1.

in Fig. 26 does not change considerably in time and its magnitude

is of the order of a few thousands cm2 s−1.

4.3 Modes of different degree and low radial order

In the previous sections, we analysed the properties of 
P for 	 = 1,

high-order g modes. Does the period spacing computed with modes

of different degree 	, or with low radial order k, have a similar

behaviour? In Fig. 27, we consider the period spacing computed

with 	 = 2 periods Pk,	=2 scaled by the 	-dependent factor suggested

by equation (4), i.e. P ′
k,	=2 = √

3 Pk,	=2. Except for the oscillation

modes with the lowest radial orders, we note in Fig. 27 that the period

spacing of modes of degree 	 = 1 and 2 has the same behaviour,

provided that the dependence on 	 given by equation (4) is removed.

Though the asymptotic approximation is valid for high-order

modes, we see in Fig. 27 (as well as in the figures presented in

the previous sections) that the description of the period spacing as

the superposition of the constant term derived from equation (4) and

periodic components related to ∇μ is able to accurately describe the

periods of gravity modes even for low-order k. This suggest that, at

least qualitatively, the description of g modes presented in this work

could represent a useful tool to interpret the behaviour of low-order

Figure 26. Total diffusion coefficient DT as a function of the normalized

mass in 6 M� models evolving on the main sequence. The initial surface

velocity assumed is 25 km s−1 . DT includes both the effects of shear (Dshear)

and meridional circulation (Deff).

Figure 27. Period spacing for 6 M� models with Xc = 0.5. The period

spacing computed with 	 = 2 modes is multiplied by
√

3, as suggested by

equation (4).

g modes observed in other classes of pulsators, such as β Cephei

and δ Scuti stars. This subject will be addressed in a second paper.

5 C H A L L E N G E S F O R A S T E RO S E I S M O L O G Y

Asteroseismology of high-order g-mode main-sequence pulsators

is not an easy task. The long oscillation periods and the dense fre-

quency spectrum in these stars require long and continuous obser-

vations in order to resolve single oscillation frequencies. As already

stated clearly in Dziembowski et al. (1993), observations of at least

70 days are needed to resolve the period spacing in a typical SPB

star. In addition to large observational efforts that have been made

from the ground (see e.g. De Cat & Aerts 2002; De Cat et al. 2007

for SPB stars and Mathias et al. 2004; Henry, Fekel & Henry 2007

for γ Dor), long, uninterrupted space-based photometric time series

will soon be provided by CoRoT. In order to estimate if the CoRoT

150 d-long observations have a frequency resolution sufficient to re-

solve the period spacing of a typical SPB star, we simulated a time

series of 	 = 1 and 2 high-order g modes that are expected to be
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Figure 28. Power spectrum of simulated time series for a 6 M� model. The

vertical solid and dashed lines represent the input oscillation frequencies of,

respectively, 	 = 1 and 2 modes.

excited in a 6 M� star with Xc = 0.2 computed without overshoot-

ing. The excitation of oscillation modes has been computed using

the non-adiabatic code MAD (Dupret et al. 2003). Random initial

phases have been considered in the sine curves describing the 25

frequencies included in the simulations, and amplitudes of 1 and 0.5

(on an arbitrary scale) have been assumed for 	 = 1 and 2 modes,

respectively. The generated time series has been analysed using the

package PERIOD04 (Lenz & Breger 2005). As it is shown in the re-

sulting power spectrum (see Fig. 28), for such long observational

runs (150 d) the input frequencies can be accurately recovered even

for the largest periods of oscillation. Thanks to the high-frequency

resolution, the departures from a constant period spacing are also

evident in the power spectrum.

We then simulate a time series for an additional 6 M� model

that, despite having the same surface properties (log (L/L�) =
3.21, log (Teff) = 4.22) as the previous one, is computed with tur-

bulent diffusion (DT = 5000). In this case, the power spectrum (see

Fig. 29) shows a regular period spacing that, on the basis of the

high-frequency resolution, can be easily distinguished from the one

described in Fig. 28.

Even though frequency resolution may no longer be an issue in

the very near future, there is a second well-known factor limiting

asteroseismology of SPB and γ Dor stars: the effects of rotation

on the oscillation frequency can severely complicate the high-order

Figure 29. Same as Fig. 28 for a 6 M� model computed with turbulent

diffusion in the core.

g-mode spectra. Referring once more to the work by Dziembowski

et al. (1993), a first requirement in order to treat rotational effects as

perturbations on the oscillation frequencies is the angular rotational

velocity being sufficiently smaller than the oscillation frequency

(vrot  2π R/P, where R is the radius of the star and P the oscil-

lation period). In the case of the models of an SPB star considered

previously in this section, this translates into vrot  100 km s−1 con-

sidering the modes of longest period: this is significantly larger than

the average vsini (∼25 km s−1) measured in SPB stars (see e.g. Bri-

quet et al. 2007). In the case of γ Dor stars (see e.g. Suárez et al.

2005), a similar estimate limits the validity of the perturbative ap-

proach to rotational velocities of ∼50–70 km s −1: for faster rotators

non-perturbative approaches are needed (see Dintrans & Rieutord

2000; Rieutord & Dintrans 2002).

Even in the case of slow rotators, however, the rotational split-

tings may become as large as the period spacing itself. Such a large

effect of rotation on the frequency spectrum can severely compli-

cate the identification of the azimuthal order m and the degree 	

of the observed modes. In fact, a simple mode identification based

on the regular pattern expected from high-order g modes becomes

inapplicable if the rotational splitting is of the same order as 
P
(see e.g. fig. 13 in Dziembowski et al. 1993). The identification

of the modes would then need to be provided by photometric and

spectroscopic mode identification techniques (see e.g. Balona 1986;

Garrido, Garcia-Lobo & Rodriguez 1990; Aerts, de Pauw &

Waelkens 1992; Mantegazza 2000; Briquet & Aerts 2003; Dupret

et al. 2003; Zima 2006).

6 S U M M A RY A N D C O N C L U S I O N S

In this work, we investigated in detail the properties of high-order

gravity in models of main-sequence stars. The chemical composition

gradient that develops near the outer edge of the convective core

leads to a sharp variation of the Brunt–Väisälä frequency. As we

presented in Section 2, the latter is responsible for a periodic trapping

of gravity modes in the region of chemical composition gradient,

and it directly affects the period spacing of g modes.

In analogy with the works on white dwarfs by Brassard et al.

(1992) and Montgomery et al. (2003), we show that in the case of

main-sequence stars analytical approximations can be used to di-

rectly relate the deviations from a uniform period spacing to the

detailed properties of the μ-gradient region that develops near the

energy generating core. We find that a simple approximation of

g-mode periods, based on the variational principle of stellar oscil-

lations, is sufficient to explain the appearance of sinusoidal compo-

nents in the period spacing. This approximation (see Section 3.1)

relates the periodicity of the components to the normalized buoy-

ancy radius of the glitch in N, and the amplitude of the components to

the sharpness of the feature in N. In particular, if the sharp variation

in N is modelled as a step function, the amplitude of such com-

ponents is expected to be independent of the order of the mode k;

whereas if the glitch in N is described with a ramp, the amplitude of

the components decreases with k. A more accurate semi-analytical

approximation of the period spacing, which considers the effects

of the sharp feature in N on the eigenfunctions, is also given in

Section 3.2.

We then presented a survey of the properties of high-order g

modes in main-sequence models of masses between 1 and 10 M�
(see Section 4). As a general result we found that, in models with a

convective core, the period spacing of high-order g modes is accu-

rately described by oscillatory components of constant amplitude,

superposed to the mean period spacing predicted by the asymptotic

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 386, 1487–1502
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theory of Tassoul (1980). In Section 4.1, we showed that the pe-

riod spacing depends primarily on the extension and behaviour of

the convective core during the main sequence and, therefore, on the

mass of the star.

In models without a convective core (see Section 4.1.1), the mean


P considerably decreases during the MS, whereas no significant

deviation from a constant period spacing is present. For an inter-

mediate range of masses (see Section 4.1.2), the convective core

grows during most of the MS, generating an ‘unphysical’ disconti-

nuity in μ if no mixing is added in the small semiconvective region

that develops. We find that the behaviour of 
P, and in particular

the appearance of periodic components, depends on the treatment

of this region. It is interesting to note that γ Doradus stars are in

the mass domain where models show a transition between growing

to shrinking convective cores on the main sequence. Gravity modes

could therefore represent a valuable observational test to discrimi-

nate between the different prescriptions used in stellar models (see

e.g. Popielski & Dziembowski 2005) to introduce the required mix-

ing at the boundary of the convective core. In models with higher

masses, the convective core recedes during the main sequence (see

Section 4.1.3): this leaves behind a μ gradient that generates clear

periodic components in 
P. We found that the analytical expression

derived in Section 3.1 allows to accurately recover the location and

sharpness of the μ gradient from the amplitude and periodicity of the

components in 
P. In this mass domain, though the average period

spacing does not change substantially with the age, the periodicity

of the components does, and it therefore represents an indicator of

the evolutionary state of the star.

In Section 4.2, we showed that also extra-mixing processes can

alter the behaviour of 
P, since they affect the size and evolution

of the convective core, as well as the sharpness of the μ gradi-

ent. We first compared models with the same Xc, but computed

with and without overshooting (see Section 4.2.1). We found that

in models with small convective cores, or where nuclear reactions

also take place in the radiative region, the different size of the fully

mixed region changes the periodicity of the components in 
P. In

Section 4.2.3, we described how chemical mixing can severely affect

the amplitude of the periodic components in 
P. In models where

turbulent mixing induced by rotation is considered, the smoother μ

profile near the core leads to a discontinuity not in N itself, but in

its first derivative: as suggested by the analytical approximation in

Section 3.1, this leads to periodic components in 
P whose ampli-

tude decreases with the order of the mode. In the case of SPB stars,

in particular, we find that the mixing induced by the typical rotation

rates observed (i.e. �25 km s−1) is sufficient to significantly alter

the properties of the g-mode spectrum.

Finally in Section 5, we discussed the difficulties encountered in

the asteroseismology of γ Doradus and SPB stars. Even though a

frequency resolution sufficient to resolve closely spaced periods will

be provided by the forthcoming space-based observations, an aster-

oseismic inference on the internal structure will only be possible for

stars with very slow rotation rates, and with reliably identified pul-

sation modes. Once these conditions are reached, we will be able

to access the wealth of information on internal mixing which, as

shown in this work, is carried by the periods of high-order gravity

modes in main-sequence objects.
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