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Introduction 

The goal of this research is to integrate the influence of the material texture into a 
finite element code. The constitutive law describing the mechanical behaviour of the studied 
sample is based on a microscopic approach. The law computation takes place on the 
crystallographic level. A large number of crystals must be used to represent correctly the 
global behaviour. The micro-macro transition links the global behaviour to the 
crystallographic results. The Taylor’s model described in Chapter I is used for the 
computation of the microscopic behaviour of each crystal and for the micro-macro transition. 
Unfortunately, this model does not lead to a general law with a mathematical formulation of 
the yield locus. Only one point of the yield locus corresponding to a particular strain rate 
direction can be computed. The “direct Taylor’s model” assumes that one macroscopic stress 
results from the average of the microscopic stresses related to each crystal belonging to a set 
of representative crystals. 

The computation of the mechanical behaviour involves a large number of crystals and 
must be repeated for each integration point of the finite element model, for each iteration of 
each time step. So, such a micro-macro approach consumes large computation time and seems 
practically not useful. 

However, using different simplified approaches, various constitutive laws based on 
texture analysis have been implemented in the non linear finite element code LAGAMINE. 
Our first step in the integration of the texture effects has been the use of a 6th order series 
yield locus defined by a least square fitting on a large number of points (typically 70300) in 
the deviatoric stress space (see Ref. [13]). Those points were calculated by the Taylor’s model 
based on an assumed constant texture of the material. This fitting is performed once, outside 
the FEM code. It provides 210 coefficients to describe the whole yield locus. This method, i.e. 
a global description of the yield locus, is actually used in the FEM code and will be referred to 
as the law ANI3VH. 

Unfortunately, taking into account the texture evolution effects with this yield locus 
would imply the computation of the 210 coefficients of the 6th order series for each 
integration point, each time a texture updating is necessary. This would require an impressive 
amount of computation and memory storage (210 coefficients for each integration point) 
which is only partially useful as generally the stress state remains in a local zone of the yield 
locus. So, two new approaches, where the whole yield locus is unknown, have been 
investigated. 

In the first case, some points in the interesting part of the yield locus are computed 
with the Taylor’s model. This local zone of the yield locus is then represented by a set of 
hyperplanes which are planes defined in the five-dimensional deviatoric stress space. These 
planes being fitted on the Taylor’s points. 

As it has been shown in [4], the yield locus discontinuities bred by this very simple 
interpolation method give rise to convergence problems in the finite element code. That is the 
reason why a second method has been developed. 

For that second approach, no yield locus is defined and a direct stress-strain 
interpolation between Taylor’s points is achieved. In this case, the yield stress continuity 
conditions are fulfilled but, as there is no yield locus formulation, a particular stress 
integration scheme has to be used. 

Both interpolation methods allow us an important computation time reduction with 
respect to the “direct Taylor’s model” application. The Taylor’s model is only used to 
compute some points in order to achieve the interpolation.  
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These points must be computed in two cases: 
• When the current part of the yield locus does not content anymore the new stress 

state and that a new local zone of the yield locus is required. 
• When the plastic strains significantly deform the material and induce changes in 

the crystallographic orientations, i.e. when the texture evolves. Indeed, the 
corresponding mechanical behaviour of the material would no more be correctly 
represented by the old points. A texture updating must take place. 

 
The part yield locus approach presented in this work can be placed between the 

microscopic approach (accurate but very slow) and the global yield locus approach (fast but 
inaccurate and especially not adapted for texture updating). 

 
The interpolation methods (hyperplane or stress-strain interpolation) and the precision 

of their integration scheme in the finite element code are very important points and are 
presented hereafter. 

 
The work contents is the following one: 
The first chapter presents the main particular points of the Taylor’s model and the 

micro-macro transition: the method used to compute the yield limit in the deviatoric stress 
space for a particular prescribed strain rate. This is in fact one point of the yield locus. 

The second chapter largely describes the stress-strain interpolation and the underlying 
theoretical formulations. 

The third chapter is devoted to the hyperplane method while the fourth chapter 
compares the two interpolation methods together and also to the global yield locus approach. 

The computation of the texture evolution is an important part of the presented 
research. However, it will be further investigated in the Ph. D. thesis. 

 
As already mentioned, the validity of the presented model is the prediction of the 

anisotropic plastic behaviour of metals on the basis of their crystallographic texture. It is then 
dedicated to polycrystalline materials. Starting from the initial texture of the material, the 
model computes the texture updating due to plastic strain and takes it into account to define 
plastic behaviour during the whole finite element simulation. At this stage, the model is 
available for face centred (f.c.c.) and body centred cubic (b.c.c.) metals but can be adapted to 
hexagonal compact lattices. 

 
Beneath this plastic model, a power-type isotropic hardening law and an isotropic 

elastic behaviour are implemented. 
 
 
 
 
 
Notation: 
• Vector: V 
• Second order tensor: T 

• Scalar product between two vectors: ii
T BABA ⋅→•  

• Scalar product between two second order tensors: jkij BABA ⋅→•  

• Einstein summation is always applied 
• Tensor contraction: ijij BABA ⋅→�  
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Chapter I Stress tensor Derived From The Texture 

In order to take the texture of the material into account during a finite element 
simulation, we use the Full Constraint (FC) Taylor’s model which is summarised hereafter. 

The velocity gradient L of a single crystal (which is assumed to be the same as the 
macroscopic one in a FC Taylor’s model) can be decomposed in a slip induced part and a rate 
of crystal lattice rotation ωL: 

(1)  L
SSKL ωγ +⋅= � ,          S = 1, 24 in b.c.c. crystals 

                                                                     1, 12 in f.c.c. crystals 
 
where KS are matrices constructed from the normal to the slip plane and the slip 

direction of each slip system S. They represent the velocity gradient due to the plastic 
deformation induced by a particular slip system. Sγ�  is the associated slip rate. Einstein 

summation is applied on S representing one slip system. This approach neglects elastic crystal 
behaviour. In this chapter, strain rate means plastic strain rate. 

The velocity gradient L may be split into a deviatoric strain rate and a rate of rigid 
body rotation: 

(2)  







+⋅==

⋅==

=

L
SS

SS

P

ZLskw

ALsym

ωγω
γε

ω
���
�

��

)(

)(

 

with AS = sym(KS)  and  ZS = skw(KS). 
 
The resolved shear stress acting on a slip system can be derived by projecting the 

microscopic stress on the corresponding AS matrix: 

(3)  στ �
SS A=  

The yield locus of a single crystal is then defined by the Schmid’s law: 

(4)  c
SS

c
S

c
SS

c
S A +−+− ≤≤−⇒≤≤− τσττττ �  

where c
S±τ  are the so-called critical resolved shear stresses. 

Equal signs hold for plastic deformation, while the inequalities delimit the elastic 
domain. 

Several different combinations of slip rates may achieve the prescribed strain rate 
according to the first part of equation (2). Taylor’s principle states that only the one which 
minimises the internal power dissipation in the slip systems is chosen: 

(5)  min=⋅= S
c
STP γτ �  

In order to solve equation (2) constraint to the condition (5), we use a linear 
programming algorithm which computes the slip rates Sγ�  and gives the microscopic stress 

tensor (see Ref. [16]). 
The so-called Taylor’s factor M is conventionally derived from the plastic power 

dissipation per unit volume P for a given strain rate mode ε�U as: 
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(6)  ( )
c

EQ
c

EQ
c

UP
UM

τ

σ

ετ

εσ

ετ

ε
ε

�
�

�

�

��

�
=

⋅
=

⋅
=  

where the prescribed strain rate ε�  has been split up into a scalar magnitude EQε�  and a 

mode ε�U  with the definition: 

(7)  
EQ

ijijEQ Uand
ε

ε
εεε ε �

�
��� � =⋅=  

and τc is the reference critical resolved shear stress. It assumes that all τc
S are identical 

to τc. 
The plastic power dissipation per unit volume P has been defined according to the 

maximum work principle as: 

(8)  εσ ��=P  

Finally, it is important to remark that the previously described internal dissipation 
power and plastic power dissipation result from a primal-dual approach of the 
crystallographic slip resolution. These two formulations of the power are then equal. 

 
The micro-macro transition can be easily achieved through an averaging of the 

microscopic strain tensor and the microscopic stress tensor related to each crystallographic 
orientation. This concept is very simple but the averaging must be done simultaneously on the 
stress and the strain because of their interaction in the single crystal. A solution to this 
problem is then very hard to find. 

Several assumptions have then been proposed in order to be able to solve the micro-
macro transition. The main ones are: 

• The Sachs’ model. It assumes a homogeneous stress distribution throughout the 
whole polycrystal. The microscopic stress in each crystal being equal to the 
macroscopic one. The averaging must only be achieved on the strains. 

• The Taylor’s model. On the other hand, it assumes a homogeneous distribution of 
the plastic strain rate. The macroscopic stress of the polycrystal is then computed 
by averaging the microscopic stress on each crystal. This model will be used in the 
present work. 

• The self-consistent model (see Ref. [1]). It considers each grain in turn as an 
inclusion embedded in an ideal homogeneous plastic matrix. As this plastic matrix 
behaviour is obtained by an averaging of the single crystal behaviour, an iterative 
procedure must be used. This model should conceptually be more accurate than the 
two previous ones but requires larger computation time. 

 
In order to be able to compute the stress corresponding to a particular strain rate 

direction with the Taylor’s model, some data about the studied steel must be obtained. 
The first one is the initial texture of the material, i.e. the orientation of the different 

grains contained in the polycrystal. This texture can be measured by a X-ray diffraction 
method. It is described by the so-called Orientation Distribution Function (ODF) which is a 
mathematical formulation commonly used to represent the texture. A convenient way to 
formulate the ODF is to use the Euler angles describing all the possible orientations of a grain 
in the 3-D space. The ODF is then simply the volume fraction of the grains having the 
orientation described by the three Euler angles. 
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The ODF is a convenient way to express the texture of a material. However, before 
applying the Taylor’s model, a representative set of crystallographic orientations must be 
deduced from the ODF. This representative set is computed according to the statistical 
method proposed in Ref. [15]. The Taylor’s model is then applied on each crystal of the 
representative set and the micro-macro transition is achieved through averaging the 
microscopic stress from each grain of the representative set. 

 

Figure 1: Influence of the number of crystal orientations on the accuracy (the 
reference result is taken as the one computed with 40000 orientations). 

Figure 1 shows that the number of those orientations should not be smaller than 2000 
in order to be accurate (mean error smaller than 1%). This number of crystallographic 
orientations included in the representative set will generally be used with the Taylor’s model; 
especially in the applications presented in Chapter IV of the present work. 

 
Secondly, the permitted slip systems of the crystal lattice must be introduced as the 

Taylor’s model data. The parameters describing these permitted slip systems are needed in 
order to compute the KS matrices of equation (1) for each slip system. For b.c.c. metals, we 
use the 24 {1 1 0} <1 1 1> and {1 1 2} <1 1 1> slip systems. For f.c.c. metals, the 12 {1 1 1} 
<1 1 0> permitted slip systems are imposed. 

 
Beside these material data needed by the Taylor’s model, the constitutive law makes 

use of different aspects of the material properties: the elastic properties and the hardening 
behaviour. As the elastic and the hardening behaviour are supposed to be isotropic, they can 
be obtained from classical tensile tests. 
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As this method uses a refined representation of the plastic behaviour, it requires some 
particularities in its implementation into a finite element code. 

A first remark is that it needs large computation time. Indeed, when a new 
interpolation domain must be computed or when texture updating takes place, the Taylor’s 
model is called for each crystallographic orientation of the representative set and this can 
occur at each integration point of the finite element mesh. As the number of the orientations is 
generally chosen equal to 2000 and the number of integration points can also be very high 
depending on the structure to model, this constitutive law often leads to large computation 
time. 

It should also be noticed that this model needs a lot of disk space because it is 
compulsory to store the 3 Euler angles of each crystallographic orientation. Furthermore, as 
the texture evolution can be different from one point to another, it is required to store those 
orientations for each integration point. In order to achieve the texture updating, the strain 
history of each integration point must also be stored. 

For the interpolation method, the points computed by the Taylor’s model must also be 
stored in an internal variable meanwhile two domain updating. 
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Chapter II The Stress-Strain Interpolation 

A Introduction 

The method presented here works in an equivalent way than direct Taylor’s model 
calls. Indeed, from a strain rate direction, the Taylor’s model computes the corresponding 
stress. Our model also computes the stress from the strain rate direction. The goal of the 
interpolation method is in fact to reduce computation time for strain rate directions close to 
some already computed directions. We interpolate the results between some points that have 
been previously computed with the Taylor’s model. 

B N-dimensional space geometry 

1 Domain limit vectors 

Around a reference direction called S0 (unit vector), the interpolation domain will be 
defined. To do so, one must find some vectors uniformly placed around S0. These vectors 
must fulfil the following prerequisites: 

• In a N-dimensional space, N vectors Si are needed 
• They are unit vectors: 

(9)  1=• i
T
i SS  

• There is a common angle between each other: 

(10)  jiSS i
T
j ≠−=• ,1 2β  

Equations (9) and (10) give: 

(11)  ( ) jiSS iji
T
j ,,11 2 ∀−⋅+=• δβ  

(δij is the Kronecker symbol) 
• There is a common angle ϑ between S0 and each Si: 

(12)  ( )ϑcos0 =• i
T SS  

The angle ϑ is a user parameter and defines directly the size of the interpolation 
domain. 

With these definitions, the reference vector S0 is the mean value of the domain limit 
vectors Si (the vector’s lengths not taken into account): 

(13)  ∑
=

⋅=
N

i
iSkS

1
0  

Combining equation (12) and the fact that S0 is a unit vector, one can deduce the 
following relations: 
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(14)  ( ) ( ) ∑
=

⋅
⋅

=⇒
⋅

=
N

i
iS

N
S

N
k

1
0 cos

1

cos

1

ϑϑ
 

(15)  ( )ϑβ 22 sin
1

⋅
−

=
N

N
and  

2 Definition of a vector basis into the domain 

As the N Si vectors are linearly independent, they can be used as a vector basis in the 
N-dimensional stress space. However, they are not orthogonal to each other; so, it is useful to 
define N new vectors SSi such that they are perpendicular to the Si: 

(16)  ijj
T
i SSS δ=•  

Due to this definition, these vectors are not unitary; they can be obtained by linear 
combination of Si and S0: 

(17)  0SbSaSS ii ⋅+⋅=  

Where a and b can be deduced from equation (16); the final form of SSi vectors is: 

(18)  ( ) 










⋅−−⋅= 0

2

2 cos

11
SSSS ii ϑ

β
β

 

Two useful relations can be deduced from the definition of SSi vectors: 

(19)  ( )ϑcos
0

1

S
SS

N

i
i =∑

=
 

(20)  
( )ϑβ

β
β

δ
22

2

2 cos

1

⋅⋅
−−=•

N
SSSSand

ij
i

T
j  

3 Use of the new basis 
The vectors defined above will be used to decompose any vector V (non-unitary) in the 

following form: 

(21)  ∑
=

⋅=
N

i
ii SV

1

η  

The η coefficients can be obtained by projecting V on the SS vectors: 

(22)  j

N

i
i

T
ji

T
j

ij

SSSVSS ηη

δ

=•⋅=• ∑
=

=
1 �����

 

These N η-coordinates are independent to each other; their knowledge is equivalent to 
the knowledge of the vector V, with its direction and its length. It can be easily found that: 

(23)  ( )∑
=

•
=

N

i

T

i
SV

1

0

cos ϑ
η  

As this equation is not very interesting, new coordinates will also be defined. 



IMPLEMENTATION OF A YIELD LOCUS INTERPOLATION METHOD IN THE FINITE ELEMENT CODE LAGAMINE 

 

12

4 Intrinsic coordinates 

These coordinates are defined: 

(24)  
( )

∑
=

=•⋅
•

=
N

j
j

i
i

T
Ti SSV

SV

1

0

cos

η

ηϑξ  

such that Σξi =1; which is an interesting property. 
These ξi-coordinates are equivalent to the intrinsic coordinates used in the two or 

three-dimensional finite element method. Here is presented the N-dimensional general case. 
Unlike the η-coordinates, these intrinsic coordinates are dependent to each other. The 

Nth coordinate can be deduced from the N-1 others. The V vector is then no more completely 
represented by these ξ-coordinates; only its direction is known, its length must be defined 
separately. 

It can be noticed that the direction and the length are completely uncoupled with this 
representation. This is an important property but, on the other hand, the V vector cannot be 
completely recovered knowing the intrinsic coordinates. 

5 Properties of those coordinates 

Some important properties of the η and ξ-coordinates are presented: 
• For an unit vector V corresponding to a domain limit vector Si, the η and ξ-

coordinates are all equal to 0 or 1. 
• The limits of an interpolation domain are defined such that all the η and ξ-

coordinates are positive. From this definition it can be deduced that the ξi are 
smaller than 1. 

• The N limits of the domain correspond to ηi = ξi = 0  
• The N vertices are defined by ηi = ξi = 1 and the other coordinates equal to zero. 

They are the domain limit vectors. 
• The knowledge of the N η or ξ-coordinates is equivalent to the knowledge of any 

vector’s direction (corresponding to N-1 independent variables); in addition, the ηi 
include the length of the vector. 

6 Computation of the S vectors 

The way we compute the Si vectors is based on a particular case. One particular 
reference direction S0

* is chosen such that all its N components are the same. The domain 
limit vectors are computed by adding consecutively each vector of the cartesian basis to the 
reference S0

*: 

(25)  

























⋅+

























⋅⋅′=⋅+⋅′=

=

0

1

0

0

1

1

1

1

1

1

1*
0

*

�

�

�����
βαβα

α
N

tSS ii  

According to equation (14), we have: 
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(26)  ( ) ( )


















⋅
⋅

+⋅=⋅
⋅

= ∑
=

1

1

1

coscos

1

1

**
0 �ϑ

βα
ϑ N

N
S

N
S

N

i
i  

where α and β are such that the unitary conditions S0
* =1 and Si

* =1 are fulfilled. 
One can easily check that β is the same than the one defined by equation (15) and: 

(27)  
( ) ( )

( )1

sincos

−⋅
−=

NNN

ϑϑα  

Once this particular case is completely defined (reference and domain limit 
directions), all these vectors will be rotated in order to have S0

* and S0 pointing the same 
direction. By the way, the Si

* will be equal to the Si. The rotation matrix is computed 
according to equation (28): 

(28)  
( ) ( )

*
00

*
00

*
00*

00
1

21
SS

SSSS
SSR

T

T

T

•+

+⋅+
−⋅⋅+=  

Some remarks concerning R are listed: 
• This definition fulfils the rotation condition: R.RT=1 
• The rotation can be applied on the reference vectors: 

(29)  0
*
0 SSR =•  

• It is also applied on the domain limit vectors in order to compute them: 

(30)  ii SSR =• *  

• If S0
* and S0 are opposite vectors, equation (28) is not valid; the domain limit 

vectors Si can be computed as the opposite of the Si
*. 

 
It can be noticed that when the Si vectors are computed, the SSi vectors can be obtained 

through equation (18). 

7 Entering the adjacent domain 

During a finite element simulation, the domain where the yield locus is defined must 
frequently be updated. A new domain is computed when the old one is not anymore valid.  

The classical way for such updating is based on the previous paragraph, where the 
reference direction S0, which is in the middle of the interpolated domain, will be chosen as 
close as possible to the direction in which the yield locus must be explored. 

However, it can be interesting to take advantage of the neighbouring of the domains. 
The 3-dimensional representation of Figure 2 compares the two methods.  

Next to a particular frontier, defined by N-1 domain limit vectors (2 for the 3-D case), 
there exists only 2 domains. Those 2 domains are defined by their common frontier and only 
one other domain limit vector. So, to go from one to the other adjacent domain, the required 
information is only one limit vector; the frontier being known.  

As the computation of a vector according to the Taylor’s model is time consuming, 
this method is very interesting. Only one instead of N vectors is computed. 

If the old domain is left along the frontier ξi = 0 (see paragraph 5), the domain limit 
vector Si must be replaced by the new Si

’ which is computed according to equation (31). 

(31)  0SbSaS ii ⋅+⋅=′  
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The constants a and b must be such that Si
’ fulfils the following conditions: 

(32)  1=′•′ i
T
i SS  

(33)  jiSS j
T
i ≠−=•′ ,1 2β  

Figure 2: Classical and improved domain updating methods 

Finally, as a new domain is explored, a new S0’ vector must be computed either 
according to its definition (equation (14)) or form the old domain values: 

(34) 
( )

( )

( )ϑ

ϑ

ϑ
cos

cos

cos
00

1
0

1
0

⋅
−′

+=′⇒
















⋅
=

′
⋅

=′

∑

∑

=

=

N

SS
SS

N

S

S

SbyreplacedSwith
N

S

S
ii

N

j
j

ii

N

j
j

 

When the limit vectors of the new domain are computed, it is interesting to look at the 
new coordinates. The frontier opposite to the vertex Si is defined by: 

(35)  0=•= i
T

i SSVη  

Where V is a particular vector on the frontier. 
Replacing SSi by its definition (equation (18)), we get: 

(36)  ( )ϑ
β

cos

1 2

0
−⋅•=• SVSV T

i
T  

The other η-coordinates which are not equal to zero are: 

(37)  ( ) 2

2

0
1

cos

1

βϑ
βη ⋅









 −⋅−•=•= SSVSSV k
T

k
T

k  

In the adjacent domain, the η-coordinates can also be computed. First, the ηi’ 
coordinate corresponding to the new domain limit vector Si’: 

S3 

S1 

S2 

S2
’ 

S3 

S1 

S2 

S2
’ 

S3
’ 

S1
’ 
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Using equation (34) to express S0’: 
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S0 can be eliminated with the use of equation (18): 
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On the frontier between the two adjacent domains, as ηi is equal to zero, ηi’ is equal to 
zero too if: 

(41)  i
T

i
T SVSV •=′•  

Due to the definition of the new domain limit vector Si’, equation (41) is fulfilled. 
Indeed, V is a vector on the frontier and this frontier is a symmetry plane between Si and Si’. 
The projections of these two vectors on V are necessary equal. 

The frontier is then defined by ηi’=ηi=0. 
The other coordinates of the new domain can also be computed: 
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Note that Sk’=Sk because it is kept from the old domain. 
By the same way than previously, we get: 
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Eliminating S0 with equation (18) applied to SSk: 

(44)  
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Finally equation (41) leads to: 

(45)  kk ηη =′  

This equation implies that along a frontier between two adjacent domains, the η-
coordinates computed from one or the other domain are equal. It is a very important and 
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convenient property that is also encountered in isoparametric finite element intrinsic 
coordinates. 

 
The main advantages of this method are that it requires only 1 (instead of 5) Taylor’s 

model call for an updating, it improves the continuity of the resulting yield locus and the 
continuity of its normal. A drawback is that it can only be used when the adjacent domain 
contains the current stress and then gives rise to positive new intrinsic co-ordinates. This 
condition is satisfied when the stress evolves smoothly which is often the case during a finite 
element simulation. 

8 2-D and 3-D cases 

The yield locus using this interpolation method is located in the 5-dimensional 
deviatoric stress space. In order to have a more physical view, a 2-D and 3-D representations 
of the yield locus are explained. 

In 2-dimensional space, the yield locus would be a plane curve, i.e. a 1-dimensional 
domain. The most simple representation is a segment of a straight line limited by 2 points. 

In 3-D space, the yield locus would be a surface (a 2-D domain). The most simple 
representation would be a triangular facet limited by the 3 lines (1-D domains) joining the 3 
vertices of the facet. 

In the same way, for N-dimensional space, the yield locus is a (N-1) dimensional 
domain. The most simple representation is an hyperplane (dimension: N-1) limited by N 
frontiers (dimension: N-2) and defined by N points.  

A point in the domain can be located by N intrinsic coordinates  which are linked to 
the N vertices. On a frontier, one intrinsic coordinate is equal to zero; so, this frontier which is 
a N-2 dimensional domain is defined by N-1 points and can be described by N-1 intrinsic 
coordinates (the non-zero ones).  

9 Non-regular domains 

According to equation (10), the angle between the domain limit vectors are all the 
same. This implies that only regular domains are used. In 3-D case, the interpolated yield 
locus is represented by equilateral triangles.  

However, it would be possible to define an interpolated domain based on non-
uniformly located limit vectors. For 3-D case, the triangular facets would no more be 
equilateral.  

With a non-regular domain, the intrinsic coordinates are still available but some 
particularities should be noticed: 

• The choice of the N domain limit vectors Si is free; the angle between each other is 
not fixed. However, as they are a basis in the N-dimensional space, they can not be 
parallel to each other; they must be linearly independent. 

• In order to compute the SSi vectors, equation (18) is no more valid. The definition 
based on equation (16) (Si

T.SSj = δij) must be used. As the S vectors form a basis, it 
is always possible to compute the SSi vectors. Equations (19) and (20) are no more 
fulfilled.  

• The η-coordinates are still computed from equation (22) (ηi = VT.SSi). On the 
other hand, the V vector can be found knowing its coordinates according to 
equation (21) (V = Σ ηi Si). 

• The intrinsic coordinates are computed in the same way: 
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(46)  
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SSV

SSV

11
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Note that this equation is slightly different from equation (24) (the original 
definition) in the sense that the sum on the SSi vectors can no more be replaced by 
its value as a function of S0. 
The sum of the intrinsic coordinates is again equal to one. 

• The S0 vector is no more a particular direction; it can however be defined: 

(47)  ∑
=

⋅=
N

i
iScS

1
0  

The c constant must be chosen such that S0 is a unit vector. 
For that direction, all the intrinsic coordinates are the same and their common 
value is (1/N). 

• Just like for regular domains, the N domain’s frontiers are defined by ξi = ηi = 0; 
the N vertices are defined by ξi = 1 and the other coordinates equal to zero. 

• The property defined by equation (45) stating that the η-coordinates computed 
from two adjacent domains are equal on the common frontier is no more valid. 

 
Aside those differences, the main properties of the ξ and η-coordinates are still 

fulfilled. So, non-regular domains can be used just like regular ones. 

C Yield locus interpolation 

Contrarily to numerous phenomenological models, in the developments integrating the 
texture, there does not exist a mathematical formulation describing the yield locus 
continuously. It is only possible to numerically compute, for a particular direction called d, 
the length of the vector whose extremity lies on the yield locus. The length of this vector will 
be called s*. 

As the computation of one point of the yield locus with the texture model is time 
consuming, it is interesting to interpolate locally the yield locus between some computed 
points. Different interpolation methods can be used; some are presented hereafter. 

The problem to solve is to find a formulation in order to interpolate s*, the length of a 
vector as a function of its direction d which can be described by the intrinsic coordinates. 

 
In the finite element analysis, both stress space and strain rate space are closely linked 

together. The choice of the interpolation space will be imposed by the texture model. Indeed, 
the Taylor’s model allows to compute, for a given strain rate direction, the stress direction and 
its length so, one point of the yield locus. On the other hand, if one wants to impose the stress 
direction, it is necessary to iterate in order to find the corresponding strain rate direction. 

Due to this, both spaces will be used. For the strain rate space, the domain limit 
vectors will be computed according to the method presented in paragraph B6; a regular 
domain will be obtained. The Taylor’s model will be used to compute the N domain limit 
vectors in the stress space corresponding to the ones in the strain rate space. The vertices 
obtained so are not uniformly located. Their irregular spacing is function of the anisotropy of 
the material behaviour. The interpolation domain in stress space will be non-regular. 
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Inside a domain, the intrinsic coordinates computed in stress space and in strain rate 
space are not exactly the same, again due to the anisotropy of the material behaviour. 
However, the frontiers and the vertices respectively correspond in both spaces. The stress 
space and its non-regular domains are chosen as reference for the computation of the intrinsic 
coordinates. In a convenient way, these coordinates will be used in strain rate space too. 

The dimension of the interpolating space, i.e. the value of N is the stress space 
dimension. As the yield locus is assumed to be independent of the mean stress, it is interesting 
to use the reduced deviatoric stress space whose dimension is 5 instead of 6. 

1 Linear interpolation in cartesian coordinates (hyperplane method) 

This interpolation method is the most simple and implies only the computation of the 
length of the yield stress vector (si) along the N domain limit directions Si. The stress vector is 
defined as the mean value of the yield stresses along the domain limit directions weighted by 
the intrinsic coordinates of the selected direction: 

(48)  1
11

* =⋅⋅=⋅= ∑∑
==

N

i
i

N

i
iii withSsds ξξσ  

Using the properties of the SSi vectors, it is possible to compute the value of the 
interpolated length s* as a function of the direction d: 

(49)  jj
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T
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Furthermore, for the case of a regular domain, equation (24) leads to: 
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An important remark should be mentioned here; when all the si for the N domain limit 
vectors are equal, the interpolated length is not equal to the common value: 
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For a regular domain, according to equation (19) 

(54)  
( )

s
dS

ss
T

≠
•

⋅=
0

* cos ϑ
 

And e.g. for d = S0: 

(55)  ( ) sss <⋅= ϑcos*  

This interpolation appears as a plane facet as shown in the 2-dimensional 
representation of Figure 3. 
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Figure 3: 2-D representation of the hyperplane interpolation 

2 Linear interpolation in spherical coordinates (stress-strain interpolation) 

Instead of interpolating in cartesian coordinates, i.e. each component of the stress 
vector independently, it is possible to interpolate the stress direction and the stress vector 
length separately.  

In a 3-dimensional space, the direction is represented by 2 scalars (which are often 
chosen to be 2 angles) and the length of any vector is 1 scalar. In the N-dimensional space, the 
direction is defined by N-1 parameters and the length is 1 parameter. The N intrinsic 
coordinates ξ will be used to represent the direction; indeed, they represent N-1 independent 
parameters (see paragraph B4). 

The interpolation will be carried out this way: the N intrinsic coordinates will be 
deduced from the direction of the stress vector (the direction to which the yield locus is 
explored). The length s* of the vector leading to the yield stress will be linearly interpolated 
according to equation (56). 

(56)  ∑
=

⋅=
N

i
ii ss

1

* ξ  

With this interpolation method, if the domain limit vector lengths si are all the same, 
the interpolated value s* will also be the same. So, a hypersphere (a sphere in the N-
dimensional space) will be exactly represented through this interpolation. 

 
Both interpolation methods presented above are worth to be integrated in a finite 

element code. The first one is more adapted to represent a yield locus with facets (like the 
Tresca’s one). The second one should be used for quadratic yield loci (like Von Mises’ one). 
So, the superiority of one method will depend on the material behaviour. 

3 Inverse interpolation 

Instead of using equation (56), it is possible to interpolate the inverse of the vector 
length: 

(57)  ∑
=

=
N

i i

i

ss 1
*
1 ξ

 

This method is not very different from the direct interpolation; particularly, in the case 
of domain limit vectors having the same length, both interpolations lead to the same result. 

s2 

s1 

s 
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However, if the N vector lengths si are significantly different from each other, this 
interpolation formulation is similar to the hyperplane method (compare equations (52) and 
(57)). 

Another variant of equation (56) would be to use the η-coordinates: 

(58) ( ) )(
cos 1

0

1

* domainsregularfors
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ss
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i
ii
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i
ii ∑∑

==
⋅⋅

•
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4 ’Bubble’ mode 

The cartesian and spherical linear interpolations presented above can be improved by 
the adjunction of one term: 

(59)  i

N

i

Na ξ∏
=

⋅⋅
1

 

where a is a constant. 
Due to the fact that on a frontier, at least one intrinsic coordinate is equal to zero, the 

added term has only an influence inside the interpolated domain. This is the reason why it is 
called ‘bubble’ mode. 

The constant a must be such that a particular yield stress inside the domain fulfils the 
interpolation. So, this ‘bubble’ mode implies the computation of a new yield stress vector 
according to the Taylor’s model. 

For convenience, if we choose the S0 direction (with all the ξi equal to 1/N), the 
constant a can be easily found for the spherical interpolation: 
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The formulation of the improved spherical interpolation is then: 
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For the cartesian linear interpolation, the ‘bubble’ mode is a vector: 
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The S0 direction is also chosen for the determination of a: 
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The ‘bubble’ mode improves the accuracy inside the domain for the cartesian and 
spherical interpolation but requires the computation of one additional particular yield stress. 

5 Second order interpolation 

Just like in finite element analysis, second order interpolation can be investigated. As 
for the ‘bubble’ mode, new yield stress vectors will have to be computed. We will choose 
points on the frontier between two vertices. In particular, the more interesting points have two 
intrinsic coordinates equal to ½ and the (N-2) other equal to zero. These new directions are 
called Sij and the lengths corresponding to the yield stresses are sij.  
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As these new Sij vectors are on a frontier just half-way between two vertices Si, they 
can be defined as: 

(64)  


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+⋅=

22

ji
ij

SS
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The α-constant must be so that Sij is a unit vector. One can easily find: 
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The interpolation must combine a constant term, (N-1) linear terms (as the linear 
interpolations) and N(N-1)/2 quadratic terms. With the use of the intrinsic coordinates, all 
these terms are contained in the N(N+1)/2 quadratic terms of the N dependent ξi. Due to the 
fact that their sum is equal to one, the linear and constant terms are taken into account. 

Indeed, for the spherical interpolation, the formulation is: 

(66)  jiij

N

i

N

j
jiij ccwithcs =⋅⋅= ∑ ∑

= =1 1

* ξξ  

If one wants to add linear terms having the form: 
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they are included in the formulation of equation (66). For a constant term, the same 
conclusion appears: 
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The N(N+1)/2 constants cij are determined by identification with the N values along 
the vertices: si and the N(N-1)/2 values on the frontiers between two vertices: 

(69)  iii sc =  

(70)  jiwith
ss

scc
ji

ijjiij ≠−−⋅==
22

2  

Note that these two equations can be summarised in: 

(71)  jandianyfor
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ijjiij 22
2 −−⋅==  

if we define sii to be equal to si. 
The second order interpolation can also be applied to the hyperplane method: 
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In this formulation, it is assumed that Sii is defined to be Si and fij = fji. The 
identification of these constants is done in a similar way than for the spherical interpolation. 

The inverse interpolation can also be used: 
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Higher order interpolation can also be investigated. Again, as the sum of the intrinsic 
coordinates is equal to one, only the higher order terms should be considered (see Ref. [13] 
and [17]). Such methods improve the accuracy of the interpolations. On the other hand, more 
yield stresses have to be computed with the Taylor’s model. A compromise between accuracy 
and computation time must be done.  

The size of the interpolation domain can also be linked to these two factors. Indeed, 
with higher order interpolations, it is possible to use larger domains with the same accuracy. 
Then, the compromise must be done between small domains with linear interpolation or large 
domains with a higher order interpolation. Both choices are valid. However, as the goal of our 
method is to integrate the texture updating, the interpolated domain will have to be updated 
regularly. Then, small domains with a linear interpolation should be more interesting from the 
point of view of the computation time. 

6 Continuity between adjacent domains 

The N frontiers of the domains are defined by one intrinsic coordinate equal to zero. If 
the interpolations are formulated as polynomials of these coordinates, the values computed on 
a frontier will be only a function of the (N-1) non-zero coordinates. For the adjacent domain 
limited by the same frontier, the same conclusion will hold. Then, the continuity between the 
two adjacent domains is fulfilled.  

It should be noticed that the continuity between the domains can only be fulfilled 
when the new domain is the neighbour of the old one (see paragraph B7 and Figure 2). 

The continuity presented here is of the C0 type; it assures the continuity of the 
interpolated function, i.e. the length of the interpolated stress s*. Unfortunately, a C1 
continuity is not fulfilled; the continuity of the yield locus normals can not be obtained 
between two adjacent domains. This problem is also encountered in 3-D shell finite elements 
where perfect slope compatibility can not be fulfilled. 

D Fitting of a yield locus formulation 

The fitting of the part yield locus parameters consists in the identification on some 
points of the real yield locus, which have been computed with the Taylor’s model. Instead of 
interpolating the yield locus into a chosen domain, it can be interesting to fit a classical 
phenomenological yield locus formulation that locally describes this chosen domain. 

The common form of phenomenological yield loci is: 

(74)  ( ) 02 =−= sFf σσ  

Based on classical formulation, the reliability of these yield models has already been 
proved. This is a first advantage. A second one concerns all the developments already 
investigated. For instance, the computation of yield locus normals and stiffness matrices are 
well known. 

Note that equation (74) refers to a scaled yield locus. Only the shape of the yield locus 
representing the anisotropy of the material is taken into account. The scaling factor is based 
on the work hardening and will be introduced in paragraph F1. 
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1 Plane formulation 

The most simple formulation for the part yield locus is: 

(75)  02 =−•= s
TCf σσ  

and represents the equation of a plane in the stress space. The N components of the C 
vector which are the part yield locus parameters can be determined by identification along the 
domain limit vectors Si: 

(76)  02 =−•⋅= si
T

ii SCsf σ  

Due to the property of the SS-vectors (see equation (16)), it can easily be checked that 
the following form of C-vector fulfils equation (76): 
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Replacing this value into the part yield locus formulation (equation (75)), one obtains: 
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which is exactly the form of equation (51). Indeed, these two formulations represent a 
part of a plane in the N-dimensional stress space. 

2 Spherical part yield locus 

The formulation is: 

(79)  02 =−•= s
Tf σσσ  

Which can be written: 

(80)  ( ) ss
T sddsf σσ =⇒=−•⋅= *22* 0  

This is the Von Mises criterion which requires only one yield stress computation. As 
we expect a good representation of the anisotropy of the material behaviour, this too simple 
model is not kept. 

3 Hill yield locus 

An anisotropic quadratic criterion is chosen: 

(81)  0
2

1 2 =−••⋅= s
T Af σσσ  

In this formulation, A is a symmetric matrix containing N(N+1)/2 components 
describing the material behaviour. Generally, the A matrix has a dominant diagonal. A 
simplified orthotropic version is often used; in the 5-dimensional deviatoric stress space, only 
6 (instead of 15) components are non-zero (see Ref. [12]). 

In order to stay general and to have the higher accuracy, the complete version will be 
used. For the identification of the parameters, the A matrix will be written: 
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The identification will require N(N+1)/2 known points to compute the N(N+1)/2 
components of the parameter matrix. The N domain limit vectors Si and the N(N-1)/2 Sij 
directions (defined in paragraph C5) will be used. For the first ones, we obtain: 
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For the Sij vectors, the following formulation appears: 
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Due to the definition of the Sij vectors of equation (65),  
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The formulation of the part yield locus (equation (81)) can be transformed in the form 
of an interpolation: 
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Using the definition of the η-coordinates, this can be written: 
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For regular domains, according to equation (24), the interpolation can be expressed as 
a function of the intrinsic coordinates: 
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This formulation can be compared to the one presented in paragraph C; two 
particularities should be noticed: 

• The interpolation is quadratic and inverse, 
• The η-coordinates are used rather than the intrinsic coordinates. This is similar to 

the hyperplane interpolation. Note that the constant factor (1/2σs
2) could be 

integrated in the constants Ckl. 

4 Tsai criterion 

The Hill model can still be improved be the adjunction of a linear function: 

(91)  0
2

1 2 =−••⋅+•= s
TT ACf σσσσ  

In comparison with the Hill model containing N(N+1)/2 parameters, this model 
requires N additional yield stresses computed with the Taylor’s model. So, in an interpolation 
domain, beside the N Si and the N(N-1)/2 Sij directions, N new other directions must be used. 

E Yield locus normal 

In order to be able to integrate the interpolation method into a finite element code, the 
tangent stiffness matrix must be computed. This implies the computation of the yield locus 
normal. With a classical analytical yield locus formulation, the computation of these normals 
is well known. For a part yield locus approach, the computation is presented here. 

With the assumption of an associated plasticity, the yield locus normal, i.e. the 
derivative of the yield locus function with respect to the stress vector, is the direction of the 
plastic strain rate. 

Different formulations of the yield locus can appear, three cases are treated: 
• The yield locus is a function of s, the length of the stress vector and d, its direction: 

(92)  
d

Fd

s

FsF

∂
∂•

∂
∂+

∂
∂⋅

∂
∂=

∂
∂

σσσ
 

With the use of the definition σ=s.d: 
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and: 
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The normal is then: 



IMPLEMENTATION OF A YIELD LOCUS INTERPOLATION METHOD IN THE FINITE ELEMENT CODE LAGAMINE 

 

26

(95)  

( )

d

F

sd

F
d

ss

F
d

d

F
ddI

ss

F
d

F
n

T

T

∂
∂⋅+







∂
∂•⋅−

∂
∂⋅=

∂
∂•⋅−⋅+

∂
∂⋅=

∂
∂=

11

1

σ
 

• If the yield locus is a function of the η-coordinates: 
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With the definition of the η-coordinates given by equation (22): 
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• In the case of the intrinsic coordinates: 
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With the use of equation (24) defining the ξ-coordinates: 
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The yield locus normal can be computed: 
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For a regular domain, equation (19) can be used: 
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The computation of the yield locus normals leads to an important problem. From a 

strain rate direction, the Taylor’s model computes the corresponding stress. Then, the 
interpolation leads to a yield locus formulation. From the yield locus, using equation (95), 
(98), (101) or (102), the yield locus normal is computed. The problem is that this direction 
does not always coincide with the initial strain rate direction.  

It could be possible to reduce this problem by increasing the number of parameters 
contained in the interpolation (higher order interpolation,…). However, from a numerical 
point of view, this solution can be worse than the initial problem. Discontinuities between 
interpolated domains can appear. Indeed, this problem has already been encountered in plate 
finite elements. 

Practically, when one strain rate direction is known, two slightly different ways can be 
followed. Both present an incompatibility. The first one is computed with the Taylor’s model 
and does not fulfil the normality rule; the second one is computed with the yield locus normal 
equations and does not fulfil the Taylor’s model. 

 
With a global yield locus approach, the continuity of the surface and the continuity of 

the normals are always fulfilled. With the part yield locus approach, a second problem 
appears. As already mentioned in paragraph C6, the continuity of the yield locus between 
adjacent domains can be easily fulfilled due to a common interpolation on the frontier. 
However, the perfect continuity of the yield locus normals can not be obtained.  

In consequence, on the frontier between two domains, two yield locus normals can be 
computed. The first one comes from equation (95), (98), (101) or (102) applied on the first 
domain; the second one is computed by the same equation but applied on the second domain. 
Note that these two contradictory normals are only present on the frontier between adjacent 
domains contrarily to the first problem where two normals appear inside a domain. 

If the two normals on a frontier are divergent, the stress will tend to be localised on the 
frontier because all the strain rate directions included between the two normals will 
correspond to a stress on the frontier. On the other hand, a locally non-convex yield locus 
corresponds to two convergent normals. This case is more inconvenient and leads to 
numerical instabilities and convergence problems (see the two-dimensional representation of 
Figure 4). 

 
Our choice is to use the normals computed with Taylor’s model for frontier points. So, 

there is only one normal on the frontier because Taylor’s model does not depend on the 
mathematical choice used for the interpolation. Inside the domain, the normals are 
interpolated on the base of the normals computed on the domain limit points. 
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Figure 4: Yield locus normals at the frontier between adjacent doamins 

F Application of the interpolation to the stress integration 

The interpolation method presented in the previous paragraphs can be applied on any 
variable: 

(103)  ∑
=

⋅=
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i
ii

1

ηϕϕ  

where the ϕi are punctual values computed on the interpolation domain limits and ηi 
are the interpolation functions. The ϕ value can either be scalar, vector, tensor… When the 
domain of validity is updated, the continuity of the interpolated variable is fulfilled; even the 
direction is continuous in the case of ϕ vector. 

The interpolation formulation will be particularised to the finite element application. 
The part yield locus represented here does not take work hardening into account. The stress 
vector σ and the strain rate direction u (unit vector) are the two interesting variables. The 
formulation for σ and u are then: 
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ησσ  

and 
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i
iiuu
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η  

where σi and ui are the values computed on the domain limit points. The Taylor’s 
model computes the stress σi corresponding to the strain rate direction ui for the N vertices of 
the interpolation domain. The coordinates for the stress σ* and the strain rate direction u* are 
computed with: 

(106)  *σσση •= T
ii  

(107)  *uuuT
ii •=η  

Divergent normals 
⇒  stress localisation 

Convergent normals 
⇒  numerical instabilities 
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for any stress σ* or any strain rate direction u*. The σσi and the uui vectors are 
equivalent to the SSi vectors defined previously and must fulfil following equations (see also 
equation(16)): 

(108)  ijj
T
i δσσσ =•  

(109)  ijj
T
i uuu δ=•  

In the finite element analysis, the 5-dimensional deviatoric stress space and the 5-D 
strain rate direction space correspond to each other. To one point on the yield locus 
correspond one stress vector and one strain rate direction. The link between the two spaces is 
for us the Taylor’s model.  

Due to this close link between the two spaces, it is assumed that the coordinates 
computed with equation (106) or (107) are equal if the stress σ* physically correspond to the 
strain rate direction u*. This property is exactly fulfilled on the domain limit directions: the 
stress σi corresponds to the strain rate direction ui and the coordinates are ηi=1 and ηj=0 (i≠j) 
in both spaces. Inside the domain, the property is assumed to be extended because it is the 
best approximation and the most convenient. 

If we put together equations (104) and (107), we get: 
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ii uuu
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or 

(111)  uC •=σ  

This equation introducing C matrix is a very convenient way to present the 
interpolation formulation. Just like the Taylor’s model, equation (111) allows us to compute 
the yield stress corresponding to any strain rate direction. Furthermore, this formulation is 
rather faster than the Taylor’s model as only a matrix multiplication is involved. 

The definition of the C matrix is based on the σi and the uui vectors which are 
computed on the interpolation domain vertices with the Taylor’s model. It should be borne in 
mind that this C matrix is only valid inside the interpolation domain for which it has been 
computed. If a new domain is explored, a new matrix must be computed. 

1 Work hardening 

An isotropic work hardening is chosen (see Ref. [11]). The yield locus part described 
by equation (111) grows uniformly with its shape remaining constant. The work hardening 
law can be expressed by a scalar formulation: 

(112)  ( )nplasticK εεσ +⋅= 0  

where σ and εplastic are scalars describing respectively the evolution of the yield stress 
length and the plastic strain length. The strength coefficient K, the offset ε0 and the hardening 
exponent n are material parameters fitted on experimental data. For convenience, tensile tests 
are generally used. In that case, σ and εplastic are the stress and the plastic strain along the 
tensile direction. 

 
According to Taylor’s model presented previously, the critical resolved shear stress 

τc
±S can be used to take an isotropic work hardening into account. 

In reality, τc
±S evolves in a different way for each particular slip system and for each 

grain as a function of the crystallographic slip γs accumulated on that particular slip and of the 
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dislocation density. The strain rate also has an influence. However, to be able to analytically 
describe this behaviour, some assumptions have been done: 

• The critical resolved shear stress remains equal to a common value for all the slip 
systems for a particular grain. 

• The effect of the work hardening is assumed to be the same for all the slip systems. 
• Furthermore, τc

±S are the same for all the crystallographic grains at a particular 
material point. In the finite element analysis, a particular point will be one finite 
element or more precisely, one integration point of a finite element. 

 
In other words, a common work hardening described by the evolution of τc occurs for 

all the slip systems of all the grains included in the representative set of crystal orientations 
associated to an integration point. However, a different value of τc is computed for each 
integration point. A spatially non-uniform work hardening occurs. 

Taylor’s model proposes the evolution of the critical resolved shear stress to be 
expressed as a function of the accumulated polycrystal induced slip Γ: 

(113)  ( ) ( )∫ Γ=Γ
t

dtgg
0

�  

where g represents a particular grain orientation. The total induced slip starts from 
zero at the initial annealed state and grows as plastic deformations occur. 

The first assumption presented above allows us to express the total slip rate as a 
function of the Taylor’s factor M and the strain rate magnitude (∂εEQ/∂t): 

(114)  ( ) ( )gMg EQ ⋅=Γ ε��  

The third assumption states that the work hardening is the same for all the grains. The 
crystallographic orientation g can then be eliminated by averaging: 

(115)  ∫ Γ=Γ
t

dt
0

�  

The average form of equation (114) must then be used: 

(116)  MEQ ⋅=Γ ε��  

where the average of Taylor’s factor is only a function of the strain rate direction (the 
length being taken into account in the strain rate magnitude). 

The integration on a time step can be done, assuming that the Taylor’s factor remains 
constant during this time interval: 

(117)  MEQ ⋅∆=Γ∆ ε  

Due to this equation, the plastic equivalent strain describing the evolution of the 
material behaviour in equation (112) can be replaced by the total induced slip. On the other 
hand, according to equation (6), the definition of the Taylor’s model can be expressed as (see 
also Ref.[10]): 

(118)  
τ

σ u
M

T •=  

So, the equivalent stress σ of equation (112) can be replaced by the critical resolved 
shear stress. The stress-strain curve (σ-εplastic) can be converted into a critical resolved shear 
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stress-induced slip curve (τc-Γ). The formulation is then (the indices have been removed for 
convenience): 

(119)  ( )nK Γ+Γ⋅= 0τ  

K, Γ0 and n are the new material parameters to be fitted to tensile test data. 
 
The interpolation formulation of equation (111) can integrate the work hardening. The 

new formulation is: 

(120)  uC •⋅=τσ  

The Taylor’s factor can be expressed as a function of the interpolation variables. 
Starting from its definition (equation (118)): 
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2 Tangent stiffness matrix 

As the interpolated model which is used for the computation of the stress has a 
formulation rather different from the classical approach, the computation of the tangent 
stiffness matrix is also different. The developments presented hereafter are for the deviatoric 
part of the stresses and the strains. The hydrostatic part is computed separately and is assumed 
to have a perfect elastic behaviour. 

During a finite element simulation, for a plastic loading, equation (120) representing 
the yield locus and equation (122) are fulfilled: 
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Equation (122) represents the stress growth and is based on the Hooke’s law which 
links the stress and the elastic strain with the use of the elastic matrix Ce. The time derivatives 
must be objective; Jaumann formulation is used. 

The derivative of equation (120) yields: 
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Using equations (122) and (123): 
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Where the plastic strain rate has been decomposed into its direction and its length, 
assuming a constant plastic strain rate direction during a time step. Furthermore, the fact that 
u is a unit vector implies that the following property is fulfilled: 

(125)  0=
∂
∂•

t

u
uT  

Equation (124) can then be written: 
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now, derivating equation (119): 
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Then, the equivalent plastic strain rate can be obtained: 
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Replacing this value in equation (122), the stress evolution can be computed: 
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The tangent stiffness matrix is then simply: 
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The formulation can be simplified if two new vectors are defined: 

(131)  uCa e •=  

(132)  uCb T •= −  

Then 
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3 Stress integration 

The stress at the end of a finite element time step can not be obtained directly. Several 
methods with different accuracy levels are presented. 

a. Explicit formulation 

The stress at the end of the time step σB is directly computed from the stress at the 
beginning of the time step σA with the use of the tangent stiffness matrix: 

(134)  ( ) tot
AB CdtI εσωσ ∆•+•+= tan  

Where the first term represents the contribution of the Jaumann derivative. 
This is a rather simple formulation but the accuracy is not so good unless very small 

time steps are used. In order to reduce the error, the integration can also be computed on sub-
intervals. 
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b. Explicit formulation with radial correction 
An improvement of the previous method can easily be achieved. The problem with the 

explicit formulation is that the stress deviates gradually from the exact solution and then from 
the yield locus. The explicit method can then be used to compute the stress direction: 

(135)  ( ) tot
Aapprox CdtI εσωσ ∆•+•+= tan  

and a correction will be applied on the stress length in order to stay on the yield locus: 

(136)  approxB k σσ ⋅=  

The factor k must be so that the stress at the end of the time step is on the yield locus. 
The interpolated yield locus formulation of equation (120) will be applied on the state 
corresponding to the end of the step: 

(137)  
B
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The final stress lies on the yield locus if the final strain rate direction uB is effectively a 
unit vector: 

(138)  
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The influence of the work hardening is assumed to be small; the critical resolved shear 
stress at the end of the time step τB will then be computed explicitly: 
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where [∆εEQ]A can be computed with a formulation similar to equation (128) applied 
on the beginning of the time step: 
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c. Implicit formulation 
This method does not give a direct formulation for the stress at the end of the time 

step; an iterative process has to be used. However, more accurate results are expected. 
The integration of the stress has a formulation close to the one of equation (134): 

(141)  ( ) ( )plastictote
AB CdtI εεσωσ ∆−∆•+•+=  

However, the tangent stiffness matrix is no more used because it can only be 
computed on the basis of the beginning of the time step. As this is not interesting, the elastic 
matrix is chosen. 

The plastic strain increment ∆εplastic can be decomposed into its length and its 
direction. Furthermore, its direction is assumed to be between the initial and the final strain 
rate direction: 

(142)  ( )( )BAEQ
plastic uuk ⋅+⋅−⋅⋅∆=∆ ϑϑεε 1  
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The ϑ-parameter must be chosen in the interval [0;1] and fixes the implicit/explicit 
ratio. If ϑ=0, the method is explicit; if ϑ=1, the method is fully implicit. An intermediate 
value is generally chosen. 

The k-coefficient must be so that the direction computed between uA and uB is an unit 
vector: 

(143)  
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The stress can be written: 

(144) ( ) ( )( )BA
e

EQ
tote

AB uuCkCdtI ⋅+⋅−•⋅⋅∆−∆•+•+= ϑϑεεσωσ 1  

In this formulation, two unknowns are present: uB and ∆εEQ. Two additional equations 
are then required in order to be able to compute the stress at the end of the time step. The first 
one is the yield locus formulation applied on σB-uB (equation (120)). The second one is the 
fact that uB is an unit vector. The vector type equation system obtained is not explicit and 
must be solved with an iterative method. Note that the hardening variable τB will be computed 
explicitly according to equations (139) and (140). 

G Implementation into the finite element code 

This paragraph briefly points out some particularities that have been encountered 
during the implementation of the constitutive law based on the interpolation method. 

The constitutive law has been divided into five sub-routines: 
• The first one is called PERT. This sub-routine computes the 5 domain limit 

directions in the strain rate space according to the principle of paragraph B6. The 
size of the domain which is linked to the angle between the domain limit vectors 
(parameter β of equation (10)) is the most important parameter required by the 
sub-routine and must be chosen by the user. 

• The second sub-routine is ACPAY3 and is in charge of the Taylor’s model calls 
along the directions computed by PERT. The scaled yield stresses corresponding 
to particular strain rate directions are determined. 

• The third one is called INTERT and achieves the stress interpolation on the basis 
of the 5 points computed by ACPAY3. If the actual domain is no more valid due to 
a stress direction evolution, the interpolation tends to become an extrapolation and 
a new domain must be determined. First, an adjacent domain is investigated 
according to the method presented in the paragraph B7. If there is no valid 
adjacent domain, a completely new domain will be computed with 5 new domain 
limit vectors computed with ACPAY3 along the directions proposed by PERT. 

• The fourth sub-routine is SEARCHU and computes the stress at the end of the time 
step in the elastic-plastic case. 

• The last one is called MINTY3 (for Microscopic INTerpolated Yield locus 3 
dimensions). This sub-routine is the main part of the constitutive law and uses the 
4 other ones to compute the stress at the end of the time step in the general case, 
the tangent stiffness matrix and the updated state variables. The “3-dimensions” 
characterise the geometric space associated to solid elements. This law is not 
linked with axisymmetric state or plane strain state. 
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The three sub-routines INTERT, SEARCHU and MINTY3 are briefly detailed as they 

are directly linked to the stress-strain interpolation method. 

1 INTERT 

The input variables are the stress vectors that must be compared to the interpolated 
yield locus. The output will be the ratio of the input stress to the yield stress along the same 
direction. It is then possible to know whether the input stress in inside, outside or on the yield 
locus. The corresponding strain rate direction is also computed. 

20 working vectors are necessary to achieve the interpolation; they are: 
• 5 σi vectors which are the stresses computed by the Taylor’s model along the 5 

domain limit directions, 
• 5 σσi vectors used to compute the η-coordinates and determined with equation 

(16), 
• 5 ui vectors which are the strain rate directions corresponding to the 5 σi, 
• 5 uui vectors used to compute the η-coordinates for the strain rates. 
 
Generally, and in particular when it is called by MINTY3, this sub-routine will 

compute the strain rate direction from the input stress vector. However, the interpolation 
formulation is not limited to this operation. The inverse operation can be performed: a stress 
can be obtained from a particular strain rate direction. The sub-routine has been implemented 
in both cases; the input and the output of the sub-routine can be exchanged. 
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Flow chart of INTERT 
 
 
 
 
 
 
 
 
 

Definition of some constants: 
• N=5 (dimension of space) 
• sin ϑ, cos ϑ (ϑ fixes the interpolation domain size) 
• β2 = sin2 ϑ . N/(N-1) 

Computation of the η-coordinates for the input stress by equation (106): 

ηj = σσj •  σinput 

Σ ηj 
≤ 0 

min ηj 
< 0 

≥ 0 

Computation of a new interpolation domain with the 
Taylor’s model. The domain limit directions are 
computed with PERT. 
⇒  the 20 vectors ui, uui, σi, σσi are updated. 

Computation of the new η’ coordinates in the 
case when the adjacent domain is explored. 

min η’j 
< 0 

≥ 0 

Computation of the output strain rate direction with equation (105): 
uoutput = k . Σ uj . ηj 

k must be such that  uoutput  = 1 

k fixes the ratio (input stress / yield stress) in the direction of σinput 

Computation of one new vertex with the 
Taylor’s model. 
⇒  the 20 vectors ui, uui, σi, σσi are updated. 

> 0 
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On the flow chart of INTERT, two criteria are used for the updating of the 
interpolation domain: 

• Σ ηj ≤ 0 
• min ηj < 0  
Now, if the output strain rate direction is projected on the u0 direction which is the 

mean value of the domain limit directions, equations (12) and (21) applied to the strain rates 
give: 
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The first criterion can be written uoutput •  u0 ≤ 0 (because ϑ will always be chosen quite 
smaller than 90°). This means that the output strain rate direction uoutput forms an angle larger 
than 90° with the direction u0, i.e. the direction pointing the middle of the interpolation 
domain. Obviously, the actual part of the yield locus is not valid for the interpolation and 
must be completely updated. 

 
It should be noticed that at the beginning of the simulation, the working vectors ui, uui, 

σi, σσi are not yet computed. During the first call to the sub-routine INTERT, for any input 
stress vector, the computed η-coordinates will then all be zero. The first updating criterion 
will then be fulfilled and a first interpolation domain will be computed. 

 
The second criterion is fulfilled when at least one η-coordinate is negative. This means 

that the input stress direction is outside the actual interpolation domain. This criterion being 
less strict than the first one, the updating of only one point instead of five will be investigated. 
It will be checked whether an adjacent domain includes the input stress direction. 

In order to check the validity of the adjacent domain, the new coordinates η’ 
corresponding to the new domain must be computed. These η’-coordinates are computed 
without any Taylor’s model call. They are based on the old coordinates and on the properties 
of the interpolation model. The formulation presented in paragraph B7 is used knowing that 
regular interpolation domains are used in the strain rate space. According to paragraph B7, the 
η and η’-coordinates are equal on the frontier between two adjacent domains. However, the 
explored point in not necessarily on that frontier; it is indeed expected to be inside the new 
domain. The property of equal coordinates is then not anymore fulfilled and the new 
coordinates must be computed. 

Once the new coordinates are known, the validity of the adjacent domain can be 
checked. If the new domain is valid, one new Taylor point is computed; otherwise, the 
classical updating technique is used and five new points are computed. 

 
Finally, the 20 working vectors must be updated; the ui and the σi are computed with 

the sub-routine PERT and the Taylor’s model. The uui vectors are computed with equation 
(18) because regular domains are used in the strain rate space. For the σσi vectors, the 
definition of equation (16) applied for the stresses must be used: 

(146)  ijj
T
i δσσσ =•  
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This equation means that the 5x5 matrix formed by the 5 σσi vectors is the transpose 
of the inverse of the 5x5 matrix formed by the 5 σi vectors. 

 
The last step of INTERT’s flow chart is the computation of the output values. It should 

be noticed that the k factor used to norm the strain rate direction fixes the ratio of the input 
stress to the yield stress. Indeed, to an unit strain rate direction corresponds a yield stress lying 
on the yield locus. If the input stress is outside the yield locus, the length of the computed 
strain rate direction will be larger than one. And inversely if the input stress is inside the yield 
locus. 

2 SEARCHU 

This sub-routine will compute the stress and the strain rate direction at the end of the 
time step. 

The input variables are the stress vector and the strain rate at the beginning of the time 
step (state A). The stress increment in a pure elastic hypothesis ∆σelastic including the Jaumann 
derivatives is also given to the sub-routine. 
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Flow chart of SEARCHU 
 
 
 
 
 
 

First approximation : 
uplastic = ub = ua 

Computation of the plastic 
strain increment : ∆εplastic  

∆εplastic 
≤ 0 

Elastic case: 
∆εplastic = 0 
σb = σa + ∆σelastic

 

> 0 

Elastic-plastic case: 
σb = σa + ∆σelastic -Ce•∆εplastic uplastic 

Call INTERT in order to compute 
the strain rate corresponding to σb : 
unew 

unew = ub 
(to the prescribed 

accuracy) 

yes 

Return 

Return 

no Maximum 
number of 
iterations 
reached 

yes 

Stop 

no 

New approximation : 
uplastic= k.(ua (1-ϑ) + unew ϑ) 
 
with k such that  uplastic =1 
and ϑ = 0.5 
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The stress integration method presented in this flow chart is based on the implicit 
method presented in paragraph F3c. An iterative process must be used because the values at 
the end of the time step are required while their computation is in progress. 

The plastic strain increment is computed with equation (128) where the actual strain 
rate direction, without any other better value, is chosen to be the approximation uplastic.  

The stress at the end of the step is computed according to equation (141) where the 
strain rate has been decomposed into its length and its direction; this direction being 
computed with the method proposed by equations (142) and (143). 

The first convergence criterion compares the old value of u to the new one computed 
by INTERT according to the actual approximation for stress at the end of the time step. The 
required accuracy is a parameter which is generally fixed to 10-5. This value means that the 
scalar product of uB and unew must be close to 1, with an accuracy of 10-5. This will 
correspond to an angle between these two directions of: 

(147)  
( )

°=<⇒

−>•= −
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101cos 5
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The second convergence criterion fixes the maximum number of iterations for the 
computation of the final plastic strain rate. This limit number is fixed by the user. If the limit 
value is reached, the sub-routine is left and the actual time step is reduced. 

3 MINTY3 

The sub-routine MINTY3 is the constitutive law routine. The input and output 
parameters are fixed by the finite element code. The input parameters are as classically: the 
stress and the state variables at the beginning of the time step, the prescribed velocity 
gradient, the time step and the material parameters. The output of the law are the stress and 
the state variables at the end of the time step and the tangent stiffness matrix. 
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Flow chart of MINTY3 
 
 
 
 

Definition of some constants 

• Hydrostatic and deviatoric parts of σA are separated 
• Perturbations are applied on the velocity gradient (only if 

the tangent stiffness matrix is not computed analytically) 

• Computation of the Jaumann derivatives 
• Computation of the elastic stress increment for the sub-

interval: ∆σelastic 
• Computation of σB = σA + ∆σelastic in an elastic 

assumption. 

∆εplastic of 
the previous 
step 

Call INTERT 
⇒  comparison of σB (from the elastic 
hypothesis) to the yield locus. 

σB 

Outside the yield 
locus

→ elastic-plastic

Call SEARCHU 
⇒  computation of σB (elastic-plastic 
hypothesis)  

≤ 0 

> 0 

Inside the yield 
locus 
→ elastic 

Analytical computation of the contribution of the current sub-
interval to the tangent stiffness matrix. 

Computation of σB (hydrostatic part included). 
Updating of state variables. 

Computation of one raw of the tangent stiffness matrix with 
the perturbation method. 

Exit the constitutive law. 

Loop on the 
sub-intervals

Loop on the perturbations
(only if the tangent stiffness 

matrix is not computed 
analytically)
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A first remark concerning the flow chart of MINTY3 is that the separation of the 
hydrostatic and the deviatoric part is a well known method. The hydrostatic part is computed 
elastically due to the assumption of a constant material volume for the plastic deformations. 
The deviatoric part is extracted from the 3x3 general form of the stress tensor and transformed 
into a 5-dimensional vector. The constitutive law and the two sub-routines INTERT and 
SEARCHU only use the vector form for stresses and strains. The conversion is achieved 
through equation (148): 
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The work hardening effect described by equation (119) is taken into account during 
the comparison of the final stress vector σB to the yield locus interpolated with INTERT. It is 
simply a scalar factor applied on the stress lengths. 

 
Finally, the last remark is about the tangent stiffness matrix. For the perturbation case, 

a classical method is used: a small perturbation is applied successively on each component of 
the velocity gradient. Each raw of the tangent stiffness matrix will then correspond to one 
perturbation. The constitutive law is then computed ten times (one without perturbation and 
nine for the nine perturbations corresponding to the nine components of the velocity gradient) 
for each integration point and at every time step. 

In order to reduce computation time with the elimination of the loop on the 
perturbations, the analytical tangent matrix can be used. For the elastic-plastic case, the 
formulation is presented in equation (133) where the u-vector will be the one computed by 
SEARCHU: uplastic. For the elastic case, SEARCHU is not called; so, uplastic is not available. 
But, in that case, the tangent stiffness matrix is simply the elastic matrix Ce. 

It should be noticed that this analytical tangent matrix is computed sub-interval per 
sub-interval. The contribution of each sub-interval is computed separately. The final tangent 
stiffness matrix is the mean value of all these contributions. This method allows the tangent 
stiffness matrix to be very close to the stress integration scheme. The resulting convergence of 
the finite element code is then improved. 
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Chapter III The Hyperplane Model 

The first investigated method to interpolate the yield locus between the points 
computed by the Taylor’s model was the fitting of an hyperplane on the domain limit yield 
stresses. 

The formulation of the hyperplane interpolation was already theoretically developed in 
Chapter IIC1 and Chapter IID1. In practice, the used hyperplane model is a little bit different 
in the sense that five hyperplanes are always computed simultaneously. In fact, in addition to 
the five domain limit vectors, the central point is also computed with the Taylor’s model. Six 
yield stresses are then available; the five hyperplanes are fitted on the central point and on 
four of the five domain limit vectors. 

This method requires one more point computed with the Taylor’s model but it is 
expected to be more accurate. Indeed, five small hyperplanes will better fit a convex surface 
than one large hyperplane. 

 
Since the normal to a hyperplane is a constant direction, the normality rule would 

imply that the plastic strain rate direction is fixed for a particular hyperplane. This assumption 
is not satisfactory and neglects the available information of the normal at the domain limit 
directions and the central direction. It also induces sudden plastic strain rate discontinuities 
when the stress direction perforates a new hyperplane or when an updating occurs. So, we 
chose to improve the model by using a non constant normal which is computed by 
interpolation between the normal of the five domain limit directions defining the current 
hyperplane. So, the normality rule is not anymore fulfilled in this model. As already 
mentioned in Chapter IIE, the interpolation of the normals between the domain limit values 
instead of computing the normal to the interpolated surface is already used for the stress-strain 
interpolation in order to improve the continuity between adjacent domains. Here, the 
advantages of this method are more important because a constant normal on a hyperplane 
would imply several convergence problem in the finite element code. Only one strain rate 
direction would then correspond to one hyperplane. As the strain rate evolves continuously 
during a finite element simulation, the current point on the interpolated yield locus would, 
except particular case, always be on the frontier between two or more hyperplanes. A 
localisation of the stress at the frontiers would be noticed. Beside the convergence problems, 
this would lead to a large number of hyperplane updating and then Taylor’s model calls. 

 
In spite of the normal interpolation, some convergence problems have been noticed 

with the use of the hyperplane method. As it will be presented in the next chapter, these 
convergence problems are mainly due to a lack of continuity of the interpolated yield locus.  

Beside these problems, an excessively high number of Taylor’s model calls due to 
hyperplane updating has been noticed. In order to reduce the number of hyperplane updating, 
the stress integration scheme was improved. Initially, the stress integration scheme was based 
on the elastic predictor and radial return method proposed by Kaiping (see Ref. [12]). This 
method contained two embedded loops. So, in order to reduce computation time, a simplified 
method with only one loop was developed. 

Finally, the elastic predictor was supposed to be at the origin of the numerous Taylor’s 
model calls. This predictor is indeed a very bad assumption of the stress at the end of the step. 
So, during the stress integration scheme, a hyperplane containing the stress with the elastic 
predictor must be computed; after the radial return, this hyperplane is no more valid and 
another one must be computed. That is the reason why a new stress integration scheme was 
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developed. In this method, a plastic predictor with a proportional return is investigated. The 
plastic predictor is indeed expected to be very close to the stress at the end of the time step. 
The same hyperplane will then contain both vectors and no updating will be necessary. These 
three radial return methods have already been compared in [5]. 

 
The sub-routine devoted to the hyperplane methods are: 
• In the manner of MINTY3 for the stress-strain interpolation, MIPAY3 is the 

constitutive law based on the hyperplane interpolation. 
• RR1PAY is the sub-routine devoted to the first radial return method (with two 

embedded loops). 
• The second radial return method with only one loop is implemented in the sub-

routine RR2PAY. 
• The third method with a plastic predictor is in RR3PAY.  
One of these three sub-routine is called by MIPAY3 according to the user radial return 
choice. 
• The interpolation is implemented in the sub-routine INTPAY. Just like INTERT 

for MINTY3, this routine is called by MIPAY3 or one of the radial return sub-
routine when one point of the yield locus must be found. 

• The sub-routines ACPAY3 and PERT already used by MINTY3,are also called by 
MIPAY3. The interpolation domain will then have the same geometry for both 
interpolation method; the geometry being imposed by PERT. It must be noted that 
the use of the adjacent domain has not been implemented for the hyperplane 
method. 

• All the sub-routine dedicated to the Taylor’s model computation are also identical 
for both methods. 
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Chapter IV Validation 

A Introduction 

This chapter describes a large number of tests used to check the constitutive law 
MINTY3. These tests validate this law with respect to theoretical solutions for the simple 
cases and to other laws for the complex cases where no theoretical solution exists. 

The validation will compare not only the computed stresses, displacements and forces 
with MINTY3 but also the computation time and the observed convergence. 

The first test is a simple tensile test in one direction; a tensile test of a holed steel sheet 
described by over than 500 elements is also investigated. The interpolated yield loci are also 
compared through π-sections. Finally, tests with any imposed displacements are presented. 
These tests allow us to point out convergence problems for the constitutive law MINTY3. The 
results for MIPAY3 are also presented. 

B Tensile test along Y-axis 

This is the most simple finite element simulation: tensile test along the Y-axis on one 
cubic finite element. The simulation is achieved until the element length along Y is doubled. 
The strain corresponding to the final state is then: εY = ln(L/L0) = ln(2) = 0.69. 

These simulations have been applied on MINTY3 and MIPAY3 in the same 
conditions. These common conditions are: 

• Same initial geometry 
• Same imposed displacements 
• Same hardening law for the steel 
• Same mechanical parameters for the steel 
• The texture of the steel is represented by the same set of representative crystals and 

the same Taylor’s model is used in both cases 
• Five sub-intervals are used 
• The initial time step is 10-4 
• Two maximum time step are used for both laws: 2.10-3 and 10-2 
• Five different sizes of the interpolated yield locus are checked. They are 

represented by the angle between the domain limit vectors and the vector pointing 
the centre of the domain: ϑ. The values are: 1°,5°,10°,20° and 30°. 

• For MIPAY3, three stress integration schemes are used: the first one is a classical 
elastic predictor with radial return computed with two embedded loops; the second 
one is a simplified one with only one loop for the radial return; the third one uses a 
plastic predictor. 

 
These tests applied to the MIPAY3 law are presented in [5]. This paper compares the 

three radial return methods and emphasis the influence of the size of the interpolation domain. 
The conclusions of this paper are that the size of the hyperplane has an important influence on 
the computed stress as shown in Table  1. Secondly, the plastic predictor gave very good 
results in terms of computation time, convergence and stability for the tensile tests. 
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Size of the hyperplanes 1° 5° 10° 20° 30° 
Stress at the end of the test 
(N/mm2) 

559.05 558.3 557.98 534.54 522.54 

Table  1: Tensile tests with MIPAY3 

For MINTY3, the results are putted together in Table  2. 
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An. 10° 2.10-3 40.04 5 0 520 1541 2.96 1 1 554 
An. 20° 2.10-3 38.33 5 0 520 1542 2.97 1 0 557 
An. 30° 2.10-3 37.42 4 0 516 1539 2.98 1 0 558 
An. 1° 10-2 2:47.35 5 2 134 483 3.6 29 41 553 
An. 5° 10-2 22.13 5 0 128 462 3.6 2 1 554 
An. 10° 10-2 17.99 5 0 128 457 3.57 1 1 555 
An. 20° 10-2 17.30 5 0 128 450 3.52 1 0 558 
An. 30° 10-2 16.37 5 0 128 426 3.33 1 0 558 

Pert. 1° 2.10-3 16:05.83 5 0 520 1545 2.97 52 714 553 
Pert. 5° 2.10-3 1:11.55 4 0 516 1534 2.97 2 1 553 
Pert. 10° 2.10-3 1:06.06 4 0 516 1532 2.97 1 1 554 
Pert. 20° 2.10-3 1:29.54 7 0 520 1544 2.97 1 24 557 
Pert. 30° 2.10-3 1:06.95 4 0 516 1539 2.98 1 0 558 
Pert. 1° 10-2 12:07.02 5 2 136 390 2.87 95 367 553 
Pert. 5° 10-2 25.25 4 0 128 370 2.89 2 1 554 
Pert. 10° 10-2 21.35 4 0 128 368 2.88 1 1 555 
Pert. 20° 10-2 43.43 7 0 128 368 2.88 1 24 558 
Pert. 30° 10-2 19.82 4 0 128 375 2.93 1 0 558 

Table  2: Tensile tests with MINTY3 

A first remark is that this table shows the good quality of the analytical tangent matrix. 
Indeed, for both analytical and perturbation based matrix, the convergence is very good: 
acceptable maximum number of iterations (7 in the worst case); low number of time step 
reduction due to a poor convergence. However, the computation time is largely reduced with 
the analytical matrix because the loop on the perturbations is eliminated. For the case with the 
larger computation time, i.e. with the small size of the domain, the reduction is from 16 
minutes to 1 minute and 50 seconds and from 12 minutes to 2 minutes and 47 seconds. For 
the faster cases, the diminution is smaller but the analytical method is always faster. 

Due to this, henceforth, the tangent stiffness matrix will always be computed with the 
analytical method and the resulting convergence will never cause any problem. 

The number of updating of the interpolation domain is also presented in the Table  2. 
This number becomes very high when the size of the domain is small (1°). For the other 



IMPLEMENTATION OF A YIELD LOCUS INTERPOLATION METHOD IN THE FINITE ELEMENT CODE LAGAMINE 

 

47

values of ϑ, there is only a few updating; this is rather normal in a simple tensile test because 
the stress direction is expected to be rather constant. 

The number of domain updating has a large influence on the computation time. For 
example, for the case of the tangent stiffness matrix computed with the perturbation method, 
with a maximum time step of 10-2, when the size of the domain goes from 30° to 1°, the 
computation time rises from 19.82 to 12:07.02, i.e. it is 36 times higher. This is mainly due to 
a larger number of Taylor’s model calls. 

The size of the interpolation domain has also an influence on the results of the 
simulation. The last column of Table  2 shows the stress along the Y-axis at the end of the 
simulation. It can be noticed that the stress grows slightly when the size of the interpolation 
domain grows. As it was expected, the accuracy is lower for the large interpolation domains. 

For MIPAY3, large domains induce an underestimation of the computed stress (see 
Table  1). This behaviour is opposite to the one of MINTY3. This can be related to the 
different interpolation method for the two laws. The next validation explains this 
phenomenon. 

The stress at the end of the tensile test can also be compared to the theoretical value. 
Using equation (112) describing the work hardening of the material, the stress at the end of 
the simulation is a little bit higher than 550 N/mm2 for a tensile test along the Y-axis. 

C π-sections of the yield locus 

As the yield locus is defined in a 5-D space, it can not be represented unless a section 
of it is taken. The classical section in the principal stress plane is not adapted to the deviatoric 
stress space. As the hydrostatic stresses are not taken into account in our case, we chose to use 
the π-plane section of the yield locus. This plane is indeed perpendicular to the hydrostatic 
direction. These considerations lead to a stress tensor having the form of equation (149). The 
direction of this stress can be defined by the angle α, its length (S1 or S2) must be such that it 
lies on the yield locus; while S3 must fulfil the deviatoric condition. 

(149)  
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In order to explore the yield locus in all the possible directions of the π-plane, we 
select the angle α ranging from –90° to +90°. 

With the hyperplane method, the curves obtained for different sizes of the 
interpolation domains are presented in Figure 5. The case for domain of 20° is presented 
separately in Figure 6 with the yield locus normals. 

It is clear in that representation of the yield locus that the hyperplanes appear as 
straight lines due to the projection. Furthermore, as the hyperplane size increases the stress 
length decreases. This is due to the fact that accuracy is better for small hyperplanes which are 
closer to the real surface and because the convex curvature of the physical yield locus 
introduces an underestimation of the stress length. The smallest planes are the most accurate, 
but they imply frequent Taylor’s model calls which requires a lot of computations. The 
relative mean value of the stress length and the number of calls to the Taylor’s model 
necessary to compute the π-sections are summarised in Table  3. 
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Size of the hyperplanes 1° 5° 10° 20° 30° 
Relative mean stress length 1 0.994 0.977 0.902 0.788 
Number of Taylor’s model calls 507 109 54 24 12 

Table  3: Effects of the hyperplanes size on the computed stress 

For the stress-strain interpolation of MINTY3, the π-sections are not a set of straight 
lines but quite more continuous curves (see Figure 7 and Figure 8), even for large 
interpolation domain sizes. The continuity of the yield locus leads to a better finite element 
convergence. 

A large interpolation domain is expected to produce a lower number of updating 
during finite element simulations and to reduce computation time. On the figures, it seems 
that the accuracy becomes poor for domains of 20° and 30° with the interpolation of MIPAY3 
and 40° for MINTY3. With the stress-strain interpolation, for the same accuracy, larger 
domains can be used; computation time reductions can then be expected with MINTY3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: π-sections of the yield locus for the hyperplane method (different sizes 
of the domain are presented) 
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Figure 6: π-sections of the yield locus for the hyperplane method (the size of the 
domain is 20°) 

 
For the case 40° with MINTY3, the interpolated yield locus is not perfectly 

superimposed to the reference case (assumed to be the 1° case) but it is continuous. The 
normals seem also to be continuous. This was not fulfilled with the hyperplane method. Note 
that the discontinuity observed on Figure 8 is in fact the beginning and the end of the π-
section computation. 

On Figure 9, the π-sections of the interpolated yield locus with both laws are 
compared for the smallest size (1°). The two yield locus are superimposed, the normals have 
also the same directions. This is due to the fact that for small domains, the interpolation 
method is not important. Only the way to compute the domain limit points, i.e. the Taylor’s 
model has an influence on the resulting yield locus. That is the reason why the 1° case can be 
used as a reference for the interpolation method. 
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Figure 8: π-sections of the yield locus computed with MINTY3 for domains of 40° 
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Figure 9: π-sections of the yield locus: comparison of MIPAY3 and MINTY3 for 
1° with a global yield locus based on the texture (law ANI3VH) 
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D Simulation on one finite element 

These tests will use the same geometry than for the first validation, i.e. one cubic finite 
element. However, the imposed strains will be quite different. The imposed displacements 
imply tensile, compression and shear stresses in the finite element. Eight different cases are 
investigated. For each of these eight imposed velocity gradients, 17 simulations are achieved: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For these 8x17=136 simulations, the observed convergence was rather good except for 

some cases with the analytical tangent matrix of the law MIPAY3. 
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As it has already been noticed earlier, when the size of the interpolation domain is 
small, the number of updating rises; this leads to a larger number of Taylor’s model calls and 
increase the computation time. 

For the law MINTY3, lots of updating make use of the adjacent domain. This can also 
be seen on Table  2 for the tensile test. The developments presented in Chapter IIB7 are then 
useful as only one instead of five Taylor’s model calls are needed for an updating using the 
adjacent domain. A significant reduction of the computation time can then be obtained. 

Finally, the computed stresses for the 17 different cases for each velocity gradient are 
compared together. The comparisons can be summarised in the following points: 

• The most important and the most frequent errors can be noticed with the use of the 
plastic predictor of MIPAY3. For tensile tests, as shown in [5], this method has 
given good results in term of accuracy and computation time. On the contrary, for 
more complex velocity gradients, the plastic predictor is not so good. 

• The influence of the size of the interpolation domain is not as high as expected. 
This is due to the maximum size of the domain: 10° which is a quite reasonable 
value. Larger values would imply a larger influence. 

E Tensile test of a holed sheet 

The validation presented here is a tensile test on a rectangular steel sheet with a hole in 
its centre. The holed sheet is represented by 766 finite elements; the chosen elements are 8-
nodes bricks with a mixed formulation. 

Five simulations are presented: the law MINTY3 with domains of 5°, 20° and 40° is 
used; The hyperplane model with 5° domains is also investigated. As a comparison mean, the 
law ANI3VH with a global yield locus approach based on the same texture is used. 

The computation time are summarised in Table  4. 
 

Constitutive 
law 

MINTY3 (5°) MINTY3 
(20°) 

MINTY3 
(40°) 

ANI3VH MIPAY3 (5°) 

Computation 
time  
(hour:min:sec.
1/100 sec) 

8:54:32.55 3:11:31.29 2:01:55.29 1:08:30.91 Over than 40 
hours! 

Table  4: Computation time for the holed sheet tensile test 

Remarks: 
• The same computer has been used for the simulations with MINTY3 and 

ANI3VH; the simulation with MIPAY3 has been achieved on several computers 
(the exact computation time is then not significant). 

• For the law ANI3VH, the simulation has been stopped for a lower imposed 
displacement (6.18 instead of 8 mm of tensile stretching) due to convergence 
problems. 

 
Here again, the size of the interpolation domain has an important influence on the 

computation time. Indeed, a ratio higher than 4 is observed between the cases 5° and 40° for 
MINTY3. The size of 1° has not been investigated due to prohibitive expected CPU time. 
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In spite of the fact that the simulation was not completely finished, the law ANI3VH 
seems slightly faster than MINTY3. This is related to the fact that the Taylor’s model is not 
called during the finite element simulation for a global yield locus approach. 

 
Beside computation time, the most significant result is the tensile force applied on the 

steel sheet as a function of the imposed displacement of the edge of the sheet. This graph for 
the five simulations is presented in Figure 10. 

From this graph, it appears that the results obtained with the law MINTY3 with the 
size of the interpolation domain equal to 5° are superimposed to the results from ANI3VH. 
The interpolation method with a reasonable domain size is then validated with respect to a 
global yield locus approach. 

For larger domains (20° and 40°), some small differences can be noticed on the value 
of the maximum of the tensile force. Before and after that maximum, the results are more or 
less the same whatever the size of the domain is. The value of the maximum is indeed a very 
critical variable. 

For the law MIPAY3, the results are a little bit different at the maximum and also after 
the maximum. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Tensile force applied on the holed steel sheet. 
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Conclusions 

To represent locally the yield locus, regular domains in the strain rate space and non-
regular ones in the deviatoric stress space have been defined; their size is linked to the user 
parameter ϑ. 

Two interesting coordinate systems have been defined. These coordinates fulfil the 
following properties: 

• They can easily identify the frontiers of the current domain, 
• They are equivalent to the knowledge of the direction of the stress vector from 

which they are computed, 
• Their use permits to separate the direction and the amplitude of the studied vector; 

amplitude and direction can then be separately interpolated. 
 
The yield locus is defined inside a domain by an interpolation method or a yield locus 

function. As presented in Chapter IIC and Chapter IID, these two approaches are equivalent. 
However, interpolation methods are based on a local definition while a yield locus function is 
more adapted for large yield locus domains, and also for the whole yield locus. Higher order 
interpolations with a larger number of parameters have also been looked at. However, small 
linear interpolation domains were expected to be more satisfactory. 

 
Indeed, the four validation tests described in Chapter IV have compared the law 

MINTY3 to the other laws: MIPAY3 using hyperplanes for the interpolation and ANI3VH 
using a global yield locus approach.  

The results are quite good and the computation time are reasonable for a constitutive 
law based on the Taylor’s model. A good convergence has always been noticed, even with the 
analytical tangent matrix. This is certainly a consequence of the sub-interval per sub-interval 
computation of the matrix and also to the continuity of the resulting yield locus thanks to the 
stress-strain interpolation method. 

 
The first interpolation method that was implemented uses a planar formulation. 

Unfortunately, it has appeared that hyperplanes can not accurately represent a convex yield 
locus unless they are numerous and therefore of small size. This has been pointed out on a 
simple tensile simulation (see Ref. [5]). In order to improve the hyperplane model, three radial 
return methods have successively been investigated. For the tensile test of [5], the third 
method with a plastic predictor was well adapted; however, for a more complex simulation, as 
it was shown in Chapter IVD, the plastic predictor yields inaccurate results. 

 
The considerations brought out in this work show that a particular attention must be 

paid to the implementation of a local yield locus description in a finite element code. Our first 
model using hyperplanes was indeed not efficient. The continuity of the yield locus and of the 
normals are two critical points for the convergence of a finite element simulation. Although 
the stress-strain interpolation method requires more computation time than a global yield 
locus approach, it produces interesting results. This is a consequence of an improved 
theoretical formulation. 

 
It should be noticed that two user parameters have a very important influence on the 

accuracy and the computation time of the interpolation method. The first one is the number of 
crystallographic orientations included in the representative set. According to [6], a 
representative set containing 2000 crystals yields to good results. The second important 
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parameter is the size of the interpolation domain; this parameter was investigated in Chapter 
IV. For both parameters, a compromise between accuracy and computation time must be 
done. 

 
Finally, the goal of the local yield locus approach is the implementation of the texture 

updating. Larger computation time compared to a global yield locus approach is the price to 
pay to be able to integrate simultaneous and interacting texture evolution and finite element 
simulation. 

 
Beside the validation presented in this work, some more complex finite element 

simulations will be investigated for the Ph. D. thesis. These new validations are: 
• Deep-drawing of a cylindrical cup. Finite element results using the MINTY3 law 

will be compared to experimental results. 
• Deep-drawing of a hemispherical cup. This validation is a NUMISHEET’99 and 

ESAFORM’01 benchmark. Several experimental and numerical results will then 
be available for the validation. 

• Computation of Forming Limit Diagrams (FLD) will also be investigated. 
 
The Ph. D. thesis will also include some improvements of the model: the development 

of an optimisation method for the texture updating is still in progress. 
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