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Recognizing that we have the kind of blood we have  
because we have the kind of kidneys we have, 

we must acknowledge that our kidneys constitute  
the major foundation of our philosophical freedom. 

 
Only because they work the way they do  

has it become possible for us to have bones, muscles, glands and brains.  
Superficially, it might be said that the function of the kidney is to make urine; 

 but in a more considered view one can say that  
the kidneys make the stuff of philosophy itself. 

 
Homer W. Smith 

Boston, 1953 
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CHAPTER I. INTRODUCTION 
 

The kidney serves essential functions in water, electrolyte, acid-base, and organic 

solute homeostasis by ultrafiltrating blood and producing urine. Likewise, the kidney 

removes metabolic products and exogenous toxins from the body, and excretes them 

into the urine. In addition, specialized renal cells are involved in hormone production, 

thereby participating in calcium metabolism, erythrogenesis, and blood pressure 

regulation. The functional unit of the kidney is the nephron consisting of a glomerulus 

responsible for blood ultrafiltration, and a tubule organized into structurally and 

functionally distinct epithelial segments. In this thesis, we address the role of chloride 

transporters and vacuolar proton-ATPase (V-ATPase) in the developing and mature 

tubule, and more specifically in the proximal tubule (PT) cells and the intercalated 

cells (IC) of the collecting duct (CD). 

The general structure and main functions of the PT are summarized in Section 1, 

with a particular emphasis on the reabsorption of filtered low-molecular-weight 

(LMW) proteins. This function is ensured by the receptor-mediated endocytic pathway 

and plays a central role in hormone and vitamin homeostasis, as well as in the salvage 

of amino acids. The Section 2 outlines the distribution and functional properties of the 

IC, as well as their crucial role in acid-base homeostasis. 

The importance of Cl- and H+ transporters in the physiology of both PT cells and 

IC is highlighted by the severe phenotype observed in inherited and acquired human 

diseases affecting these proteins. The Section 3 details the pathophysiology of two 
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“chloride channelopathies” further investigated in this project, i.e. Dent’s disease 

(defect of the Cl- transporter ClC-5) and cystic fibrosis (defect of the Cl- channel 

CFTR). The attention is especially drawn on the mouse models available to further 

investigate these disorders.  

The last part of the introduction addresses the embryonic development of the 

kidney. Consistent observations of early PT dysfunction and acid-base disorders in 

infants with mutations of genes encoding Cl- and H+ transporters support that the 

tubular maturation is essentially achieved around birth and during early infancy. 

Additional clinical and experimental evidences for such functional differentiation of 

kidney tubules during organogenesis are presented and discussed in Section 4. 

The co-distribution of Cl- and H+ transporters in specialized cells along the 

nephron supports mutual interactions between these proteins, as well as their implication 

in various physiological processes disrupted in human diseases and animal models.  

 

1. The proximal tubule 
 

1.1. Anatomy and ultrastructure 

Each kidney consists of 700,000 to 1,200,000 nephrons in man, and about 10,000 
to 20,000 nephrons in mouse. Nephrons in the mammalian kidney can be classified 
according to the position of their glomerulus in the cortex (superficial, midcortical, or 
juxta-medullary) or according to the length (short or long) of their loop of Henle. The 
loop of Henle consists of the straight part of the PT, the descending thin limb, the 
ascending and thick ascending limb (Figure 1.1). Most superficial nephrons have short 
loops that bend within the outer medulla, whereas the loops of juxta-medullary 
nephrons extend to the inner medulla. However, all three types of glomeruli may be 
associated with short as well as long loops. The ratio of short to long loops is about 
85:15 in man, 82:18 in mouse, 70:30 in rat, and 34:66 in rabbit, which reflects species 
differences in urine-concentrating mechanisms (Zhai, 2006). Such structural 
organization of the distinct segments of the nephron in the cortex and the medulla has 
important implications in understanding the mechanisms of renal function. Two 
architectural zones can particularly be distinguished in the mammalian cortex: the 
cortical labyrinth and the medullary rays (Figure 1.1). The medullary rays extend from 
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the outer stripe of the outer medulla and are regularly located between the larger tracts 
of the cortical labyrinth. The glomeruli, proximal and distal convoluted tubules, 
connecting tubules, initial CD, and most of the vascular network, are located within 
the cortical labyrinth, whereas the medullary rays carry the straight segments of 
proximal and distal tubules, the cortical CD, and associated capillaries. Within 
medullary rays, the straight tubules from the most superficial nephrons are arranged as 
central bundles which are surrounded by tubules originating in the deeper cortex. This 
illustrates the morphologic and likely also functional heterogeneity of the different 
zones of the renal cortex. 

 

 
Figure 1.1. Anatomy of the nephron 
 

The nephron represents the structural and functional unit of the kidney, and consists of a 
glomerulus and a tubule organized into distinct segments. The first segments of the tubule 
are the proximal convoluted tubule, further subdivided into S1 and S2, and the proximal 
straight tubule, S3. The loop of Henle includes the descending thin limb, the ascending 
thin limb, and the thick ascending limb (alias the distal straight tubule). The distal 
convoluted tubule continues into the connecting tubule (CNT). The CNT leads further into 
the cortical, outer medullary, and inner medullary collecting duct that joins the duct of 
Bellini. 
 

Adapted from Kriz, 1988 
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The PT begins at the urinary pole of the glomerulus as a continuation of the 

parietal epithelium of the Bowman space (Figure 1.1). The PT is approximately 14 

mm long in man, and between 8 to 10 mm in rodents. At low magnification, the PT 

can be divided into a convoluted part (proximal convoluted tubule, PCT) and a straight 

part (proximal straight part, PST). Furthermore, ultrastructural examinations 

distinguish three morphologically distinct consecutive segments: S1, S2, and S3. The 

S1 and S2 segments cover respectively the first and the second portions of the PCT 

located in the cortical labyrinth, whereas the S3 segment corresponds to the PST and 

runs in the medullary rays and the outer stripe of the outer medulla. At the junction of 

the outer and inner stripes of the outer medulla, the straight segments of PT end 

abruptly, and give rise to the descending thin limbs of the loops of Henle. Note that 

this segmental variation in the ultrastructure of the PT is not as clear in mouse as in rat 

and human kidney (Zhai, 2003). 

The epithelial cells lining the PT are characterized by highly specialized apical 

and basolateral membrane domains (Figure 1.2). The luminal membrane shows a 

typical sensory primary cilium and long densely packed microvilli forming a “brush 

border” system. This enlargement of the apical surface area correlates with the main 

role of the PT, i.e. the reabsorption of the bulk of the ultrafiltrate. On the other side, 

the basolateral membrane shows numerous invaginations and interdigitations between 

adjacent cells. This rearrangement generates an extensive intercellular space that is 

separated from the tubular lumen by the tight junctions or zonula occludens and 

delimited from the interstitium by the basement membrane. In strong contrast with 

those found in the distal nephron, the structure of PT tight junctions is typical of 

“leaky epithelia”, which favours a number of paracellular transport mechanisms. In 

addition, PT cells are characterized by numerous mitochondria, a well-developed 

endocytic/lysosomal system, as well as a prominent Golgi apparatus responsible for 

protein synthesis, sorting and targeting. Cell complexity progressively declines from 

S1 to S3 segments, correlating with a gradual decrease of reabsorptive rates along the 

PT. Of note, differences in the volume density of lysosomes and large endosomes have 

been reported between man, rabbit, rat, and mouse, and may be related to species-
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dependent variations in the glomerular filtration of macromolecules and the 

reabsorptive and degradative capacity of the endocytic apparatus in the PT (Zhai, 

2003). 

 

 
Figure 1.2. Electron microscopy of mouse PT cell 
 

The ultrastructural morphology of PT epithelial cells includes a well-developed brush 
border and endosomal apparatus, numerous mitochondria, and a thin basement 
membrane (A). Higher magnification illustrates a tall and well-differentiated brush border 
(B), and numerous apical endosomes demonstrated here by peroxidase cytochemistry 
upon injection of horseradish peroxidase (C). PT cells are connected to each other by 
apical intercellular junctions (D, arrowheads).  
Bars in (A), 5 μm; (B), 1 μm; (C), 0.5 μm; (D), 0.8 μm. 
 

Courtesy of P.J. Courtoy and P. Van der Smissen 

 
1.2. Main functions 

The epithelial cells lining the PT are highly specialized to reabsorb the 
ultrafiltrate, including approximately two-thirds of the filtered salt and water and all 
filtered organic solutes (primarily glucose and amino acids). The solutes are absorbed 
isotonically, in that the osmotic potential of the fluid leaving the proximal tubule is the 
same as that of the initial glomerular filtrate. This is mainly ensured by the transport of 
Na+ from the lumen into the blood driven by the Na+/K+-ATPase located at the 
basolateral side of PT cells, which in turn allows the reabsorption of glucose, amino 
acids, and inorganic phosphate via secondary active transport through apical 
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Na+/solute co-transporters (Féraille, 2001). The uptake of albumin and LMW proteins 
is achieved by receptor-mediated endocytosis in the first PT segments (Birn, 2006). 
Such PT endocytic activity also prevents the urinary loss of essential hormones and 
vitamins like parathyroid hormone (PTH), vitamin D, retinol, vitamin B12, and folates, 
and participates in their processing, i.e. degradation, storage or activation and release 
into the bloodstream. In addition, PT cells are involved in the regulation of acid-base 
balance by reabsorbing the bulk of filtered HCO3

- and secreting NH4
+. This nephron 

segment also reabsorbs divalent ions, such as Ca2+, HPO4
2-, and SO4

2-. Finally, several 
organic anion and cation transporters, mostly distributed along the S3 PT, actively 
secrete a variety of substances, including drugs and metabolites, from the blood into 
the urine (Wright, 2004).  
 

1.3. Receptor-mediated endocytosis 

A significant amount of albumin and plasma LMW proteins are filtered daily 
through the glomerulus and avidly reabsorbed in S1 and S2 segments of the PCT, as 
well as in the straight part S3 (Birn, 2006). As an example, albumin concentration in 
the renal ultrafiltrate has been estimated in the range of 22-32 mg/liter, which 
corresponds to a daily filtered load of albumin of 3300-5760 mg, but less than 1% of 
filtered albumin is excreted in the final urine (Gekle, 2005). By definition, LMW 

proteins are characterized by a molecular weight below that of albumin (∼69kDa). 
They include hormones (PTH, insulin, growth hormone), carrier or storage proteins 
(retinol-, vitamin D- and folate-binding proteins), enzymes (cytochrome C, lysozyme), 

cell surface antigen components (β2-microglobulin), immunoglobulin light chains, and 

other proteins (cystatin C, Clara cell CC16 protein, and α1-microglobulin). Most of 
their filtered load is reabsorbed and catabolized by PT cells, and the human urine is 
virtually devoid of plasma proteins under physiological conditions. Such massive 
uptake of proteins accounts for as much as 80% of the total metabolic clearance of 
small proteins and peptides, and plays a key role in hormone and vitamin homeostasis. 
Of note, the fraction of reabsorbed albumin compared to the filtered load is smaller in 
rodents with relatively short PT than in larger species with longer PT. 

This protein uptake mainly involves receptor-mediated (or adsorptive) 
endocytosis, while fluid-phase capture can be regarded as quantitatively negligible in 
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the PT. During receptor-mediated endocytosis, substances are concentrated at the cell 
membrane, and the concentration in the endocytic invagination exceeds the 
concentration in the extracellular space several fold. The mechanisms underlying 
receptor-mediated endocytosis can be roughly subdivided into three types with respect 
to vesicle formation: (i) endocytosis via clathrin-coated pits; (ii) caveolae-mediated 
endocytosis; and (iii) clathrin- and caveolae-independent endocytosis (for a detailed 
review, see Conner, 2003). Clathrin-mediated endocytosis represents the predominant 
pathway for protein uptake across the apical membrane of PT cells. The apical 
endocytic pathway of PT cells consists of five main interrelated compartments: (i) 
microvilli and clathrin-coated pits, (ii) early endosomes, (iii) dense apical tubules 
responsible for apical recycling, (iv) late endosomes, and (v) lysosomes (Figure 1.3).  

 

 
Figure 1.3. Organization of the endocytic apparatus in PT cell 
 

The complex ligand-receptor forms at the apical brush border of PT cells, is internalized 
into coated vesicle, and transferred to the endosomal network. Progression along the 
endocytic pathway depends on the acidification of the intravesicular lumen, as well as on 
the actin cytoskeleton and the microtubules. Ligand-receptor complexes dissociate in early 
endosomes, with further recycling of the receptor through the DAT network and transfer of 
the ligand to lysosomes for degradation or storage. In each organelle lumen, the upper and 
lower figures represent pH and [Cl-] concentration (mM) values, respectively.  
Modified from Faundez, 2004. 
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Two multiligand receptors, megalin and cubilin, are abundantly expressed at the 
brush border of PT cells (Christensen, 2002a). Ligand binding and interactions 
between both receptors induce their internalization into coated vesicles and their 
subsequent delivery to endosomes and lysosomes for ligand processing and receptor 
degradation or recycling. Pharmacological studies have shown that receptor-mediated 
endocytosis of albumin depends on the integrity of the actin cytoskeleton (stabilization 
of the microvilli), as well as on the microtubules (acceleration of vesicle movement 
from the plasma membrane to the endocytic network) (Gekle, 1997). In addition, the 
endocytic process is dependent on a progressive acidification from early to late 
endosomes and finally to lysosomes (Shi, 1991; Faundez, 2004). Indeed, the drop in 
pH in the successive endocytic compartments triggers receptor-ligand dissociation and 
modulates vesicle trafficking, endosomal fusion events, and coat formation. In PT 
cells, the endosomal acidification is driven by the electrogenic V-ATPase (Figure 1.4), 
whose inhibition by pharmacological agents like bafilomycin A-1 or toxic agents like 
the heavy metal cadmium, has been demonstrated to severely impair the uptake of 
albumin and LMW proteins in vitro and in vivo (Wang, 2005; Herak-Kramberger, 
1998). The translocation of H+ from the cytoplasm into the endosomes generates a 

transmembrane electrical potential (ΔΨ), resulting in a rapid inhibition of V-ATPase 
activity. Thus, in order to limit the formation of an endosomal-positive membrane 
potential, either negative charge carriers have to concurrently enter vesicles or positive 
charge carriers have to leave. In most cases, the acidification of intracellular vesicles is 
dependent on a parallel Cl- conductance that provides the electrical shunt necessary to 
neutralize the H+ electrical gradient (Jentsch, 2002). Furthermore, the intravesicular Cl- 
concentration itself could directly affect the activity of the V-ATPase (Moriyama, 
1987), as well as the vesicle recycling, independently of its effect on pH (Faundez, 
2004). Of note, the involvement of Na+/H+-exchanger isoform 3 (NHE-3) in 
endosomal acidification has been recently demonstrated in PT cells (Wang, 2005). 
Most likely, NHE-3 participates in the acidification of early endosomes, in which there 
is a sufficient Na+ outward gradient (vesicle-to-cytosol) to drive NHE-3 in the 
appropriate direction. Indeed, pharmacological inhibition of NHE-3 in vitro disturbs 
the early vesicular acidification and retards albumin endocytosis. Moreover, genetic 
inactivation of NHE-3 in mice leads to significant tubular proteinuria (Gekle, 2005). 
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Figure 1.4. Partners of the endosomal acidification 
 

The endosomal acidification is achieved by ATP-driven transport of cytosolic H+ through 
the V-ATPase. The positive electrical gradient (ΔΨ) is dissipated by cation (H+, K+) 
leakage, as well as by parallel Cl- permeability through ClC-5 and most likely other anion 
transporters. Two recent studies have demonstrated that ClC-5 acts as voltage-dependent 
Cl-/H+ exchanger (Picollo, 2005; Scheel, 2005). The electro-neutral Na+/H+ exchanger 
NHE3 also participates in endosomal pH regulation (Wang, 2005). 

 
1.3.1. Megalin 

Megalin is a multiligand endocytic receptor belonging to the low-density 

lipoprotein (LDL) receptor family, which was originally identified in rat glomerular 

podocytes as the antigen in Heymann membranous glomerulonephritis (Kerjaschki, 

1982-83).  

 

Megalin co-distributes with cubilin in many absorptive epithelia, like the small 

intestine, the renal PT, the visceral yolk sac and the placenta (Christensen, 2002a). In 

addition, megalin has been identified in the choroid plexus, endometrium, epididymis, 

lung, inner ear, parathyroid and thyroid glands. The subcellular distribution of megalin 
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in rodent and human kidney includes the brush border and the apical endocytic 

apparatus, as well as lysosomal structures, of PT cells (Chatelet, 1986; Christensen, 

1995). Megalin has been shown to rapidly recycle between apical clathrin-coated pits 

and early and late endosomes, with delivery of luminal ligands to lysosomes for 

hormone and vitamin homeostasis and amino acid recovery (Christensen, 1998; Nagai, 

2003). The normal expression of megalin is finely regulated by its interaction with the 

chaperone RAP (receptor-associated protein, 45 kDa) in the endoplasmic reticulum 

(ER), which protects freshly synthesized megalin from the premature binding of 

ligands and its subsequent degradation (Birn, 2000). In addition, RAP may be involved 

in the correct folding of megalin (Bu, 1996). 

 

The structure of megalin is characterized by a large extracellular domain, a single 

transmembrane domain, and a short cytoplasmic tail harbouring two NPxY motifs 

necessary for the clustering into clathrin-coated pits (Takeda, 2003) (Figure 1.5). In 

addition to NPxY motifs, the C-terminal tail of megalin contains distinct targeting 

sequences, such as a related VENQNY motif involved in apical sorting and several Src 

homology 3 and 2 recognition sites likely implicated in signal transduction (Hjalm, 

1996). The extracellular domain is made of four clusters of cysteine-rich complement-

type/LDL-receptor type A repeats forming the ligand binding regions. These domains 

are separated by a total of 17 epidermal growth factor (EGF)-type repeats and eight 

spacer regions containing YWTD sequences. Ligand binding to megalin is considered 

as Ca++-dependent and favored by cationic sites on the ligands (Christensen, 1992; 

Moestrup, 1995).  

 

The role of megalin in kidney PT cells has been suggested by the investigations 

of megalin-deficient mouse models (Willnow, 1996; Leheste, 2003). The absence of 

megalin does not affect the overall architecture of the epithelial PT cells and no 

changes in glucose, electrolyte and amino acid transports have been reported in 

megalin knockout (KO) mice. In strong contrast, the loss of megalin causes a 

significant reduction in the number of coated pits, endosomes, and lysosomes in PT  
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Figure 1.5. Structure of megalin, cubilin and amnionless 
 

Megalin is a 4600-amino-acid transmembrane protein. The extracellular domain contains four 
cysteine-rich clusters of LDL receptor-type A repeats constituting the ligand binding regions 
separated and followed by a total of 17 EGF-type repeats and eight spacer regions containing 
YWTD repeats. The cytoplasmic C-terminal tail contains two NPXY sequences and one 
VENQNY sequence responsible for apical sorting. 
 

Cubilin is a 3600-amino-acid protein with no transmembrane domain. The extracellular domain 
contains 27 CUB domains where interactions with multiple ligands take place. The CUB 
domains are preceded by a stretch of 106 amino acids followed by eight EGF-type repeats. The 
amino-terminal region contains a potential palmitoylation site and an amphipathic helix structure 
with some similarity to the lipid binding regions of apolipoproteins. 
 

Amnionless (AMN) is a 434-amino-acid single-transmembrane protein, with no known, closely 
related proteins. The extracellular domain includes a cysteine-rich stretch of 70 amino acids that 
shares similarities with modules present in bone morphogenic protein (BMP) inhibitors. The 
cytoplasmic domain exhibits 2 highly conserved FXNPXF sequences implicated in ligand-
independent internalization via clathrin-coated pits.  
 

Redrawn from Birn, 2006 
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Table 1.1. Ligands for megalin and cubilin 
 

  

Megalin Cubilin 
  

Vitamin carrier proteins 
transcobalamin II-vitamin B12 intrinsic factor-vitamin B12 
vitamin D-binding protein, vitamin D vitamin D-binding protein, vitamin D 
retinol-binding protein  
folate-binding protein  
sex hormones-binding globulin  

Other carrier proteins 
albumin albumin 
hemoglobin, myoglobin hemoglobin, myoglobin 
lactoferrin transferrin 
odorant-binding protein  
transthyretin  

Lipid binding proteins 
apolipoproteins B, E, J, H, M apolipoprotein A1 
 high-density lipoprotein 

Hormones, hormone precursors, and signaling proteins 
parathyroid hormone  
insulin  
epidermal growth factor  
prolactin  
thyroglobin  
angiotensin II  
leptin  

Enzymes and enzyme-inhibitors 
plasminogen  
plasminogen activator inhibitor-type 1  
plasminogen activator inhibitor-type 1-urokinase  
plasminogen activator inhibitor-type 1-tissue 
plasminogen activator 

 

pro-urokinase  
lipoprotein lipase  
α-amylase  
α1-microglobulin  
cystatin  
lysozyme  

Immune- and stress-response related proteins 
immunoglobulin light chains immunoglobulin light chains 
pancreatitis-associated protein 1 Clara cell secretory protein 
advanced glycation end products  
β2-microglobulin  

Receptors and transmembrane proteins 
cubilin megalin 
heavy metallothionein Amnionless 

Drugs and toxics 
aminoglycosides, polymyxin B  
aprotinin, trichosantin  
somatostatin analogues  

Others 
receptor-associated protein receptor-associated protein 
Ca++  
cytochrom C  
 

Adapted from Christensen, 2002a 
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cells, resulting in impaired uptake of filtered LMW proteins (Leheste, 1999). Similar 

defects are observed in patients with inherited or acquired PT dysfunction. Moreover, 

numerous diseases with tubular proteinuria, including Dent’s disease (see section 

3.1.1.), have been associated with decreased urinary excretion of megalin itself 

(Norden, 2002). These clinical observations reflect the defective recycling of megalin 

to PT brush border, with subsequent impaired receptor-mediated reabsorption of 

urinary ligands (Christensen, 2003). Significant progress has been made in the 

identification of ligands that can interact with megalin (Christensen, 2002a). These 

include LMW plasma proteins, peptide hormones, vitamin-binding carriers, 

apolipoproteins, enzymes, Ca++, and polybasic drugs such as aminoglycosides (Table 

1.1). Although the affinity of megalin ligands varies from high to rather low, the 

abundant expression of megalin (and cubilin) receptors at PT brush border is regarded 

as a high-capacity system in constant and fast recycling that ensures the constitutive 

reabsorption of most filtered LMW proteins. Thus, megalin appears to play a key role 

in the homeostasis of distinct classes of molecules, ranging from ions to lipid carriers, 

hormones and vitamins.  

 

1.3.2. Cubilin 

Cubilin, also known as the intestinal intrinsic factor (IF)-B12 receptor, is a 

multiligand endocytic receptor that was originally identified as the target of 

teratogenic antibodies in rats (Brent, 1961).  

 

Cubilin co-distributes with megalin in numerous absorptive epithelia, as 

mentioned above. In PT cells, cubilin has been located at the brush border and along 

the endocytic apparatus, including the coated pits, the endosomes and the dense apical 

tubule network that provides for the recycling of apical membrane and receptors 

(Christensen, 1998). Smaller amounts of cubilin have been also detected in lysosomal 

structures (Seetharam, 1997). The normal subcellular distribution of cubilin depends 

on its reciprocal interaction with the transmembrane protein amnionless (AMN, 45 

kDa) identified as a key factor for mouse gastrulation (Figure 1.5) (Kalantry, 2001). 
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First AMN binds the EGF-type domains of cubilin, ensuring membrane attachment 

and export of the compound from the ER. The apical sorting of the cubilin-AMN 

(cubam) complex is then dependent on the correct glycosylation of cubilin 

extracellular domains. Cubam complexes are finally directed from the ER to the 

plasma membrane, where they participate in receptor-mediated endocytosis (Coudroy, 

2005). Cubilin contributes ligand-binding regions of cubam complexes, whereas AMN 

ensures the membrane anchorage, biosynthetic processing, and recycling of the 

complexes at the plasma membrane (Fyfe, 2004). Indeed, defective apical insertion of 

cubilin has been reported in dogs with a mutation in AMN gene and in AMN-deficient 

mouse epithelial cells (He, 2005; Strope, 2004). Of note, although RAP has been 

demonstrated to bind cubilin, its role in cubilin processing and trafficking remains 

debated (Birn, 1997). 

 

Cubilin is a highly conserved membrane glycoprotein of 460 kDa that contains 

13-14% carbohydrates. Its structure consists of a N-terminal membrane anchoring 

domain followed by eight EGF-like repeats and 27 CUB domains, which encompass 

complement sub-components C1r/C1s, Uegf (EGF-related sea urchin protein), and 

bone morphogenic protein-1 domains (Figure 1.5) (Bork, 1993). CUB domains are 

frequently found in developmental proteins and are known for their ability to bind a 

variety of ligands. Interestingly, cubilin contains a cleavable signal sequence that 

allows the polypeptide chain to enter the ER, but it lacks a transmembrane domain or a 

glycosylphosphatidylinositol anchor. Its membrane association may involve a putative 

amphipathic helix as well as palmitoylation and myristoylation (Kristiansen, 1999). 

Recent biochemical and immunomorphological data support that AMN is essential not 

only for the trafficking and membrane anchoring of cubilin, but also for its 

internalization (Fyfe, 2004). In addition, high-affinity binding of purified megalin to 

cubilin N-terminal region (CUB domains 1 and 2) has been reported in vitro, 

suggesting that megalin also participates in the endocytosis and intracellular 

trafficking of cubam complexes (Moestrup, 1998). 

 

14



CHAPTER I 
 

The role of cubilin in PT function has been suggested by the investigations of an 

inbred strain of dogs with inherited intestinal cobalamin malabsorption due to a 

defective intracellular processing of cubilin, likely caused by the functional loss of 

AMN (Fyfe, 1991; He, 2003). These dogs have LMW proteinuria in addition to 

megaloblastic anaemia. Likewise, loss-of-function mutations in CUBN or AMN genes 

have been found in patients with Imerslund–Gräsbeck disease (also known as juvenile 

megaloblastic anemia, OMIM #261100), a rare autosomal recessive disorder 

characterized by selective intestinal malabsorption of vitamin B12 (Aminoff, 1999; 

Tanner, 2003). Most patients show an increased urinary excretion of LMW proteins, 

indicating a role of cubilin and AMN in protein reabsorption by PT cells. The variable 

severity of tubular proteinuria may reflect the functional consequences of CUBN 

mutations on its multiligand properties or only on its IF-B12 binding site. These 

observations indicating a role of cubilin in the renal handling of LMW proteins are 

further supported by the investigation of the Clcn5 KO mouse model of Dent’s 

disease. Indeed the absence of ClC-5 leads to impaired trafficking and enhanced 

degradation of cubilin (and megalin) in PT cells, resulting in the urinary loss of their 

ligands (Christensen, 2003). Of note, no mouse model deficient in cubilin has been 

reported so far. Genetic inactivation of cubilin in mice would probably lead to early 

embryonic lethality, as suggested by the role of cubilin in yolk-sac function and the 

severe fœtal malformations observed in rodents after the injection of anti-cubilin 

antibodies (Sahali, 1988). However, this limitation might be practically overcome in 

the near future by strategies based on conditional inactivation (e.g. Cre recombinase) 

of the Cubn gene in the kidney, similarly to what has been successfully achieved for 

the megalin gene (Leheste, 2003). 

The comparison between megalin- and cubilin-ligands reveals that both receptors 

participate in the uptake of common peptides, such as albumin, hemoglobin, DBP, 

apolipoproteins, and immunoglobulin light chains (Table 1.1). In addition, cubilin-

specific ligands have been identified and include the IF-vitamin B12, transferrin, 

apolipoprotein A-I, and Clara cell protein CC16. However, the in vitro uptake of these 

cubilin-specific ligands is inhibited by anti-megalin antibodies, as well as by megalin 
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antisense oligonucleotides (Birn, 2006). Conversely, the urinary excretion of megalin-

specific ligands, such as α1- and β2-microglobulin, is increased in genetically well-

defined patients with mutations in CUBN (Wahlstedt-Fröberg, 2003). These 

observations further support the functional interaction between cubilin and megalin 

necessary to its internalization and intracellular trafficking. 

 

1.3.3. The V-ATPase 

The V-ATPase is a ubiquitous multisubunit complex responsible for ATP-driven 

transport of H+ across membranes (Nishi, 2002; Wagner, 2004). The V-ATPase 

belongs to the super-family of ATPases that is subdivided into three subgroups: (1) P-

type ATPases, such as Na+/K+-ATPase, Ca++-ATPases and H+/K+-ATPase; 

(2) mitochondrial F1F0-ATPase; and (3) V-type ATPase 

(http://www.gene.ucl.ac.uk/nomenclature/). The latter two sub-classes share many 

structural homologies, such as subunit composition and organization, although they 

function in an opposite way (Gruber, 2001). The mitochondrial F1F0-ATPase 

consumes H+ gradients for ATP synthesis, whereas the V-ATPase uses ATP 

hydrolysis to generate pH gradient. Accordingly, structure and function of the V-

ATPase have been mostly established from data obtained from either the F1F0-ATPase 

or the yeast vacuolar H+-ATPase (Nelson, 1999).  

 

The distribution of the V-ATPase includes a variety of intracellular 

compartments, such as endosomes, the Golgi/TGN apparatus, and lysosomes (Nelson, 

1999). The function of these organelles depends on acidic intravesicular pH to 

maintain optimal enzyme activity. In the kidney, the V-ATPase is particularly found in 

the submicrovillar area of PT cells (Breton, 2000), where it ensures vesicular 

acidification along the endocytic pathway (Marshansky, 2002). Besides its 

intracellular distribution, the V-ATPase has also been located at the plasma membrane 

of specialized cells, where it mediates H+ extrusion from the cell (Wagner, 2004). For 

example, osteoclasts and macrophages acidify their immediate environment to dissolve 

bone matrix and digest neighboring cells or pathogens, respectively. The epithelial 
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cells lining the inner ear and the epididymis regulate finely the extracellular pH of 

closed compartments. In the kidney, the V-ATPase is present at the surface of two cell 

types involved in urine acidification, i.e. PT cells and the IC of the CD (Giebisch, 

2003b). In PT cells, the V-ATPase has been located at the base and on the microvilli of 

the brush border, where it participates in the reabsorption of ~70-80% of filtered 

HCO3
- (Brown, 1988). The features of the V-ATPase present in the IC are detailed in 

section 2.3. 

 

 
Figure 1.6. Structure of the vacuolar H+-ATPase 
 

The transmembrane V0 domain of the mammalian V-ATPase is organized into a complex 
of [a(c)4-5c’’d], whereas the cytosolic V1 domain has a stoichiometry of [A3BB3CDEFG2H2]. 
The ubiquitous and the IC-specific alternate isoforms of V0 and V1 subunits are shaded. In 
the plasma membrane of murine IC, a4, d2, B1, C2, G3 substitute ubiquitous a1, d1, B2, 
C1 and G1, respectively. This model was modified from the yeast model to represent the 
mammalian V-ATPase complex. Note that the existence of the c’ subunit in mammals is 
uncertain (Smith, 2002). 
 

Adapted from Borthwick, 2002 

 

The structure of the V-ATPase includes at least 13 different subunits forming two 

functional domains, V0 and V1 (Figure 1.6) (Wagner, 2004; Wilkens, 2004). 

According to quantitative amino acid analysis and single molecule electron 

microscopy imaging, the transmembrane V0 domain contains five different subunits 
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organized into a [a(c)4-5c’’d] channel responsible for H+ translocation. The cytosolic 

V1 domain involves eight subunits with a stoichiometry of [A3BB3CDEFG2H2], even 

though the exact number of copies of each E and G per V-ATPase remains debated. 

The A and B subunits are organized in an alternating manner to form a pseudo-

hexagonal head-piece, which ensures ATP hydrolysis necessary for active H  

transport. The other V1 subunits form the “stalk” that connects A and B subunits to the 

V0 domain. Interestingly, it is thought that ATP binding to B and subsequent 

hydrolysis by A lead to a rotation of the “stalk” structure relative to A

+

3B3 domain, 

which may then induce the motion and the opening of the V0 channel (Nelson, 1999 ; 

Gruber, 2001). When located in the plasma membrane, the overall structure of V-

ATPase is very similar but specific isoforms of V0 and V1 subunits are present (Figure 

1.6) (Borthwick, 2002). These isoforms are encoded by distinct genes, with tissue-

specific expression patterns (see section 2.3.). 

 

The acidification of intracellular organelles along the endocytic pathway is a 

prerequisite for important processes in PT cells, such as ligand-receptor dissociation, 

receptor recycling and ligand degradation, storage, or intracellular targeting (Nelson, 

1999). The mechanism by which the endosomal pH regulates trafficking processes 

remains unclear and may involve the vesicular recruitment of specialized coat proteins 

(COP), such as β-COP and small GTPases (Arf1, Arf6) of the ADP-ribosylation factor 

(ARF) family (Zeusem, 1992; Gu, 2000). Recent studies have demonstrated that 

functional interactions between coat proteins and particular V-ATPase V0 subunits 

regulate protein trafficking between early and late endosomes, indicating a pivotal role 

of the V-ATPase along the endocytic and degradative pathway (Hurtado-Lorenzo, 

2006). Moreover, an endosomal pH-sensing machinery, not yet fully identified, has 

been suggested to initiate COP proteins recruitment in response to a V-ATPase-driven 

drop in luminal pH (Maranda, 2001).  

At the plasma membrane of PT cells, the electrogenic V-ATPase participates in 

acid-base homeostasis by extruding H+ from cytoplasm to lumen, in parallel with the 

18



CHAPTER I 
 

Na+/H+ exchanger NHE3 (Giebisch, 2003b). The secreted H+ combine with luminal 

HCO3
- under the influence of the membrane-bound carbonic anhydrase (CA) IV to 

form H2O and CO2. After diffusion into PT cell, CO2 is reversibly hydrated by the 

cytosolic CAII isozyme, thereby generating H+ for apical H+ extrusion and HCO3
- for 

basolateral exit via the co-transporter NBC1 (Figure 1.7). This process of HCO3
- 

reabsorption in the PT is intricately linked to Na+ and water homeostasis and thus 

finely modulated by hormones and metabolic status (Wagner, 1998). Thus, the V-

ATPase plays pivotal roles in PT functions at both intracellular and plasma membrane 

locations. The severe PT cellular dysfunction observed in case of in vitro or in vivo 

disruption of the V-ATPase further highlights the importance of this pump in this 

segment. 

 

 
Figure 1.7. Schematic model of HCO3

- reabsorption in PT cells 
 

Protons are secreted via the apical Na+/H+ exchanger NHE3 and the vacuolar H+-ATPase. 
The secreted H+ combine with filtered HCO3

- under the influence of a membrane-bound 
carbonic anhydrase (CAIV) to form H2O and CO2. After diffusion into PT cells, CO2 is re-
hydrated by the cytosolic CAII into H+ that are secreted back to PT lumen, and HCO3

- 
released into the interstitium via the basolateral Na+/HCO3

- co-transporter NBC1. 
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1.3.4. Lignac-de Toni-Debré-Fanconi syndrome 

The Lignac - de Toni - Debré - Fanconi syndrome (renal Fanconi syndrome) is 

characterized by a generalized defect in PT reabsorption of filtered solutes, such as 

glucose, phosphate, calcium, uric acid, amino acids, as well as LMW proteins. Clinical 

features can also include a metabolic acidosis (Type 2 renal tubular acidosis due to 

HCO3
- losses and impaired NH4

+ generation), rickets and growth retardation in 

children and osteomalacia in adults (reduced vitamin D synthesis), nephrolithiasis 

related to increased urinary Ca++ excretion, hypocitraturia and impaired urine 

acidification, and progressive renal failure. The renal Fanconi syndrome can be 

inherited or acquired.  

The list of acquired causes of renal Fanconi syndrome is largely heterogeneous 

and includes multiple myeloma, light chain deposition disease, and renal 

transplantation. In addition, various toxic compounds and drugs have been associated 

with PT defects, especially heavy metals (cadmium, uranium, lead and mercury), 

aminoglycoside antibiotics, as well as some anti-retroviral drugs (e.g. azidothymidine) 

and cytotoxics (e.g. ifosfamide, cisplatin). Most of these compounds affect the 

endocytic/lysosomal system and the mitochondrial function, which might explain their 

particular toxicity for the PT (Izzedine, 2003). 

Inherited forms of the renal Fanconi syndrome are rare (approximately 1/40,000 

births), transmitted as a recessive trait and mostly diagnosed during childhood (Table 

1.2). Of note, the prevalence of cystinosis (OMIM #219800), the most frequent 

congenital PT disorder, has wide ranging estimates (from 0.03-0.4 per 10,000 live 

births) depending on the population studied. The genetic deficiencies affect cellular 

energy metabolism, membrane trafficking, or ion and solute transports (Bergeron, 

1995). They include autosomal recessive disorders like cystinosis, tyrosinaemia, 

fructosaemia, galactosaemia, Type I glycogen storage disease, and cytochrome c 

oxidase deficiency; and X-linked recessive diseases like Dent’s disease and Lowe 

oculocerebrorenal syndrome.  
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Table 1.2. Inherited causes of renal Fanconi syndrome 

 
     

Disorder OMIM  Gene Protein  Inheritance
     
     

COX deficiency  #220110 MTC01-03 
MTTS1 
COX10 
SC01-02 

Cytochrome c oxidase 
  

AR 

     
     

Cystinosis  #219800 CTNS (17p13) Lysosomal cystine 
transporter   

AR 

     
     

Dent’s disease (1) #300009 CLCN5 (Xp11.22) H+/Cl- exchanger XR 
     
     

Dent’s disease (2) #300555 OCRL (Xq26.1) PIP2 5-phosphatase  XR 
     
     

Fanconi-Bickel 
syndrome 

#227810 GLUT2 (3q26.1-3) Glucose transporter 
GLUT2 

AR 

     
     

Fructosaemia   +229600 ALDOB (9q22.3) Fructose-bisphosphate 
aldolase B   

AR 

     
     

Galactosaemia  #230400 GALT (9p13)  Galactose 1-phosphate 
uridylyltransferase  

AR 

     
     

Imerslund-Gräsbeck 
disease 

#261100 CUBN (10p12.1) 
AMN (14q32) 

Cubilin 
Amnionless 

AR 

     
     

Lowe syndrome #309000 OCRL (Xq26.1) PIP2 5-phosphatase  XR 
     
     

Tyrosinaemia  +276700 FAH (15q23-25)  Fumarylacetoacetase  AR 
     
     

von Gierke disease +232200 G6PC (17q21) Glucose 6-
phosphatase   

AR 

     
     

Wilson disease  #277900 ATP7B (13q14.3-21.1)  Copper-transporting 
ATPase 2  

AR 

     

 
A “number” symbol (#) indicates that the phenotype is not linked to a unique locus, whereas 
a “plus” sign (+) means that the entry associates a gene with a phenotype (AR: autosomal 
recessive; XR: X-linked recessive). 
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2. The intercalated cells of the collecting duct 
 

2.1. Distribution and ultrastructure 

The CD system has three segments designated after their distribution in kidney 

cortex, outer medulla or inner medulla, and continues the distal tubule of the nephron 

(Figure 1.1). The adult CD is composed of principal and intercalated cells that exhibit 

striking morphological and functional differences (Giebisch, 2003a). Principal cells 

represent about two thirds of CD cell population and mediate salt and water 

reabsorption under hormonal influence. They have a light cytoplasm with relatively 

few organelles and sparse mitochondria scattered randomly in the cytoplasm. 

Typically, principal cells show prominent infoldings of the basal membrane, no lateral 

interdigitations, and a single central cilium on the apical surface. In contrast, the IC are 

involved in acid-base transport and are characterized by a more electron dense 

cytoplasm and numerous dark staining mitochondria (hence, their previous name “dark 

cells”). The IC are the only cells along the urinary system that do not exhibit a primary 

cilium.  

The IC can be further subdivided into two major groups, namely α- and β-type IC 

(Bastani, 1997). The existence of a non-α-non-β-type IC (also called γ-IC), which may 

represent an interconvertible state between α- and β-phenotypes, remains debated 

(Schwartz, 1985; Al-Awqati, 1996; Wagner, 2004). The α-type IC are present in all 

CD segments and have prominent apical micro-projections and typical tubulo-

vesicular structures beneath the apical surface, both coated with studs on the 

cytoplasmic face. In contrast, the β-type IC are most frequently found in the cortical 

CD and show a fairly smooth apical surface, a zone free of organelles beneath the 

apical membrane, and abundant cytoplasmic vesicles. This distinction between α- and 

β-type IC is not only structural, but also (and mostly) functional as discussed hereafter. 

 

2.2. Role in acid-base homeostasis 

Together with the lungs, the kidneys play an essential role in acid-base 

homeostasis by reabsorbing virtually all filtered HCO3
- and secreting H+ into the urine 

(Giebisch, 2003b). The bulk of filtered HCO3
- is taken up in the PT (and the thick 
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ascending limb, TAL), whereas the fine regulation of acid-base excretion and 

absorption occurs in the CD. The cortical CD either reabsorbs or secretes H+ and 

HCO3
-, while the outer medullary CD secretes only H+. The average diet in the 

“Western” world is rich in proteins and generates daily 1-1.5 mmol hydrogen/kg body 

weight. The net urinary acid excretion is therefore essential and urine pH can drop as 

low as 4.5. 

The IC are the main cells involved in acid-base transport along the CD. Both α- 

and β-type IC are characterized by high activity of cytosolic CAII (Figure 1.8). 

However, they differ by the selective polarity of the V-ATPase and the exclusive 

expression of a basolateral (α-IC) or apical anion-exchanger (β-IC) (Giebisch, 

2003b). The α-type IC secrete H+ into the urine via the V-ATPase that is present at 

high density on the luminal membrane. Studies in animal models have shown that the 

V-ATPase is also present within specialized intracellular tubulovesicles close to the 

membrane, allowing fast recruitment of additional pumps to the membrane in 

response to stimuli, like systemic acidosis (Penney, 1999; Brown, 2000a). Animal 

studies have also identified an additional P-type ATPase at the apical surface of α-IC 

that exchanges H+ for K+ (Wingo, 1990). However, the overall contribution of such 

pump in human acid-base physiology remains unclear. On the basolateral side, the α-

IC are characterized by the expression of the kidney-specific truncated version of the 

band 3/AE1 (SLC4A1) Cl-/HCO3
- exchanger (Alper, 1989). In contrast, the β-type IC 

show a basolateral or bipolar expression of the V-ATPase and an apical anion 

exchanger different from AE1, whose molecular identity remains debated. Two Cl-

/HCO3
- exchangers have been identified in β-IC: pendrin and AE4. Pendrin resides in 

the apical membrane of all non-α-type IC and is regulated by acid-base status 

(Wagner, 2002). However, the genetic loss of pendrin causes Pendred syndrome 

(OMIM #274600) of deafness and goiter in man and mouse, with no significant 

metabolic alkalosis at baseline (Royaux, 2001). AE4 is also expressed in non-α-type 

IC, but its subcellular localization seems to be species-specific (apical in rabbit, 

basolateral in mouse and rat) and its role remains, therefore, uncertain 

(Tsuganezawa, 2001). 
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Figure 1.8. Schematic model of H+ and HCO3

- secretion in α- and β-type IC 
 

The α-type IC are found in the connecting tubule (CNT), cortical collecting (CCD), and 
both outer and inner medullary CD, whereas the β-type IC are present only in the CNT 
and CCD.  
 

The α-type IC are characterized by the expression of the basolateral Cl-/HCO3
- exchanger 

AE-1 and the apical V-ATPase. The cytosolic CAII generates H+ and HCO3
- that are 

secreted into the lumen and the interstitium, respectively. An apical H+/K+-ATPase has 
been identified in α-type IC of certain species. 
 

The β-type IC are defined by the absence of the basolateral AE-1 exchanger, and the 
presence of the V-ATPase on both sides of the cell. The molecular identity of the apical 
Cl-/HCO3

- exchanger responsible for HCO3
- secretion remains debated. Two putative 

anion exchangers, pendrin and AE4, have been proposed. 

 
Apparent plasticity of molecular targeting according to ambient pH in vitro 

and/or acid and alkali load in vivo has suggested that α- and β-type IC may represent 
molecular mirror images of each other (Schwartz, 2005). Indeed, the various patterns 
of V-ATPase distribution observed in IC support the hypothesis that all IC are 
phenotypic variants of the same cell type, and that the precise cellular location of the 
V-ATPase is determined by the acid-base status. Moreover, the functional phenotype 
of cultured IC has been shown to be reversed by a novel matrix protein called hensin 
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(Schwartz, 1985). Hensin was proposed to induce terminal differentiation in IC, which 

was reflected by the α-cell phenotype. This change in functional activity of IC 
involves the concerted action of microtubules and microfilaments and requires de novo 
protein synthesis (Schwartz, 2002). It must be emphasized that the change in 

phenotype from α- to β-type involves more than a simple inversion of polarity of 

membrane transporters, as α-IC and β-IC have been distinguished by a differential 
expression of proteins, including the anion exchangers and NHE-RF (Na+/H+ 
exchanger regulatory factor) (Wagner, 2004). In any event, the daily acid load 
provided by an omnivorous human diet dictates that the majority of IC will be acid-

secretory (α-type). The following sections address the specificity of the V-ATPase 
present in the IC and review the causes of inherited dysfunction of the IC resulting in 
distal renal tubular acidosis.   
 

2.3. Kidney-specific isoforms of V-ATPase subunits 
Tissue-specific isoforms of some V0 and V1 subunits, encoded by distinct genes, 

are present in the V-ATPase located at the plasma membrane of specialized cells, such 
as the IC of the CD (Figure 1.6) (Borthwick, 2002). The V1 B subunit was the first to 
be identified as such (Nelson, 1992). Although B2 is regarded as the ubiquitous 
isoform, B1 expression seems restricted to kidney, inner ear and male genital tract 
(Nelson, 1992; Breton, 2000). Three V1 G and two V1 C subunit isoforms have been 
identified in man, with G3 and C2 showing kidney-specific distribution (Smith, 2002). 
The V0 a subunit is even more complex, since four isoforms have been described in 
both man and mouse (Smith, 2001; Oka, 2001). All four a subunits are expressed in 
the kidney as detected by Northern blotting and RT-PCR analyses, with distribution 
patterns associated with various regions of the nephron (Wagner, 2004). The a4 
isoform is particularly found in all subtypes of IC, as well as in the inner ear and along 
the epididymis (Smith, 2001). Finally the V0 d2 subunit isoform has been recently 
identified and located in kidney and bone (Smith, 2002). 

Recent studies have addressed the roles of individual V-ATPase subunits, with a 
particular interest for those with tissue-specific expression. In contrast to the 
ubiquitous B2, the B1 subunit contains a C-terminal DTAL motif that may interact 
with the PDZ protein NHE-RF to generate, maintain or modulate the V-ATPase 
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polarity in β-IC, which are characterized by a highly variable pattern of intracellular 
localization of the V-ATPase (Breton, 2000). Whether PDZ proteins are involved in 
either the targeting, the trafficking, or the anchoring of the V-ATPase in specialized 

membrane domains remains to be determined. Of note, the α-IC that insert the V-
ATPase uniquely into their apical domain contain little or no detectable NHE-RF. The 
distinct distribution of the V0 a isoforms also suggests that this subunit may be 
involved in the assembly and/or targeting of the V-ATPase. Indeed, the N-terminal 
domain of this subunit appears to play a major role in V-ATPase targeting to 
organelles and in vivo dissociation in yeast, whereas its C-terminal region controls the 
coupling of ATP hydrolysis and H+ translocation (Kawasaki-Nishi, 2001). Altogether, 
these data support that particular isoforms of V-ATPase subunits interact with 
different proteins and/or confer specific sorting signals, resulting to a differential 
distribution of the pump in the cell. 
 

2.4. Hereditary distal renal tubular acidosis 
Renal tubular acidosis (RTA) refers to a group of tubular dysfunctions 

characterized by a hyperchloremic metabolic acidosis due to a failure of renal HCO3
- 

reabsorption or H+ excretion that is not related to a reduction in the glomerular 
filtration rate. These disorders may be inherited, with autosomal recessive or dominant 
modes of transmission, or acquired (Igarashi, 2002; Karet, 2002). The classification of 
RTAs is based on the perceived roles of the different nephron segments in the acid-
base regulation. Proximal RTA (type 2 RTA) is due to an impaired reabsorption of 
HCO3

- by the PT, often associated with other signs of PT dysfunction (“renal Fanconi 
syndrome”). The distal RTAs are due to a defective H+ excretion by the distal tubule 
and CD. They are frequently associated with hypercalciuria and low urinary citrate 
excretion, leading to nephrocalcinosis and nephrolithiasis. They are further divided 
into the hypokalemic distal (type 1 RTA) and hyperkalemic distal (type 4 RTA). 
Finally, mutations in CA2 gene cause Guibaud-Vainsel disease (type 3 RTA), an 
inherited syndrome characterized by renal tubular acidosis, osteopetrosis, and cerebral 
calcifications (Sly, 1985). In this case, the functional loss of CAII associates signs of 
both proximal and distal tubular dysfunction (Laing, 2005). 
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Type 1 distal RTAs are relatively rare in Western populations, but occur more 
commonly in regions where rates of parental consanguinity are high (Karet, 2002). The 
inheritance of type 1 RTA shows both autosomal recessive and dominant patterns, the 
most severe cases being inherited recessively (Table 1.3). Dominant Type 1a distal RTA 
is caused by mutations in SLC4A1 gene encoding the Cl-/HCO3

- exchanger AE1 (Bruce, 
1997; Karet, 1998). Both forms of recessive distal RTA are associated with defects in the 
IC-specific B1 and a4 subunits of the V-ATPase. The functional loss of B1, which is 
encoded by ATP6V1B1 gene and present in both kidney and inner ear, causes Type 1b 
RTA with deafness (Karet, 1999). Type 1c RTA with preserved hearing in childhood is 
caused by inactivating mutations of ATP6V0A4 (Smith, 2000). To note, some patients 
with distal RTA do not show linkage to either SLC4A1, ATP6V1B1 or ATP6V0A4 genes, 
suggesting that other distal RTA genes remain to be identified. These include (i) genes 
involved in IC differentiation; (ii) genes for V-ATPase subunit isoforms; (iii) genes with 

products that are required for trafficking of the V-ATPase in α-IC; (iv) and genes 
encoding molecules necessary for the generation of H+, absorption of HCO3

-, recycling of 
Cl-, or maintenance of the electrochemical gradients across the epithelial barrier. 

 
Table 1.3. Primary distal RTA: clinical and biochemical features 
 

    

 Dominant dRTA Recessive dRTA Type 3 RTA 
    

Age at diagnosis Adulthood Infancy/early childhood Childhood 

    

Symptoms/signs None Nephrocalcinosis Nephrocalcinosis 
 Nephrolithiasis Vomiting/dehydration Cerebral calcification 
 Nephrocalcinosis Growth retardation Mental retardation 
 Osteomalacia/rickets Rickets Deafness 
  Deafness (30% of cases) Thickened bones 
    

Hematology Erythrocytosis  Anaemia 
    

Blood chemistry Mild hyperCl- acidosis Severe hyperCl- acidosis HyperCl- acidosis 
 Normo/hypokalaemia Hypokalaemia  Hypokalaemia  
    

Urine chemistry pH > 5.5 pH > 5.5 pH > 5.5 
 Hypercalciuria Hypercalciuria Bicarbonaturia 
 Hypocitraturia Hypocitraturia   
 Hypoammoniuria Hypoammoniuria   
    

Gene (protein) SLC4A1 (AE1) ATP6V1B1 (V-ATPase B1) 
ATP6V0A4 (V-ATPase a4) 
SLC4A1 (AE1) - rare 

CA2 (CA II) 

    
 

Adapted from Karet, 2002 
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A mouse model deficient in B1 V-ATPase subunit has been very recently 

engineered by homologous recombination-mediated targeting of exons 7-11 in 

Atp6v1b1 gene (Finberg, 2005). In contrast to human distal RTA caused by ATP6V1B1 

mutations that presents in early infancy, Atp6v1b1 KO mice appear healthy and grow 

normally. This phenotypic discrepancy is likely related to dietary differences. 

However, Atp6v1b1 KO mice produce urine that is significantly more alkaline than 

that of wild-type littermates under standard diet and fail to acidify urine after oral acid 

challenge. Moreover, clearance studies performed after furosemide treatment have 

demonstrated that this defect in urine acidification results from IC dysfunction. Note 

that genetic inactivation of Atp6v1b1 in mice was not associated with hypercalciuria 

and skeletal abnormalities, male infertility, or hearing loss as reported in patients. The 

compensatory role of B2 isoform in V-ATPase complexes in case of Atp6v1b1 

inactivation remains uncertain, but could provide a partial functional compensation in 

some organs in mice. Thus, these data demonstrate that plasma membrane V-ATPase 

represents the main pathway of urinary acidification in IC and propose a useful animal 

model to investigate in vivo its role in pH homeostasis.  

Another mouse model of distal RTA has been recently reported (Blomqvist, 

2004). These mice lack the forkhead transcription factor Foxi1 that plays a central role 

in IC differentiation during nephrogenesis. Accordingly, the epithelium lining the 

distal nephron in Foxi1 KO mice show no typical IC, but a single population of cells 

positive for markers of both principal and intercalated cells. The importance of these 

observations on our knowledge about cell differentiation along the distal nephron is 

further detailed in section 4.3.2. 
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3. Chloride transporters in the kidney 
 

Chloride is the most abundant anion in plants and animal tissues and Cl- transport 

across cellular membranes is involved in the transepithelial transport of salt and water, 

membrane excitability, and regulation of cell volume and pH. In addition, Cl- 

transporters participate in the acidification and ionic homeostasis of intracellular 

organelles (Jentsch, 2002). Over the last few years, numerous Cl- transporters, 

including channels and exchangers, have been characterized in all segments of the 

nephron (Devuyst, 2002). Most of the Cl- ions filtered by the glomeruli are reabsorbed 

through different mechanisms operating in the apical and basolateral membranes of 

tubular epithelial cells. Several Cl- transporters use the energy generated by 

transmembrane gradients of other ions to move Cl- against its electrochemical 

gradient, whereas passive diffusion of Cl- through Cl- channels is involved in cell 

volume regulation. Transport of Cl- through Cl- / HCO3
- exchangers in IC, or through 

the Na+-linked Cl- / HCO3
- exchanger operating in PT cells, participate in acid-base 

homesostasis. In addition, Cl- ions are also important for acidification of intracellular 

vesicles by neutralizing the transmembrane potential generated by the electrogenic V-

ATPase. The association of a large spectrum of human diseases affecting kidney 

function with mutations in distinct genes encoding Cl- transporters, has provided new 

insights into the diverse roles ensured by Cl- movement in cell physiology (Jentsch, 

2005; Romero, 2005).  

On one hand, two main families of Cl- exchangers have been implicated in 

kidney function, namely the SLC4 and SLC26 transporters. The SLC4 HCO3
- 

transporter family contains 10 members that move base equivalents (OH- or HCO3
-) 

across cell membranes to alter intracellular pH (Romero, 2005). There are at least 4 Cl- 

/ HCO3
- exchangers in the SLC4 family: AE1-4 (also called SCL4A1-3 and SLC4A9). 

The kidney-specific truncated version of the band 3/AE1 is found in the basolateral 

membrane of the α-type IC of the CD and mutations in SLC4A1 gene have been 

associated with distal RTA (see section 2.4). In addition, three isoforms of AE2 

(SLC4A2a-c) have been located in the TAL and AE4 (SLC4A9) is present in the 
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apical membrane of rabbit β-type IC, where its role in acid-base homeostasis remains 

debated (see section 2.2). The SLC26 anion exchangers transport an expanding 

number of monovalent and divalent anions and play critical roles in skeletal 

development, synthesis of thyroid hormones, transepithelial Na+, Cl-, and HCO3
- 

transport (Mount, 2004). The distribution of SLC26 members includes different 

segments of the nephron. SLC26A6 has been detected in the apical membrane of PT 

cells and may represent the long-elusive apical Cl- entry site involved in PT Na+-Cl- 

reabsorption (Chernova, 2005). In addition, SLC26A4 (also called Pendrin) has been 

located in the luminal membrane of the β-type IC, which are known to secrete HCO3
- 

via a Cl- / HCO3
- exchanger (see section 2.2). 

On the other hand, several Cl- channels have been identified along the nephron, 

based on single-channel properties and sensitivity to inhibitors. However, the 

molecular counterpart of many renal Cl- channels remains debated (Devuyst, 2002). 

This section will focus on two structural classes of Cl- transporters that have been 

extensively characterized: the CLC family and the CFTR (cystic fibrosis 

transmembrane conductance regulator). The emphasis will be particularly set on the 

role of the Cl- transporter ClC-5 and the Cl- channel CFTR in the pathophysiology of 

Dent’s disease and cystic fibrosis, respectively.  

 

3.1. Dent’s disease and ClC-5  
 

3.1.1. Dent’s disease 

In 1964, C.E. Dent and M. Friedman described two unrelated English boys with 

hypercalciuric rickets associated with renal tubular damage including tubular 

proteinuria, aminoaciduria, phosphaturia and hypercalciuria (Dent, 1964). The term 

Dent’s disease, first introduced in early nineties, identifies a group of X-linked renal 

tubular disorders characterized by LMW proteinuria associated with hypercalciuria 

and nephrocalcinosis and/or nephrolithiasis (Wrong, 1994). This triad of 

manifestations has been variably named in the past as X-linked recessive 

nephrolithiasis, X-linked recessive hypophosphataemic rickets, and the idiopathic 
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LMW proteinuria of Japanese children. However, the three disorders were mapped to 

chromosome Xp11.22 (Scheinman, 1993; Fisher, 1994) and further associated with 

mutations in CLCN5 gene (OMIM #300009) that encodes the renal Cl- channel ClC-5 

(Lloyd, 1996). The gene CLCN5 is comprised of 12 exons that span between 25 and 

30 kb of genomic DNA (Fisher, 1994).  

Dent’s disease usually presents in early childhood and tubular proteinuria has 

even been discovered in the first months of life (Nakazato, 1997). The LMW 

proteinuria, particularly of β2-microglobulin and retinol-binding protein, represents the 

most consistent manifestation of Dent’s disease, and is found in almost all affected 

males. The obligate carrier females also show, to a lower extent, a detectable LMW 

proteinuria, which is compatible with the Lyon hypothesis of the random inactivation 

of one X chromosome in females (Reinhart, 1995). In contrast, there is considerable 

inter- and intra-familial variability in other manifestations of the disease, including 

hypercalciuria, PT solute wasting, distal tubule disorders (urine acidification and 

concentrating ability), and rickets (Scheinman, 1998). In studies involving dietary 

deprivation and loading, about half of patients with Dent’s disease were characterized 

by fasting hypercalciuria, but all patients showed an exaggerated calciuretic response 

to oral Ca++ loading (Reinhart, 1995). Urinary acidification defects were reported in 

half of patients (Wrong, 1994). Progression to end-stage renal failure occurs between 

the 3rd and the 5th decades of life in 30-80% of affected males.  

So far, 85 mutations of CLCN5 gene have been identified in more than 100 

families (http://www.hgmd.cf.ac.uk/hgmd0.html). They consist of nonsense, missense, 

and donor splice site mutations and intragenic deletions that compromise the function 

of ClC-5, as well as microdeletions that lead to a total loss of ClC-5 (Lloyd, 1996; 

Igarashi, 1998). No evidence for a genotype-phenotype correlation has been reported 

so far in Dent’s disease. Moreover, various mutations have been associated with 

clinical phenotypes ranging from slight biological abnormalities to the classical form 

of Dent’s disease, even within the same family (Scheinman, 2000). Recent 

investigations provided evidence for genetic heterogeneity in Dent’s disease and 

revealed that mutations in OCRL1 gene encoding a phosphatidylinositol (4,5) 
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bisphosphate (PIP2) 5-phosphatase were also responsible for Dent’s disease (OMIM 

#30900). This topic is further discussed in section 3.1.4.  

 

3.1.2. ClC-5 

The ClC-5 is encoded by the gene CLCN5 that belongs to the CLC family of 

voltage-gated chloride channels/transporters. The characterization of the founding 

ClC-0 in the electric organ of Torpedo marmorata by T.J. Jentsch led to the 

identification of a large molecular family, with isoforms expressed in nearly every 

cell in eukaryotes and many prokaryotes (Jentsch, 1990-2002). The human genome 

has nine CLC isoforms organized into two main classes according to their 

subcellular distribution. The isoforms ClC-1, -2, -Ka, and -Kb are preferentially 

expressed at the plasma membrane, whereas ClC-3, -4, -5, -6, and -7 are mainly 

located in intracellular vesicles, like endosomes and lysosomes (Table 1.4). In 

addition, some CLC channels require a β-subunit for intracellular trafficking, 

membrane stability, and activity. The functional expression of ClC-K channels 

depends on barttin, a rather small protein with 2 predicted transmembrane domains 

and a cytoplamsic C-terminus harbouring motifs involved in endocytosis (Estévez, 

2001). Likewise, ClC-7 requires the β-subunit Ostm1 to support bone resorption 

and lysosomal function (Lange, 2006). 

Most CLC isoforms (and β-subunits) have been associated with human 

disorders, such as myotonia (ClC-1 and –2), renal salt-losing Bartter syndrome 

(ClC-Kb), deafness (barttin subunit of ClC-Ka and -Kb), Dent’s disease (ClC-5), 

and osteopetrosis (ClC-7, Ostm1) (Table 1.4) (Jentsch, 2005). The creation of 

transgenic mouse models with CLC gene deletion further helped figure out the role 

of these Cl- transporters in the pathophysiology of human diseases. Of particular 

interest, the functional loss of ClC-5 in mice causes a generalized PT dysfunction, 

with LMW proteinuria and hypercalciuria, that mimics Dent’s disease (Piwon, 

2000; Wang, 2000). 
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Table 1.4. The CLC family of ClC channels in mammals 
 

 
The nine mammalian CLC proteins can be grouped into two branches according to their subcellular 
distribution. In front of each ClC channel, the columns indicate the most important features of its tissue 
distribution, the human disease associated with its functional loss, and the phenotype of the 
corresponding knock-out mouse model, respectively. The asterisk * identifies the phenotype reported 
only in mice. In addition, β-subunits of certain ClC channels have been identified and associated with 
human disorders. Mutations in the β-subunit of ClC-Ka and ClC-kb, named barttin, cause Bartter 
syndrome with sensorineural deafness and kidney failure (Estévez, 2001). Likewise, mutations in 
Ostm1, recently identified as the β subunit of ClC-7, is associated with human osteopetrosis and central 
nervous system (CNS) degeneration in mice (Lange, 2006). 
 

Adapted from Jentsch, 2002 

 
Single channel analysis of ClC-0 supported - firstly - a model in “double-

barrelled” configuration involving two identical Cl- diffusion pathways, each with a 

voltage-dependent gate (Miller, 1982). Recently, the x-ray crystal structures of two 

bacterial CLC proteins at 3.0-Å resolution have confirmed the prediction that the CLC 
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channels form diamond-shaped homodimers (Dutzler, 2002). Each subunit has its own 

pore and 18 α-helices inserted into the plasma membrane, with an anti-parallel 

orientation that brings together residues that form the selectivity filter for the Cl- anion 

(Jentsch, 2002). That pore stoechiometry resembles that of the water channels 

aquaporins (Murata, 2000), but differs from the K+ channels in which four identical 

subunits encircle one central pore (Doyle, 1998). Based on these data, a three-

dimensional model of the human ClC-5 has been established (Wu, 2003) (Figure 1.9). 

ClC-5 consists of 746 amino acids with a predicted molecular mass of 84 kDa and 

shares a high degree of homology (~78%) with ClC-3 and ClC-4 (Fisher, 1995). These 

homodimers are composed of two repeated halves that span the membrane in opposite 

orientations. Interestingly, non-truncating mutations causing Dent’s disease mostly 

occur at the interface between the two subunits, emphasizing the importance of ClC-5 

homodimerisation (Wu, 2003). Further evaluations of other naturally occurring 

mutants will help identify the roles of conserved domains in ClC-5 function and/or 

trafficking (Ludwig, 2005). Particularly, the intracellular C-terminal tail of ClC-5 

harbours a pair of CBS (cystathionine β-synthase) domains that forms the so-called 

“Bateman” domain (Figure 1.9), which is considered as an energy-sensing module 

necessary for the allosteric control of ClC-5 gating (Bateman, 1997; Kemp, 2004). 

Between these two CBS domains is located an internalization motif (PPLPPY), 

resembling the PY motif that is essential for protein interaction with ubiquitin-protein 

ligases containing WW domains, like Nedd4-2 and WWP2 (Schwake, 2001). The 

disruption of this motif was shown to increase ClC-5 surface expression and currents 

by ~2-fold, suggesting a potential regulation of ClC-5 function by endocytosis like 

previously described for the epithelial Na+ channel ENaC (Schild, 1996). Finally, the 

most distal residues (DSILFN) contain a putative PDZ domain that may be involved as 

a scaffold in the assembly, stabilization, and disassembly of the endocytic complex at 

the cell surface (Hryciw, 2006). 
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Figure 1.9. Structure of the Cl- transporter hClC-5 
 

Panel A. Motifs. The hCLC-5 consists of 18 α helices (boxed areas), with the cytoplasmic 
region below. Glutamate E211 (arrowhead), the consensus phosphorylation (P) sites at 
threonin 349 and 350, and the N-glycosylation (branch) site at position 408 are indicated. 
The C-terminal tail of hClC-5 harbours a pair of CBS (cystathionine b-synthase) domains 
(“Bateman” domain) and an internalization PY motif (PPLPPY). 
 

Panel B. Three-dimensional model. The two subunits are differently contrasted with a Cl- 
ion (black point) located in the pore of each. The approximate thickness of the plasma 
membrane is indicated, with the extracytoplasmic surface above. The numbers refer to 
missense mutations investigated by Wu, 2003. Note that most mutations cluster at the 
interface of the two subunits. 
 

Adapted from Wu, 2003 
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Two recent studies (Picollo, 2005; Scheel, 2005) have demonstrated that the 

mammalian ClC-4 and ClC-5 isoforms, as well as most probably ClC-3, function as 

voltage-dependent Cl-/H+ exchangers, like the Escherichia Coli ClC-e1 homolog 

(Accardi, 2004), and are able to extrude H+ against the electrochemical gradient. Two 

glutamate residues of ClC-e1 are required for H+ transport – one at each side of the 

membrane (Figure 1.10). Similarly, neutralization of the glutamate residue at position 

211 in ClC-5 (Figure 1.9) not only abolishes the steep voltage-dependence of 

transport, but also eliminates the coupling of anion flux to H+ counter-transport 

(Picollo, 2005; Scheel, 2005). These observations support that intracellular CLC 

transporters could facilitate endosomal acidification by coupling vesicular pH 

gradients directly to Cl- gradients, hence regulating also vesicular Cl- concentration. 

 

 
Figure 1.10. The Cl-/H+ exchange in ClC: relation structure-function 
 

Panel A. Continuous single-channel recording of ClC-0. ClC channels open and close by 
two separate processes. “Fast gating” is characterized by rapid fluctuations among three 
activity levels corresponding to 0, 1 or 2 pores open independently. “Common gating” 
represents activity bursts, and requires communication between subunits of the ClC 
homodimer. Holding voltage is -100 mV, and single-channel current is 0.9 pA. The 
horizontal bar over the upper trace marks 1 second. 
 

Panel B. Hypothetical model of Cl-/H+ exchange in one ClC subunit. The cytoplasmic 
region is below. In “closed state” (a), the side chain of Gluex is deprotonated, and blocks 
the pore. Intracellular H+ transfer occurs, while allosteric Cl- ion occupies hypothetical site 
external to Gluex. In “open state” (b), the side chain of Gluex becomes protonated, and Cl- 
transport occurs. The black circle marks the position occupied by Gluin in the ClC 
transporters, which is always substituted by a valine residue in the ClC channels. 
 

Adapted from Miller, 2006 
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The kidney is the major site of ClC-5 expression, followed by the intestine 

(Steinmeyer, 1995; Fisher, 1995). Northern blotting and RT-PCR analyses also found 

tissue-specific mRNA variants of CLCN5 in brain, lung, liver, prostate (Ludwig, 

2003), and recent investigations located ClC-5 at the apical membrane of thyrocytes 

(van den Hove, 2006). In human kidney, immunoblotting analyses identified the ∼80 

kDa ClC-5 in both cortex and medulla (Devuyst, 1999). Immunohistochemistry on 

man and mouse kidneys revealed that ClC-5 distribution includes the epithelial cells 

lining the PT, the TAL of Henle’s loop, and the α-type IC of the CD (Günther, 1998; 

Devuyst, 1999; Sakamoto, 1999). In PT cells, ClC-5 has been particularly localized 

right underneath the brush border. Moreover, studies of subcellular fractions of human 

kidney have indicated that ClC-5 co-distributes with markers of early endosomes (Rab 

5a), as well as with the V-ATPase (Moulin, 2003). Confocal microscopy studies using 

opossum kidney (OK) cells as in vitro model for PT cells, revealed that ClC-5 co-

localizes with albumin-containing endocytic vesicles that form part of the receptor-

mediated endocytic pathway (Devuyst, 1999). In addition, surface biotinylation studies 

have recently demonstrated that ~8% of the total cellular pool of ClC-5 is located at 

the cell surface of PT cells, where it may participate in the formation/function of the 

endocytic complex (Wang, 2005; Hryciw, 2006). 

The expression of ClC-5 in multiple nephron segments supports the complex 

phenotype of Dent’s disease (Scheinman, 1998). The subcellular distribution of ClC-5 

in PT cells points to an involvement in apical receptor-mediated endocytosis, which is 

consistent with the constant LMW proteinuria found in Dent’s patients. The functional 

loss of ClC-5 in the TAL, which is the major site of regulated Na+ and Ca++ 

reabsorption, may result in hypercalciuria and nephrocalcinosis, as well as the 

defective urinary concentration observed in a subset of patients. Finally, ClC-5 

dysfunction in α-type IC may lead to impaired urine acidification, actually observed in 

half of patients with Dent’s disease. 
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3.1.3. Mouse models of Dent’s disease 

Our group has collaborated to the generation and characterization of a Clcn5 KO 

mouse model of Dent’s disease by homologous recombination (Wang, 2000). Mice 

lacking ClC-5 are viable and fertile. They show renal tubular defects that mimic the 

phenotype of Dent’s disease, including LMW proteinuria, aminoaciduria, glycosuria, 

phosphaturia, and polyuria (Figure 1.11, panel A). The urinary loss of LMW proteins 

includes both megalin- and cubilin-specific ligands, as well as lysosome enzymes. 

Mutant mice also develop hypercalciuria and nephrocalcinosis, whereas progressive 

renal failure is observed with aging (Cebotaru, 2005). Further investigations indicate 

that the hypercalciuria observed in Clcn5 KO mice is of bone and renal origin, without 

significant increased intestinal calcium absorption – despite elevated levels of (1, 25)-

dihydroxy vitamin D3 (Silva, 2003). 

In order to address the LMW proteinuria associated with ClC-5 deficiency 

(Figure 1.11, panel B), mice were injected with peroxidase, a classical endocytic tracer 

that is filtered by the glomerulus and endocytosed by PT cells (Wang, 2000). 

Cytochemistry and electron microscopy showed a severe impairment of protein 

endocytosis by ClC-5-deficient PT cells, such that peroxidase bound to the brush 

border was poorly transferred into early endocytic vesicles (Figure 1.11, panel C). 

Moreover, quantification of kidney uptake of the LMW 125I-β2-microglobulin 

demonstrated a major dysfunction of PT receptor-mediated endosytosis, as well as 

delayed degradation, in Clcn5 KO mice (Figure 1.11, panel D). This endocytic defect 

has been linked to a major and selective loss of megalin and cubilin at the brush 

border, reflecting a generalized trafficking defect in ClC-5-deficient PT cells 

(Christensen, 2003). 

These data, which were essentially confirmed in another mouse model (Piwon, 

2000), demonstrate that the impairment of receptor-mediated endocytosis in PT cells 

of ClC-5 deficient mice provides a basis for the defective uptake and increased urinary 

excretion of LMW proteins observed in patients with Dent’s disease.  
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Figure 1.11. Phenotype of the Clcn5 KO mouse 
 

Panel A. Blood and urine biological parameters. In comparison to controls, Clcn5Y/- mice show a severe PT 
dysfunction, with polyuria, glucosuria, hyper-calciuria and phosphaturia, and proteinuria (n = 50, p<0.05). 
 

Panel B. Characterization of the LMW proteinuria. Immunoblotting analyses on urine samples from Clcn5Y/+ 
and Clcn5Y/- mice demonstrate a distinctive LMW proteinuria in Clcn5Y/- mice, including cubilin-specific 
ligands (CC16; transferrin), megalin-specific ligand (vitamin D-binding protein), and lysosome enzymes. 
 

Panels C-D. Investigation of PT apical endocytosis in Clcn5Y/+ and Clcn5Y/- mice. In control kidney, 
horseradish peroxydase (HRP) is detected, at 5min post iv injection, in numerous endocytic vesicles right 
beneath PT brush border (C). In contrast, HRP uptake is dramatically impaired in Clcn5Y/- kidney, with 
subsequent accumulation in PT lumen. Similarly, 125I-β2-microglobulin renal uptake at 7min post iv injection, 
is severely reduced in Clcn5Y/- mice (n=4; ***, p<0.001) (D). At 60 min postadministration, Clcn5Y/- kidneys 
are characterized by a delayed breakdown of 125I-β2-microglobulin. 
 

Adapted from Wang, 2000, and Christensen, 2003 

 
3.1.4. Evidence for genetic heterogeneity in Dent’s disease 

Scheinman SJ et al. reported 13 patients without mutations in the coding 

sequence and promoter regions of CLCN5 among a series of 32 unrelated male 

patients meeting all the clinical criteria for Dent’s disease [LMW proteinuria and 
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hypercalciuria in association with either nephrocalcinosis, kidney stones, 

hypophosphatemia, rickets, aminoaciduria, or positive familial history] (Hoopes, 

2004). Among these 13 patients, linkage analysis identified candidate genes (CLCN4, 

SLC9A6, OCRL1) to a region located at Xq25-Xq27.1 (Hoopes, 2005). Direct 

sequencing of these genes found 5 mutations in the OCRL1 gene (Xq26.1) that 

encodes the enzyme phospho-inositide (4,5) bisphosphate (PIP2) 5-phosphatase 

(OMIM #300555). Of interest, mutations in OCRL1 gene have been previously 

associated with the oculo-cerebro-renal syndrome of Lowe (OCRL, OMIM #30900), 

an X-linked disorder characterized by bilateral congenital cataract, severe mental 

retardation, and renal Fanconi syndrome (Lowe, 2005).  

The enzyme PIP2 5-phosphatase has been located in the trans-Golgi network 

(TGN), as well as on lysosome membranes, where it regulates the relative pools of 

PI(4,5)P2 and PI(4)P responsible for correct intracellular vesicle trafficking (Pendaries, 

2003). In addition, the OCRL protein may play a role in the dynamic regulation of 

actin polymerisation in the cytoskeleton and at the tight and adherent junctions. 

Interestingly, none of the 5 mutations in OCRL1 found in patients with Dent’s disease 

had been previously reported in OCRL syndrome 

(http://www.hgmd.cf.ac.uk/hgmd0.html). Moreover these patients with Dent’s disease 

showed no mental retardation or cataract. The role of the enzyme (PIP2) 5-phosphatase 

in the pathophysiology of PT dysfunction observed in both Dent’s disease and OCRL 

syndrome and the possible interactions between ClC-5 and OCRL1 remain to be 

elucidated. 

The absence of mutations in CLCN5 and OCRL1 genes in a subset of patients 

with Dent’s disease strongly suggests that additional genes may be involved in Dent’s 

disease (Hoopes, 2005). One could speculate that these genes may code for proteins 

involved in the complex endocytic machinery of PT cells, or interact directly with 

ClC-5 in endosomes. For instance, a physical interaction between the C-terminus of 

ClC-5 and cofilin, a protein involved in the depolymerization of actin in the vicinity of 

budding endosomes, has been documented in PT cells using a yeast two-hybrid screen 

and GST-fusion protein pulldown assay (Hryciw, 2003). In addition, recent studies 
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have demonstrated the role of β-subunits in the trafficking, stability, and functionality 

of several ClC channels. Mutations in BSND gene encoding the β-subunit of ClC-Ka 

and ClC-Kb, barttin cause Type IV Bartter syndrome with sensorineural deafness 

(OMIM #602522) (Estévez, 2001). The functional loss of Ostm1 impairs the 

trafficking and the stability of ClC-7 in lysosomes and causes osteopetrosis, lysosomal 

storage, and neurodegeneration in man and mouse (OMIM *607649) (Lange, 2006).  

Likewise, ClC-5 may require a β-subunit to exert its function along the endocytic 

pathway in PT cells. 

 

3.2. Cystic fibrosis and CFTR  
 

3.2.1. Cystic fibrosis  

Cystic fibrosis (CF, OMIM #219700) is the most common lethal autosomal 

recessive disease in Caucasians. CF affects as many as one in 2,500 live births, a rate 

from which the carrier frequency can be estimated as one in 25 (Sheppard, 1999). The 

disorder primarily alters mucociliary clearance in various exocrine epithelia, in 

conjunction with excessive mucus production. Subsequent mucus accumulation in the 

airways and in the pancreatic and sweat ducts results in obstructive lung disease with 

chronic bacterial infection and inflammation, pancreatic insufficiency and high sweat 

Cl- concentration (Rowe, 2005). In addition, the absence or obstruction of the vas 

deferens causes male infertility in most CF patients and altered cervical mucus 

production reduces significantly female fertility (Lyon, 2002). The airways 

manifestations represent the main cause of morbidity and mortality in the CF 

population. Nowadays improvement in medical care (physiotherapy, antibiotherapy, 

digestion enzyme supplements) often preserves life expectancy into adulthood, but the 

median lifetime remains only 30 years. 

 

CF has been associated with loss-of-function mutations in the CFTR gene that 

encodes the Cl- channel CFTR (Riordan, 1989). The CFTR gene, also named as 

ABCC7, is located on chromosome 7q31.2 and spans approximately 290 kb of 
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genomic DNA (27 exons) encoding a 1,480-amino acid protein (Ellsworth, 2000). 

Over 1,000 CF-associated mutations have been reported thus far in the CFTR gene (CF 

Genetic Analysis Consortium, http://www.genet.sickkids.on.ca/cftr/). These mutations 

are classified into five groups according to their structural or functional consequences 

on Cl- conduction (Table 1.5). The in-frame deletion of three bases encoding a 

phenylalanine residue at position 508 (ΔF508), occurring in approximately 70% of CF 

patients, results in the misfolding and lack of maturation of the CFTR protein, with its 

subsequent degradation (Rowe, 2005). About 5 to 10 percent of CFTR mutations are 

due to premature truncation or non-sense alleles and are associated with the most 

severe CF phenotypes (Rowntree, 2003). The prevalence of such type I mutations is 

particularly high in the Ashkenazi Jewish population. Most other CFTR defects are 

unique to a particular family or to only a handful of cases across the world.  

 
Table 1.5. Classification of CFTR mutations 
 

      

Defect 
classification 

I II III IV V 

      
      

Defect 
result 

No synthesis Block in 
processing 

Block in 
regulation 

Altered 
conductance 

Reduced 
synthesis 

      
      

Types of 
mutations 

Nonsense 
(G542X) 

Frameshift 
(394delT) 

(1717-1G A) 

Missense 
(N1303K)  

AA deletion  
(ΔF508) 

Missense 
(G551D) 

Missense 
(R117H) 
(R347P) 

Missense 
(A445E) 

Alternative 
splicing 

(3849+10kbC T)
      
      

Potential 
therapy 

Gentamicin 
Gene transfer 

Butyrate 
Curcumin; 

Gene transfer

Genistein 
Gene transfer

Milrinone 
Gene transfer 

Gene transfer 

      
 

Adapted from Zeitlin, 2000. 
 

 
The type of CFTR mutations seems directly linked to the pancreatic phenotype, 

whereas the high variability in pulmonary complications among siblings carrying 

identical mutations strongly supports the influence of the environment and modifier 

genes in the disease severity (Rowntree, 2003). The feature of azoospermia identified 
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in 99% of male CF patients has no relation to any specific type of CFTR mutations and 

is even encountered in congenital bilateral absence of the vas deferens (CBAVD, 

OMIM #277180). CBAVD is caused by CFTR mutations on both alleles in 

approximately 80% of cases, with no other sign of CF (Claustres, 2005). Moreover 

subsets of patients with the CF phenotype have been reported with no or only one 

mutation in the CFTR gene (Groman, 2002). These cases exemplify the extremely 

broad clinical spectrum of CFTR-linked disease and support the existence of additional 

genes involved in the CF phenotype.  

 

Although CFTR gene product has been identified in the developing and mature 

mammalian kidney (Crawford, 1991; Devuyst, 1996a), no overwhelming renal 

phenotype has been clearly associated with CF. Impaired salt and water homeostasis, 

with reduced renal NaCl excretion and decreased capacity to dilute and concentrate 

urine, has been reported in CF patients (Morales, 2000). However, this could result from 

a primary defect in kidney function, or simply reflect changes in the extracellular fluid 

volume caused by excessive losses of NaCl in sweat and feces. Microscopic 

nephrocalcinosis has also been detected in an autopsy series of CF patients ranging in 

age from birth to 36 years (Katz, 1988) and the incidence of kidney stones in CF 

patients may also be increased (Gibney, 2003). However, the relative contribution of 

lithogenic factors, such as hypocitraturia, hyper-oxaluria and -uricosuria, or impaired 

hydration remains elusive. Interestingly, CF patients show an enhanced renal clearance 

of many drugs including aminoglycosides (Samaniego-Picota, 1996), which may be due 

to impaired receptor-mediated endocytosis in PT cells (Schmitz, 2002). These data 

suggest that the functional loss of CFTR is probably balanced by alternative pathways 

for Cl- conductance in the kidney (Devuyst, 2002). Further investigations of CF patients 

and mouse models will certainly help unravel the role of CFTR in specialized kidney 

functions, such as endocytosis and Ca++ and NaCl homeostasis. In addition, subtle 

abnormalities in kidney development, function and/or morphology may appear in later 

stages of CF or in association with other kidney diseases. For example, it has been 

demonstrated that CFTR is upregulated in the cells lining the cysts in autosomal 
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dominant polycystic kidney disease, the most common inherited nephropathy, 

suggesting that CFTR may play a role in cyst fluid accumulation and disease 

progression (Hanaoka, 1996; Devuyst, 1998). 

 

3.2.2. Cystic Fibrosis Transmembrane conductance Regulator 

The CFTR protein is a member of the ATP-binding cassette (ABC) superfamily 
of integral membrane transporters. The ABC transporters, also known as traffic 
ATPase, function as mediators of unidirectional organic solute transport and include 
the multidrug resistance proteins, such as MDR and P-glycoprotein and a number of 
prokaryotic and eukaryotic small nutrient and molecular transporters (Higgins, 1992). 
The CFTR is a Cl- channel that is regulated by cAMP-dependent phosphorylation and 
ATP hydrolysis, which mediates Cl- ion transport across epithelia (Fuller, 1992). In 
addition, CFTR interacts functionally with other proteins, including the outwardly 
rectifying Cl- channels (ORCC) and the epithelium Na+ channels (ENaC): hence, the 
name, CF transmembrane conductance regulator (Devidas, 1997). Of note, this name 
was “presciently” given at the time of CFTR gene identification, independently of any 
knowledge of the structure and functional interactions of CFTR (Riordan, 1989). The 
CFTR may participate in exocytosis and in the formation of macromolecular 
complexes at the plasma membrane, in close contact with receptors, signalling proteins 
and the cytoskeleton (Rowe, 2005). Therefore, the role of CFTR extends well beyond 
Cl- permeability, as supported by its unique structure and its subcellular distribution in 
epithelial cells. 

 
The CFTR protein is organized symmetrically in two transmembrane domains 

(TMD1 and TMD2) and two nucleotide binding domains (NBD1 and NBD2), 
separated by a large, polar, regulatory (R) domain unique within the ABC family 

(Figure 1.12) (Riordan, 1989). Each membrane-spanning domain contains six α 
helices, portions of which form the Cl- pore. Both NBD domains regulate in concert 
Cl- channel gating, whereas the activation of CFTR relies on the phosphorylation of 
the R domain, particularly by protein kinase A (Gadsby, 2006). The amino- and 
caboxy-termini of CFTR are both cytoplasmically oriented. The C-terminus of CFTR 
possesses a Type I PDZ domain-binding motif (D/E)TRL that is conserved among 
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species (Guggino, 2004). At least five PDZ-domain proteins have been shown to 
interact with the C-terminus of CFTR: the Na+/H+ exchange regulatory factors (NHE-
RF1 and NHE-RF2), intestinal and kidney-enriched PDZ protein (IKEPP), and CFTR-
associated protein-70 (CAP70) at the plasma membrane, and CFTR-associated ligand 
(CAL) in the Golgi. The hypothesis is that the dynamic regulation of CFTR binding to 
such scaffolding proteins determines its dimeric organization into macromolecular 
functional units containing regulatory molecules and other channels. Moreover, these 
functional interactions may increase CFTR efficiency by enhancing its activation by 
PKA, stabilizing its dimeric state at the plasma membrane and finally increasing 
channel gating (Li, 2005). 

 

 
Figure 1.12. Structure of CFTR 
 

The CFTR protein contains 1480 amino acids and is organized symmetrically into a 
number of discrete globular and transmembrane domains. Each membrane-spanning 
domain contains six α-helices, portions of which form a chloride-conductance pore. The 
loop between transmembrane segments 7 and 8 contains two possible glycosylation sites 
(Y) at asparagine residues. The regulatory domain (R) is a site of protein kinase A 
phosphorylation. The two nucleotide-binding domains (NBD) regulate Cl- channel gating 
and activity. The carboxyl terminal tail of CFTR includes a TRL motif (threonine, arginine, 
and leucine) that anchors CFTR through PDZ-binding-type interactions with the 
cytoskeleton and macromolecular complexes. 
 

Adapted from Rowe, 2005 
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The CFTR has been located primarily in the apical membrane of numerous 

secretory epithelia, including airways, colic crypts, pancreatic and sweat ducts, and 

male genital tract (Sheppard, 1999). In addition, several studies have demonstrated the 

presence of CFTR in the kidney (Morales, 2000). CFTR mRNA has been detected in 

all nephron segments by RT-PCR, but is particularly abundant in the cortex and outer 

medulla (Morales, 1996). Immunostaining analyses identified CFTR in the apical 

region of PT, distal tubule and cortical and outer medullary CD of the mature human 

kidney (Crawford, 1991), as well as in the branching ureteric bud (UB) during early 

nephrogenesis (Devuyst, 1996a). A functional truncated isoform (TNR-CFTR) made 

of the TMD1, NBD1 and R domains (Figure 1.12) has also been described in the 

kidney, with a distinct ontogeny pattern and a minor plasma membrane expression 

(Devuyst, 1996a; Huber, 1998). The specific function of TNR-CFTR variant that is 

particularly found in small intracellular vesicles in the renal medulla remains elusive, 

and may involve intracellular trafficking (Morales, 1996). 

 

Besides its distribution in the plasma membrane, CFTR has been located in 

intracellular organelles along the endocytic and secretory pathways, in which it might 

act as a pH regulator by importing Cl- in parallel to H+ accumulation (Bradbury, 1999). 

Inhibition of the endocytic activity, as well as defective acidification in trans-Golgi 

and pre-lysosomal compartments has been reported in CF cells (Barasch, 1991). In 

turn, lysosomal enzyme deficiencies and abnormal trafficking and processing of newly 

synthesized polypeptides have been associated with the functional loss of CFTR 

(Bradbury, 1999). However the exact role of CFTR in regulating organelle pH remains 

controversial, with hyper- rather than hypo-acidification suggested to occur in CF 

respiratory epithelial cells (Poschet, 2002).  

 

These observations demonstrate that CFTR is abundantly expressed in different 

segments of the mammalian kidney, where it may participate in Cl- permeability and 

salt transport at the apical plasma membrane. In addition, by analogy to other 
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intracellular Cl- channels such as ClC-5, CFTR may play a role in membrane recycling 

and/or vesicular pH regulation in kidney cells. 

 

3.2.3. Mouse models of cystic fibrosis 

Six knockout mouse models of CF have been generated in which the Cftr gene 

has been disrupted by insertion, duplication, or an in-frame stop codon (Table 1.6). In 

addition, four mutant models have been produced, with the deletion of phenlyalanine 

at position 508 (ΔF508) in three models and the G551D mutation in the fourth one (for 

a detailed review, see Grubb, 1999). We will focus on the CF strains used in our 

studies, i.e. the Cftrtm1Cam KO (Ratcliff, 1993) and Cftrtm1Eur (ΔF508) mice (van 

Doorninck, 1995). 

 
Table 1.6. Mouse models of cystic fibrosis 
 

    

 CF Mouse Molecular Technique Reference 
    
    

CFTR    
    

   knockout cftrtm1Unc In-frame stop (exon 10) Snouwaert J, Science 1992 
    

 cftrtm1Hgu Insertion (exon 10) Dorin JR, Nature 1992 
    

 cftrtm1Cam Insertion (exon 10) Ratcliff R, Nature Genet 1993 
    

 cftrtm1Bay Duplication (exon 3) O’neal WK, Hum mol genet 1993 
    

 cftrtm3Bay In-frame stop (exon 2) Hasty P, Somat Cell Mol Genet 1995 
    

 cftrtm1Hsc Insertion (exon 1) Rozmahel R, Nature Genet 1996 
    
    

   mutant cftrtm1Kth Homologous recombination  
(ΔF508) 

Zeiher BG, J Clin Invest 1995 

    

 cftrtm1Eur Homologous recombination  
(ΔF508) 

van Doorninck JH, Embo J 1995 

    

 cftrtm2Cam Homologous recombination  
(ΔF508) 

Colledge  WH, Nature Genet 1996 

    

 cftrTgHm1G551D Homologous recombination  
(G551D) 

Delaney SJ, Embo J 1996 

    
 

Computed from Grubb, 1999 
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The Cftrtm1Cam KO mouse (C57BL/6J/129 background) was generated by targeted 

deletion of exon 10 of Cftr upon homologous recombination (Ratcliff, 1993). At birth, 

the expected mendelian distribution of the genotypes indicates that there is little, if 

any, prenatal lethality associated with homozygosity of the mutant allele. However, 

~80% of Cftrtm1Cam pups fail to thrive postnatally and die within five days from 

meconium ileus and severe peritonitis. A second period of high-mortality rate due to 

intestinal blockage manifests at the time of weaning (and first ingestion of solid food) 

(Hunton, 1966). Therefore CF mice have to be placed on a liquid diet that has been 

found to significantly prolong their life span (Eckman, 1995). In Cftrtm1Cam pancreas, 

dilatation and blockage of small ducts, with occasional vacuolated acinar cells, were 

noted. Conversely, no pathological accumulation of mucus was found in Cftrtm1Cam 

lung. Further electrophysiology studies showed that epithelial cells of both Cftrtm1Cam 

trachea and caecum were unable to generate a Cl- conductance in response to increased 

intracellular cAMP concentrations (forskolin stimulation). Thus, the Cftrtm1Cam mouse 

is characterized by a severe CF phenotype caused by CFTR deficiency (Type I 

mutation) and represents a useful model to investigate the role of CFTR in distinct 

organs, such as the kidney. 

The deletion of a phenylalanine residue at position 508 of the CFTR protein 

(ΔF508) represents the most common mutation in CF population. It is thought that 

90% of Caucasian CF patients have at least one ΔF508 allele (Rowe, 2005). This 

mutation affects the correct processing and maturation of CFTR to its fully 

glycosylated form (Cheng, 1990), with retention of ΔF508-CFTR in the ER by 

molecular chaperones (Egan, 2002) and subsequent degradation via the ubiquitin-

proteasome pathway (Ward, 1995). However, the ΔF508-CFTR can essentially 

function as a cAMP-regulated Cl- channel, both in the ER and at the plasma membrane 

under distinct permissive conditions (Pasyk, 1995; French, 1996). The processing of 

ΔF508-CFTR has been particularly shown to revert to that of wild-type CFTR as the 

incubation temperature is reduced (Denning, 1992). A mouse model expressing the 

ΔF508 form of CFTR was generated by double homologous recombination (“Hit and 

Run”) procedure (van Doorninck, 1995). Of note, the mouse exon 10 amino acid 
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sequence is highly homologous to the human sequence, which suggests similar 

consequences of F508 deletion on CFTR properties in both species (Tata, 1991). Six-

week-old mice homozygous for ΔF508 mutation (Cftrtm1Eur) have abnormalities typical 

of CF, such as growth retardation, focal hypertrophy of goblet cells in the intestinal 

crypts, and higher basal nasal potential difference with reduced response to forskolin 

in trachea and intestine. However, the Cftrtm1Eur tissues show a residual Cl- 

conductance, suggesting that the mouse ΔF508-CFTR is partially processed and 

reaches the plasma membrane. Moreover, airway and gallbladder cells from Cftrtm1Eur 

mutant mice show increased cAMP-induced Cl- conductance when cultured at reduced 

temperature (27°C) (French, 1996). This may explain the minor phenotype of the 

Cftrtm1Eur versus Cftrtm1Cam mice (e.g. absence of lethal intestinal obstruction). 

Although such rescue phenomenon has not been clearly demonstrated thus far in man, 

residual Cl- transport activity has also been observed in rectal biopsies of ΔF/ΔF 

patients with milder CF phenotype (Veeze, 1994). Moreover the expression of ΔF508-

CFTR in man has been demonstrated tissue-specific, suggesting that the variable 

severity of CF in different organs may reflect heterogeneity of residual expression 

(Kalin, 1999). Thus, the ΔF508 mouse model represents a useful tool to decipher in 

vivo the complex pathophysiology of CF caused by CFTR processing defect (Type II 

mutation). 

 

The discrete renal manifestations in CF patients have prompted only few 

investigations on kidney functions in CF mouse models (Devuyst, 2002). Renal Na+ 

clearance studies were performed in control and Cftrtm2Cam ΔF508 mice and showed 

similar results in both groups under basal conditions, as well as after acute 

extracellular volume expansion (Kibble, 2001). In addition, Cftrtm2Cam ΔF508 mice 

were equally able to reduce Na+ excretion under chronic dietary salt restriction, but 

displayed an increased amiloride sensitivity, compatible with a functional interaction 

between CFTR and the Na+ channel ENaC in CD principal cells (Kibble, 2000; Letz, 

1997). The use of isolated, microperfused TAL from the Cftrtm1Unc KO mouse helped 

demonstrate that CFTR was not the molecular counterpart of the 9-pS Cl- conductance 

 49



CHAPTER I 
 

detected in this segment (Marvao, 1998; van Kuijck, 1996). In conclusion, although 

the role of CFTR in exocrine epithelia, including trachea and small intestine, has been 

studied extensively in CF mouse models (Grubb, 1999; Barriere, 2004), the issues of 

CFTR processing and function in the kidney remain largely debated.  

 

The most striking phenotype in CF mouse models has been demonstrated in the 

intestine, including blockage and perforation, typical histological changes, and ion 

transport abnormalities (Grubb, 1999). This intestinal pathology closely mimics that 

observed in 10% of CF neonates and 3% of adult CF patients (Eggermont, 1991). In 

contrast, no pulmonary manifestations of the disease were observed in CF mouse 

models (Grubb, 1999), whereas ~95% of morbidity and mortality in CF patients is due 

to lung disease with mucus plugging and chronic bacterial infection (Rowe, 2005). 

Additional differences between CF mice and patients include the relatively low 

severity of pancreatic complications and the virtual absence of pathology in the male 

genital tract (Grubb, 1999). On a practical note, CF mice, like some patients, exhibit 

milky white and particularly fragile incisor teeth resulting from abnormal enamel 

development, which help distinguish them from their heterozygous and wild-type 

littermates (Wright, 1996). 

 

An attractive explanation for the discrepancy between man and mouse CF lung 

phenotypes is that Cl- channel(s) active in mouse airways may constitute an alternative 

pathway for Cl- in the absence of CFTR (Devuyst, 2002). For instance, the tissue-

specific expression of members of the Ca++-activated Cl- channels (CaCC or CLCA) 

family has been correlated inversely with the severity of organ-level disease in CF 

(Clarke, 1994; Grubb, 1994). Other putative candidates to provide apical membrane 

Cl- transport in the absence of a functional CFTR include the ORCC channel (Gabriel, 

1993) and volume-sensitive Cl- channels (Strange, 1996). Of note, the ubiquitously 

expressed voltage-gated ClC-2 had been speculated to compensate for CFTR loss 

(Schwiebert, 1998). However, mice lacking both CFTR and ClC-2 showed a 

superimposition of the intestinal phenotype of Cftr KO mice and retinal and testicular 
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degeneration reported in ClC-2-deficient mice, without lung or pancreatic pathology 

(Jentsch, 2005). In contrast, recent studies have shown that ClC-5 was expressed at the 

apical surface of airways epithelial cells during lung ontogeny, suggesting that it may 

also participate in lung Cl- secretion (Edmonds, 2002). As a whole, these observations 

suggest that the pathophysiological consequences of the loss of CFTR function can be 

partially compensated for by the induction of another Cl- channel, as well as by the 

genetic modulation of modifier genes (Rozmahel, 1996; Rowntree, 2003). This 

possibility, which has been documented in the lung of CF mice, may apply to other 

epithelia expressing Cl- channels, including the kidney. 

 
4. Nephrogenesis 
 

Most congenital disorders of kidney tubule function manifest in the first years of 

life. The severe infantile form of cystinosis, the most common inherited cause of renal 

Fanconi syndrome, presents fluid and electrolyte losses, aminoaciduria, glycosuria, 

phopshaturia, rickets, and growth retardation generally between 6 and 12 months of 

age (Kalatzis, 2003). The early onset of tubular proteinuria in infant cases of Dent’s 

disease (Nakazato, 1997) and Imerslund-Gräsbeck disease (Christensen, 2003) further 

supports that PT function is essentially acquired at birth or during early infancy. 

Likewise, symptoms of recessive distal RTA manifest during infancy and early 

childhood, suggesting a rapid maturation of acid-base transporters along the distal 

nephron during pre- and post-natal nephrogenesis (Karet, 2002).  

These clinical observations prompted us to investigate the differential expression, 

segmental distribution and maturation of tubular transporters (and transporter 

isoforms) along the nephron during nephrogenesis. This section summarizes the major 

steps of kidney development in mammals and provides further clinical and 

experimental evidences for a progressive tubular maturation in utero and during the 

first weeks of life. The emphasis is especially set on (i) the development of PT ability 

to reabsorb LMW proteins and (ii) the differentiation of the IC and the maturation of 

urine acidification processes.  
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4.1. Major steps in kidney organogenesis 

Kidney development in mammals is characterized by three main ontogenic stages 

that develop from the intermediate mesoderm on the dorsal body wall: the pronephros, 

mesonephros and metanephros (Bard, 2003). The primitive pro- and mesonephroi 

degenerate rapidly during fœtal life, while the metanephros develops into the definitive 

adult kidney. Important events in human and mouse nephrogenesis are comparatively 

outlined in a timetable (Table 1.7) and schematically represented in Figure 1.13.  

 
Table 1.7.  Timetable for nephrogenesis : man versus mouse 
 

   

 MAN MOUSE 
   
   

PRONEPHROS   
   Development 22 d 9 d 
   Regression 25 d 10 d 
   

MESONEPHROS   
   Development 24 d 10 d 
   Regression 16 wks 14 d 
   

METANEPHROS  28-32 d 11 d 
Renal pelvis 33 d 12 d 
Collecting tubules and nephrons 44 d 13 d 
Glomeruli 8-9 wks 14 d 

   

END OF NEPHROGENESIS 34-36 wks 7-10 d after birth 
   

LENGTH OF GESTATION 40 wks 20-21 d 
   

 

From Bard, 2003 

 
The development of human metanephric kidney begins at day 28 after 

fertilization when the ureteric bud (UB) sprouts from the mesonephric Wolffian duct 

and penetrates the metanephric blastema. From that time, kidney organogenesis takes 

place by repetitive and reciprocal inductions between the UB and the metanephric 

mesenchyme (MM), with simultaneous development of renal vasculature (Gomez, 

1997). The UB dichotomously branches into the renal mesenchyme and differentiates 

into the ureter, the pelvis, the calyces, and the CD system, while the MM condenses 

around the tips of the UB and aggregates into a vesicle, with subsequent mesenchyme-

to-epithelium transformation and organization into comma- and S-shaped bodies. 

52



CHAPTER I 
 

 
Figure 1.13. Morphogenesis of the nephron 
 

Panel A. The penetration of the ureteric bud (UB) into the metanephric mesenchyme 
induces the aggregation of mesenchymal cells at the tips of UB. 
 

Panels B-C. The aggregate becomes polarized into a renal vesicle, which remains closely 
associated with the UB. The UB grows and further branches dichotomously, and the next 
generation of nephron is induced. Mesenchymal cells around the bud constitute the 
stroma, with potential stem cells. 
 

Panels D-E. At the S-shaped body stage, the renal vesicle elongates and forms two clefts, 
the most proximal of which becomes invaded by primitive endothelial cells to form the 
glomerular capillary tuft. The distal part of S shape differentiates into the proximal tubule, 
loop of Henle, and distal tubule, and connects with the collecting duct system originating 
from the UB. 
 

Adapted from Cho, 2003 

 53



CHAPTER I 
 

The distal portion of the S shape elongates and differentiates into the PT, the loop of 
Henle, and the distal tubule that fuses with the adjacent branch of the UB to form a 
continuous functional unit. Simultaneously, endothelial cells invade the proximal cleft 
of S-shaped bodies, giving rise to the glomerular capillary tuft. Glomerular filtration 
starts between the 9th and 12th GW in the human kidney and at E14 in mice. Thus, 
kidney organogenesis results from a centrifugal propagating wave of branching 
morphogenesis, tubulogenesis, glomerulogenesis, and differentiation starting in the 
renal pelvis and ending in the cortex. The developing kidney shows a clear delineation 
of the external cortex and the inner medullary region from E16.5 in mice. The 
glomeruli tend to be concentrated in the cortical area, whereas collecting ducts are 
more radially arranged in the medulla and drain to a primitive renal pelvis (Figure 1.14).  

 

 
Figure 1.14. Mouse nephrogenesis 
 

Hematoxylin-Eosin staining in the developing mouse kidney at E13.5 (A), E14.5 (B, C), 
E16.5 (D), E18.5 (E). By E13.5, the terminal part of the ureteric bud (ub) invades the 
metanephric mesenchyma and initiates its differentiation (A). The latter elongates and 
becomes an S-shaped body (B). At E14.5, the metanephros is divided into an outer 
primitive cortical region and an inner medullary region, containing few primitive glomeruli 
(g) (C). From E16.5, the developing kidney is well-subdivided into external cortical and 
inner medullary regions (D). At E18.5, kidney development is largely completed (E). Note 
that, at this stage, an outer thin band of differentiating mesenchyme remains visible under 
the renal cap. 
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Nephrogenesis ceases around 34 weeks of gestation in man and within the first 

week of life in mice. In contrast, the formation of new nephrons continues postnatally 

in premature infants of less than 35 GW like in rats and rabbits. The total number of 

nephrons per kidney, as assessed by counting glomeruli, varies widely between species 

and probably reflects the number of branches of the UB. It has been calculated that 9 

to 10 rounds of UB branching occur in mice, thereby generating 10-20,000 nephrons 

per kidney, whereas 10 additional binary divisions occur during human nephrogenesis 

to give rise to approximately a million nephrons in each kidney (Ekblom, 1994). The 

cortical region of newborn kidney contains a large number of glomeruli and proximal 

and distal convoluted tubules, as well as an outer thin band of differentiating 

mesenchyme, whereas the medulla contains components of Henle's loop interspersed 

between collecting ducts.  

 

The metanephric kidney begins to produce urine by 10 GW, which contributes to 

the formation of the amniotic fluid necessary for symmetrical fœtal growth and lung 

development (Rabinowitz R, 1989). Although water and electrolyte homeostasis is 

essentially achieved by the placenta during fœtal life, the in utero development of 

specialized nephron functions is an obvious prerequisite for the adaptation to extra-

uterine conditions at birth. Recent high-density DNA array evidences in rat developing 

kidney have grouped gene expression during organogenesis in five typical clusters of 

temporally differentially regulated genes (http://organogenesis.ucsd.edu/). Particularly, 

the group of genes encoding transporters, ion-motive ATPases, and proteins involved 

in energy production, showed a progressive and relatively linear expression during late 

nephrogenesis (Stuart, 2001). A catalogue of gene expression in mouse developing 

kidney, based on microarrays and target amplification techniques, confirmed such 

clustering of gene regulation during organogenesis, with a preferential expression of 

transporters from E16.5 (Schwab, 2003). However one should emphasize that gene 

regulation only represents the first step of tissue differentiation and needs 

complementary studies at the protein level to integrate post-translational 

modifications, like complex N-glycosylation, in differentiation and organogenesis 
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cascades (Laitinen, 1987). Indeed further transport differentiation occurs during 

postnatal maturation in every nephron segment, including changes in the relative 

abundance of transporter isoforms, or in the intracellular signalling that regulates the 

transporters (Baum, 2003). 

 

4.2. The handling of low-molecular-weight proteins in the developing kidney 

The fœtal urine represents the most important component of the amniotic fluid 
(AF) during the second half of pregnancy (Wladimiroff, 1974). Changes in AF 
composition occur with gestation. They include decreased AF [electrolytes] and 
osmolarity, and increased [creatinine]AF and [urea]AF (Henneman, 1970). A wide range 
of proteins has been identified in human AF, with a dynamic temporal pattern 
characterized by a progressive increase of AF protein concentration from GW 7 to 20 
and a subsequent decline during late gestation (Burdett, 1982). The AF concentration 
in LMW proteins has been particularly investigated as a potential marker of kidney 

tubule maturation. Indeed, the similarities in LMW protein contents (α1- and β2-
microglobulin) in the first urine of pre-term and term neonates and the AF at the same 
gestational age support that these proteins are of fœtal origin. Healthy pregnancies 
show a significant decrease in AF [LMW proteins] between the 16th and the 38th GW 
(Burghard, 1987; Cagdas, 2000). In contrast, pregnancies carrying an OCRL syndrome 

fœtus have been associated with elevated AF concentration in the 70kDa α-
fœtoprotein, reflecting fœtal renal tubular dysfunction (Miller, 1994).  

These clinical observations indicate a progressive maturation in PT ability to 
reabsorb LMW proteins during the second half of pregnancy. Further experimental 
evidences support a progressive cell polarization in the PT during nephrogenesis, with 
the segmental distribution of receptor-mediated endocytosis partners acquired at the 
time of glomerular filtration (Biemesderfer, 1992). 
 

4.2.1. Acquisition of cell polarity 

The establishment of cell surface polarity during nephrogenesis is a multistage 

process involving cell-cell and cell-matrix interactions, as well as distinct proteins 

participating in intracellular transport (Karp, 2003). The polarization process starts at 

the time of mesenchyme-to-epithelium transition, as the forming tubular epithelium 
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develops specific transport functions (Figure 1.13). All epithelial cells are 

characterized by an apical domain that mediates specific and selective exchanges with 

the external milieu and a basolateral domain less specific responsible for cell-cell 

interactions and attachment to the basal membrane and the extracellular matrix. 

Surface membrane polarity is particularly important for nephron functions, since 

tubular epithelial cells represent the unique interface between the glomerular 

ultrafiltrate and the interstitium.  

The cellular polarization is generated by differential protein and lipid sorting and 

maintained by the tight junctions that form a structural and functional barrier at the 

apex of the cell (Brown, 2000b; Aijaz, 2006). Most proteins involved in the 

development of the cytoskeleton and domain-specific membrane components, 

including the protein trafficking machinery, have been identified in early stages of 

kidney development (Lehtonen, 1999). In addition, the differential expression of 

specific surface membrane transporters has been demonstrated in defined morphogenic 

stages (Horster, 2000). Interestingly, the expression of alternative subunit isoforms 

within the same transporter class varies during kidney development, as described for 

the amiloride-sensitive ENaC, the CFTR, the Na+/Pi co-transporter, and the Na+/K+-

ATPase (Canessa, 1994; Devuyst, 1996a; Segawa, 2002; Burrow, 1999). As an 

example, the B2 isoform of Na+/K+-ATPase is expressed throughout nephrogenesis 

and the pump is found at both apical and basolateral domains. After birth, the B2 

subunit is downregulated and replaced by the B1 isoform and the Na+/K+-ATPase is 

restricted to the basolateral domain (Burrow, 1999). These data support specific 

inductive signals that are temporally and spatially regulated and participate in the 

specialization of apical and basolateral domains (Baum, 2003). 

These observations provide a basis on which to evaluate causal relations in 

morphogenesis, cell polarization, and functional differentiation. Any alteration that 

disrupts the polarity of surface membrane domains will indeed prevent normal cell 

function and result in organ dysfunction and potentially a disease state (Wagner, 

1999). 
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4.2.2. Ontogeny of megalin and cubilin 

Megalin has been identified in rat trophoectodermal cells as early as day-4 pre-

implantation, and co-distributes with cubilin in coated pits of the first endoblastic cells 

in day-6 pre-implantation rat embryo (Sahali, 1993). Both receptors are present along 

the endocytic apparatus of the visceral yolk sac throughout gestation. Megalin has also 

been located at the surface of neurectodermal structures and later in the neural cavities. 

Megalin-deficient mice exhibit severe malformations of the forebrain similar to 

syndromes in man caused by insufficient supply of cholesterol during development, 

suggesting that megalin participates in the maternal-fœtal lipoprotein transport 

(Willnow, 1996). Most of megalin KO mice die within minutes after birth, apparently 

due to an inability to breath. Likewise, the importance of cubilin in organogenesis is 

strongly suggested by the severe fœtal malformations observed after injection of 

antibodies directed against cubilin during rat gestation (Sahali, 1988). 

During renal development, megalin is found in the mesonephric tubules and in 

the early metanephric vesicles, whereas cubilin is first detected in S-shaped bodies 

(Sahali, 1993). Megalin is diffusely distributed in S-shaped bodies in the presumptive 

areas of the glomerulus, the proximal, and the distal tubules. In these cells, megalin is 

expressed on both apical and basolateral membranes, as well as intracellularly in the 

cisternae of the rough ER and in the perinuclear area. With nephron maturation, the 

expression of megalin and cubilin becomes progressively restricted to the epithelial 

cells of the PT, with a subcellular distribution compatible with clathrin-coated 

membrane domains and endosomes (Christensen, 2002b). The absence of gross kidney 

phenotype in megalin-deficient mice indicate that megalin is not required for 

nephrogenesis (Willnow, 1996). However, the loss of megalin induces a severe 

disruption of the endocytic apparatus of PT cells (Leheste, 1999). These data support 

that the complex maturation process of megalin and cubilin participates in the global 

organization of PT brush border during kidney development. Interestingly, the 

segmental distribution of both receptors coincides with the onset of glomerular 

filtration (Biemesderfer, 1992).  
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4.2.3. Ontogeny of V-ATPase subunits 

The V-ATPase is ubiquitous in eukaryotic cell endomembranes, as well as in the 

plasma membrane of specialized cell types (Wagner, 2004). A growing body of 

evidence supports a role of the V-ATPase in cell proliferation and differentiation 

(Otani, 2000), as well as its participation in cell death regulation (Coakley, 2002). The 

intracellular compartments acidified by the V-ATPase are present from the one-cell 

stage of mouse pre-implantation embryo, with a polarized perinuclear distribution 

upon differentiation of the trophoblast and the inner cell mass at the blastocyst stage 

(Sun-Wada, 2000). Genetic inactivation of the V-ATPase 16-kDa proteolipid c subunit 

in mice causes a lack of post-implantation development (Inoue, 1999). When cultured 

in vitro, V0 c-null blastocysts grow significantly slower than controls, with swollen 

Golgi complexes and impaired endocytosis and most cells fail to survive for more than 

4 days. These observations indicate that intracellular organelle acidification is essential 

for development after implantation (Sun-Wada, 2000). Similarly, the deletion of V-

ATPase B subunit in Drosophila leads to early larval lethality, whereas point 

mutations cause defective phenotypes ranging from subvital to embryonic lethal 

(Davies, 1996). Moreover, the effect of the V-ATPase on pH and membrane potential 

may serve as one of the earliest signals for left-right asymmetry in Xenopus embryos, 

as well as in chicks and zebrafish (Adams, 2006). In later embryonic stages, the V-

ATPase V0 c subunit is detected by northern blotting and in situ hydridization 

analyses from E14 in rat, especially at sites of mesenchymal differentiation and 

mesenchyme-epithelium interactions (Numata, 1995). Thus, the V-ATPase activity 

appears essential for both early and late phases of fœtal development. 

The expression and distribution of V-ATPase subunits during nephrogenesis 

remains singularly unknown, although mutations in genes encoding kidney-specific V-

ATPase subunits have been associated with infant cases of distal RTA (Karet, 2002). 

Mouse models with conditional null mutations of distinct V-ATPase subunits may be 

crucial to further evaluate V-ATPase importance in early and late kidney 

organogenesis. Moreover characterizing the developmental pattern of subunit isoforms 
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in comparison to established markers of nephron segments may help decipher the 

complex maturation of the nephron.  

 

4.2.4. Ontogeny of the Cystic Fibrosis Transmembrane conductance Regulator 

The cAMP-activated Cl- channel CFTR is abundantly expressed in fœtal and 

postnatal lung, pancreas, and kidney in man, rat, and rabbit (Horster, 2000). In situ 

hybridization analysis of CFTR mRNA distribution in human fœtal tissues 

demonstrates temporal and tissue-specific patterns (Tizzano, 1993; Trezise, 1993). 

Most CFTR-positive sites in the fœtus are similar to those reported in adult tissues. 

However, the levels of CFTR mRNA expression in fœtal epithelia during the second 

trimester of human gestation are significantly higher than those in adults. CFTR is 

primarily detected in undifferentiated multipotent stem cells of pulmonary and 

pancreatic epithelia and gradually dissipates with epithelial differentiation (Hyde, 

1997; Broackes-Carter, 2002). Cell differentiation is further associated with a 

significant shift from apolar to apical localization of CFTR (McGrath, 1993). The in 

utero overexpression of CFTR (adenovirus recombinant CFTR transgene) in normal 

rodents and primate fœtuses accelerates significantly the lung maturation (Larson, 

2005). Conversely, the lack of functional CFTR during the fœtal period in CF patients 

disrupts the normal development of lung, intestine, and pancreas, with early sub-

clinical inflammation and infection (Imrie, 1979; Ornoy, 1987). These findings 

prompted in utero gene therapy trials in Cftr KO mouse models that were proven to 

rescue the lethal phenotype of meconium ileus (Larson, 1997).  

During human nephrogenesis, CFTR has been detected as early as 12 GW, with a 

segmental distribution including mostly the apical region of the branching UB 

(Devuyst, 1996a). This pattern of expression, also observed in rat developing kidney 

(Huber, 1998), is similar to that found during branching morphogenesis in pancreas 

and lung (Horster, 2000). Besides its relatively stable expression pattern in UB 

epithelial cells, CFTR abundance significantly increases in the cytoplasm of PT and 

loops of Henle from 15 to 24 GW. This increased immunoreactivity correlates with the 

morphological maturation of these segments and with the appearance of the water 
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channel aquaporin-1 in PT cells (Devuyst, 1996b). No glomerular staining for CFTR 

can be detected at any stage. In addition, a splice variant of CFTR (TNR-CFTR), that 

possesses only the TMD1, the NBD1 and the R domain (Figure 1.12), has been 

identified in man and rat developing kidney. This variant is predominantly present in 

intracellular compartments and shows distinct regulation during kidney organogenesis 

(Devuyst, 1996a; Huber, 1998). These observations show the complex regulation of 

CFTR during organogenesis and raise the question, still unsolved, of the respective 

roles of the full-length and the splice variant CFTR proteins in the developing and 

mature kidney. Indeed, CF patients do not show overt developmental abnormalities in 

the urinary excretory system, although CF-related changes in the male genital tract 

indicate that CFTR participates in the development of the mesonephrotic duct (Trezise, 

1993).  

 

4.3. Acid-base homeostasis during nephrogenesis 

When analyzing the maturation of acid-base transport in the developing kidney, it 

is helpful to distinguish HCO3
- reabsorption, primarily ensured by the PT, from net 

acid secretion occurring in the distal nephron. Both term and pre-term infants have a 

lower plasma [HCO3
-] than adults do, which is thought to reflect a lower renal HCO3

- 

threshold (intrinsic capacity of the PT to reabsorb HCO3
-) and/or a state of relative 

volume expansion in early life (Edelmann, 1967). In addition, infants exhibit a larger 

fall in blood pH and [HCO3
-] than older subjects in response to a comparable acid 

load, as well as a smaller and slower fall in urinary pH (Satlin, 2003). Such renal 

response to acid loading has been shown to increase with both gestational and 

postnatal ages, with a 50% increase in both H2PO4
- and NH4

+ excretion in the first 3 

weeks of life (Svenningsen, 1974). These observations indicate that infants operate at 

close to their maximum rates of both HCO3
- reabsorption and H+ secretion. Therefore 

the expression, distribution, and maturation of acid-base transporters during pre- and 

postnatal nephrogenesis, appear essential to compensate the acid-generating processes 

of growth and diet changes at the time of weaning (Baum, 2003; Chan, 1974). 
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4.3.1. Maturation of acid-base transport in the proximal tubule 

In acid-base homeostasis, PT cells are responsible for the reabsorption of ~80% 

of filtered HCO3
-. For that purpose, PT cells are equipped with the apical Na+/H+ 

exchanger NHE3 and V-ATPase (H+ secretion) and the Na+/HCO3
- co-transporter 

NBC1 on the basolateral membrane (HCO3
- reabsorption). In addition, the cytosolic 

CAII and membrane-bound CAIV facilitate renal acidification by catalyzing the 

reversible hydration of CO2 into HCO3
- + H+ (Figure 1.7). Most partners of this H+ 

secretion and HCO3
- recovery machinery have been investigated in the developing 

kidney. The activities of CAII and CAIV have been detected in the early human fœtal 

kidney, with primarily cytoplasmic distribution and progressive extension to plasma 

membrane with maturation (Larsson, 1985). The abundance of CAII and CAIV 

increases gradually after birth in rats and rabbits, which probably contributes to the 

three-fold increase in HCO3
- reabsorption in the maturing PT (Karashima, 1998; 

Winkler, 2001). The NHE3 activity in PCT isolated from rabbit neonatal kidney 

represents only one third of that in adults, when assayed from the rate of recovery of 

cell pH after cell acidification (Baum, 2003). The participation of Na+-independent H+ 

secretion, presumably via the V-ATPase, in pH recovery from an acid load appears 

minor in neonatal versus adult PCT. However, the administration of glucocorticoids to 

rabbit and rat late in development accelerates PT maturation, with increased NHE3 

abundance and HCO3
- reabsorption to the adult level (Baum, 1995; Gupta, 2001). 

Recent studies in mice have further demonstrated massive and simultaneous changes 

in mRNA and protein expression levels of acid-base transporters during postnatal 

kidney maturation (Bonnici, 2004). Altogether these data demonstrate a significant 

postnatal increase in PT acidification ability that may reflect maturational changes of 

hormone levels, such as glucocorticoids. 

 

4.3.2. Differentiation of the intercalated cells 

The differentiation and maturation of the various cell types within the CD is 

poorly understood. Particularly, the embryologic origin of the IC has not been 

established. Studies in rats have shown that CAII and the V-ATPase are 
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simultaneously detected in IC of the metanephric nephron and the CD at the end of 

gestation (Kim, 1994). During the first weeks of life, IC continue their maturation, but 

are partially removed from specific parts of the CD by apoptosis (β-type) or luminal 

extrusion (α-type) (Kim, 1996). Recently the winged helix transcriptional factor, 

Foxi1, previously located in mouse fœtal distal nephron (Overdier, 1997), has been 

shown to play a crucial role in IC differentiation from epithelial precursor cells in the 

CD (Blomqvist, 2004). 

 

 
Figure 1.15. Differentiation scheme for intercalated cells of the collecting duct 
 

Embryonic precursor cells of ureteric bud origin gradually acquire an epithelial phenotype. 
These cells constitute a transient cell population that expresses both type II carbonic 
anhydrase (CAII) and the water channel aquaporin-2 (AQP2). Activation of Foxi1 is 
required for this common progenitor to further develop into two separate specialized cell 
types: principal cells (Foxi1-, CAII-, AQP2+) and intercalated cells (Foxi1+, CAII+, AQP2-). 
During the first weeks of life, IC continue their maturation, but are partially removed from 
the medullary collecting duct (MCD) by apoptosis (β-type) or luminal extrusion (α-type). 
 

Modified from Blomqvist, 2004 

 
In silico studies (http://mordor.cgb.ki.se/cgi-bin/CONSITE/consite), coupled with 

cell-based reporter gene assays, indicate that gene promoters of IC-specific markers, 
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such as AE1, AE4, pendrin, and IC-specific V-ATPase subunits, exhibit Foxi1 DNA 

binding consensus sequence (Kurth, 2006). Interestingly, mice lacking Foxi1 have no 

IC as judged by electron microscopy and by the absence of IC-specific proteins. The 

entire CD of the mutant mice seems to be composed of one single cell type that 

expresses both IC (CAII) and principal cell (aquaporin-2) proteins. Consequently, 

Foxi1 KO mice develop a typical phenotype of distal RTA, with overt metabolic 

acidosis, hypokalaemia, and decreased capacity to secrete protons (Blomqvist, 2004). 

These observations, as well as the role of Foxi1 in inner ear development (Hulander, 

2003), led the authors to propose that Foxi1 activates a whole program of gene 

expression in epithelial precursor cells lining the UB, with a direct effect on IC 

determination (Figure 1.15). Moreover, mutations in FOXI1 gene, located on 

chromosome 5q34, might prove to cause a sensorineural deafness syndrome with type 

1b distal RTA, like mutations in ATP6V1B1 gene. 

 
In conclusion, the functional maturation of the metanephric kidney is a gradual 

process that lags behind anatomic maturation and is not completed in utero. The 

neonatal kidney plays a key role not only in water and electrolyte homeostasis, but 

also in the process of growth by maintaining a positive balance for most electrolytes, 

amino acids, (oligo-)peptides, and vitamins. Further studies of transporter abundance, 

distribution, and biophysical properties, as well as investigations of the differential 

expression of transporter isoforms during nephrogenesis, are essential to identify the 

factors that promote such developmental changes. 
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5. Aims of the study 
 

The epithelial cells lining the PT have an extensive apical endocytic apparatus 

that is responsible for the reabsorption of filtered albumin and LMW proteins, as well 

as for the recycling of numerous functionally important plasma membrane proteins 

(Birn, 2006). The trafficking of internalized receptor-ligand complexes along the 

endocytic pathway depends on the progressive acidification of endocytic vesicles 

driven by the V-ATPase. Such translocation of H+ from cytosol to endosomes is 

necessarily coupled with a parallel Cl- conductance to neutralize the H+ electrical 

gradient (ΔΨ) (Jentsch, 2005). Although the nature of this endosomal Cl- conductance 

remains uncertain, recent studies performed in our laboratory on Dent’s disease and 

ClC-5, as well as on CF and CFTR, have postulated a crucial role for Cl- transporters 

in PT receptor-mediated endocytosis and intracellular trafficking (Devuyst, 2002; 

Christensen, 2003). In addition to PT cells, the V-ATPase and ClC-5 co-distribute in 

the IC of the CD which are mainly involved in acid-base homeostasis. At this location, 

the V-ATPase complex is located at the plasma membrane and is composed of specific 

subunits. Mutations in ATP6B1B1 and ATP6V0A4 genes encoding such IC-specific 

subunits of the V-ATPase cause distal RTA in infancy or early childhood (Karet, 

2002). The comparative ontogeny of ubiquitous vs. IC-specific V-ATPase isoforms 

may help characterize the time course of IC differentiation along the developing 

nephron and the pathophysiology of inherited distal RTA.  
 

In the first part of this work, we investigate the ontogeny of ClC-5 and the V-

ATPase in man and mouse kidney development. Our data demonstrate that their 

segmental distribution in PT cells is essentially achieved during early nephrogenesis, 

in parallel with the onset of glomerular filtration (Chapter II). Conversely, the 

developmental pattern of the IC-specific V-ATPase subunit isoforms shows a 

progressive appearance in late nephrogenesis, following the induction of the forkhead 

transcription factor Foxi1 (Chapter III). We further characterize the tissue 

distribution of a novel V-ATPase subunit (V0 d2) in mice, and find that its segmental 
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distribution mostly includes the plasma membrane of the IC in both fœtal and adult 

kidney (Chapter IV). 

 

In the second part, we assess the role of CFTR in kidney function (Chapter V). 

We demonstrate that the segmental expression of CFTR, at both the mRNA and 

protein levels, includes the straight part S3 of the PT, with a subcellular distribution 

compatible with endosomes. Taking advantage of Cftrtm1Cam (KO) and Cftrtm1Eur 

(ΔF508) mutant mice, we next characterize the role of CFTR in PT apical endocytosis, 

in comparison to the Clcn5Y/- mouse model of Dent’s disease. Finally, we evaluate the 

renal handling of LMW proteins in a representative cohort of CF patients harbouring 

the ΔF508 mutation vs. age- and gender-matched controls. 
 

In the last part of the project, we investigate the metabolic and functional 

consequences of PT dysfunction in ClC-5-deficient mice. Based on differential display 

results showing a consistent upregulation of the gene Car3 encoding Type III CA 

isozyme in Clcn5Y/- kidneys, we further address the putative role of this cytosolic 

protein involved in cell oxidative defences using other mouse models of renal Fanconi 

syndrome and PT cell cultures (Chapter VI). In parallel, we demonstrate the 

feasibility and the benefits of a small-animal SPECT (single photon emission 

computed tomography) prototype developed in the Nuclear Medicine Department of 

our institution to explore PT functions in conscious mice (Chapter VII). 
 

These studies provide new insights into the implication of the Cl- transporters 

ClC-5 and CFTR and the V-ATPase in renal tubular maturation and in the 

pathophysiology of inherited tubular disorders. 

 

 

*** 
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Summary 
 

Inactivation of the chloride channel CFTR causes CF. Although CFTR is 

expressed in the PT of the kidney, no renal phenotype has been documented in CF 

patients. Here, we investigated the expression, subcellular distribution, and processing 

of CFTR in the kidney; used different mouse models to assess the role of CFTR in PT 

function; and tested the relevance of these findings in CF patients. 

The level of CFTR mRNA in mouse kidney approached that found in lung. 

CFTR was located in the apical area of PT cells, with a maximal intensity in the 

straight part (S3) of the PT. Subcellular fractionation showed that CFTR co-distributed 

with the chloride/proton exchanger ClC-5 in PT endosomes. Two CF mouse models 

were used to assess the role of CFTR in PT endocytosis. Cftr-/- mice showed impaired 
125I-β2-microglobulin uptake, together with a decreased amount of the multi-ligand 

receptor cubilin and a significant loss of LMW cubilin ligands in the urine. Defective 

receptor-mediated endocytosis was less consistently found in CftrΔF/ΔF mice, 

characterized by a large phenotypic heterogeneity, and moderate vs. mice lacking ClC-

5. The defective PT endocytosis, evidenced by increased urinary excretion of LMW 

ligands, was confirmed in a cohort of CF patients vs. controls.  

In conclusion, CFTR inactivation leads to a moderate defect in receptor-mediated PT 

endocytosis, associated with a significant LMW proteinuria in mouse and man. The 

magnitude of the endocytosis defect caused by CFTR vs. ClC-5 loss likely reflects 

functional heterogeneity along the PT.  
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5.1. Introduction 
 

Cystic fibrosis (CF, OMIM #219700), the most common autosomal recessive 

disease in Caucasians, is caused by mutations in the CFTR gene that encodes the 

chloride channel and conductance regulator, CFTR (1,2). CFTR is a 1480 amino acid 

protein that belongs to the ABC family of integral membrane proteins. It is located 

mainly in the apical membrane area of secretory epithelia, where it functions as a 

cAMP-dependent chloride channel and as a conductance regulator via interactions 

with other ion channels (2). Mutations in CFTR are classified into five groups 

according to their structural or functional consequences on the protein. The deletion of 

three bases encoding a phenylalanine residue at position 508 (ΔF508), occurring in 

approximately 70% of CF patients, results in the misfolding and lack of maturation of 

the CFTR protein (3). Most of the clinical features observed in CF patients originate 

from mucosal obstruction of exocrine glands, such as the respiratory system, pancreas, 

intestine, gallbladder and sweat glands (1-3). 

Besides exocrine epithelia, CFTR has been located in the mammalian kidney, 

which primarily ensures reabsorptive functions (4). During human nephrogenesis, 

CFTR is expressed in the apical membrane of the branching ureteric bud and, later, in 

the apical pole of PT cells in the cortex where it remains detected after birth (5,6). A 

functional truncated isoform (TNR-CFTR) has also been described in the kidney, with 

a distinct ontogeny pattern and a minor plasma membrane expression than full-length 

CFTR (7,8). Despite the high level of CFTR expression in the developing and mature 

kidney, no documented renal phenotype has been clearly associated with CF, except 

for enhanced clearance of some drugs including aminoglycosides (4,9). The incidence 

of kidney stones in CF patients may also be increased, but the relative contribution of 

lithogenic factors or impaired hydration remains elusive (4,10). In addition to its 

location in the apical membrane, CFTR is distributed in intracellular organelles along 

the endocytic and secretory pathways (11,12). Inhibition of endocytic activity, as well 

as defective acidification in trans-Golgi and pre-lysosomal compartments has been 

reported in CF cells (13). However the exact role of CFTR in regulating organelle pH 
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remains controversial, with hyper- rather than hypo-acidification suggested to occur in 

CF respiratory epithelial cells (14). 

Recent findings about the endosomal protein, ClC-5, which belongs to the CLC 

family of Cl- channels/exchangers, have provided insights into the role of anion 

transporters in PT cells (15). In normal conditions, LMW proteins as well as albumin 

and transferrin in some species are ultrafiltered by the glomerular membrane, but 

almost entirely reabsorbed by receptor-mediated endocytosis at the apical side of PT 

cells (16). The loss of ClC-5, which co-distributes with the V-ATPase in PT 

endosomes, causes a major defect in receptor-mediated endocytosis and a LMW 

proteinuria in Clcn5 KO mice (17,18) like in patients with Dent’s disease, which is 

caused by inactivating mutations in CLCN5 (19). By analogy, other intracellular 

anionic transporters such as CFTR might play a role in the endocytic reabsorption of 

LMW proteins by the kidney (4,15). 

In this study, we describe the segmental and subcellular distribution of CFTR in 

the kidney, at both the mRNA and protein levels. Taking advantage of Cftr-/- and 

CftrΔF/ΔF mutant mice, we characterize the role of CFTR in PT apical endocytosis, in 

comparison to the Clcn5Y/- mouse model. Finally, we evaluate the renal handling of 

LMW proteins in a representative cohort of CF patients harbouring the ΔF508 

mutation vs. age- and gender-matched controls. 

 

5.2. Patients, materials and methods 
 

CF mouse models. Experiments were conducted on 12-week-old, gender-matched Cftr+/+ and Cftr-/- 

mice (129/C57Bl/6 background), generated by targeted deletion of exon 10 of Cftr (20); and gender-

matched CftrN/N and mutated CftrΔF/ΔF mice (FVB background), generated by double homologous 

recombination (21). All animals had free access to appropriate standard diet (Carfil Quality, Oud-

Turnhout, Belgium) and water enriched with Kleanprep solutionTM (Helsinn Birex Pharmaceuticals, 

Dublin, Ireland). The renal phenotype of CF mice was compared to Clcn5Y/- mice, an established 

model of Dent’s disease (18,22). The experiments were conducted in accordance with the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the 

Ethics Committee of the Université catholique de Louvain. 
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Real-time RT-PCR analyses. Total RNA from mouse kidney samples was extracted by Trizol 

(Invitrogen, Merelbeke, Belgium), treated with DNase I (Invitrogen) and reverse-transcribed into 

cDNA using SuperScript II Rnase H (Invitrogen). Specific mouse primers were designed using 

Beacon Designer 2.0 (Premier Biosoft International, Palo Alto, CA; see Table 5.1). Real-time RT-PCR 

analyses were performed in duplicate with 200 nM of both sense and anti-sense primers in a final 

volume of 25 μl of iQ SYBR Green Supermix (Bio-Rad, Nazareth, Belgium). The PCR mixture 

contained 10 nM fluorescein for initial well-to-well fluorescence normalization. PCR conditions were 

settled as incubation at 94°C for 3 min followed by 40 cycles of 30 sec at 95°C, 30 sec at 61°C and 1 

min at 72°C. The melting temperature of PCR product was checked at the end of each PCR by 

recording SYBR green fluorescence increase upon slowly renaturating DNA. For each assay, standard 

curves were prepared by serial 4-fold dilutions of mouse adult kidney cDNA, and primers efficiencies 

were calculated [efficiency = (10-1/slope) – 1] (Table 5.1). CFTR mRNA expression was investigated in 

4 adult male lungs and kidneys, after normalization to HPRT1: Ratio = 2ΔCt (Lung-Kidney) CFTR / 2ΔCt (Lung-

Kidney) HPRT1. CFTR mRNA expression was further quantified in S1 versus S3 PT samples: Ratio = 2ΔCt  

(GAPDH-CFTR). Real-time PCR results were confirmed with two sets of primers for CFTR and ClC-5, and 

using two reporter genes, HPRT1 and GAPDH. 

 
Table 5.1. Primers used for semi-quantitative and real-time RT-PCR. 
 

     

 Forward Reverse Length (bp) Efficiency
     

     

Cftr 5’ GATTTTGGGAGAACTGGAAGC 3’ 

5’ GATGGTGTCTCATGGAATTCA  3’ 

5’ GTTGGCAAGCTTTGACAA 3’ 

5’ GAGCTGTCCAGGAAACTGCT 3’ 

166 

193 

1.05 ± 0.03 

1.02 ± 0.01 
     

Clcn5 5’ TGGAGGAGCCAATCCCTGGTGT 3’ 

5’ AAGTGGACCCTTGTCATCAA 3’ 

5’ CAGTGTGAGCGATGCTTTCT 3’ 

5’ACAAGATGTTCCCACAGCAG 3’ 

156 

115 

0.95 ± 0.07 

1.04 ± 0.02 
     

podocin 5’ GTCTAGCCCATGTGTCCAAA 3’ 5’ CCACTTTGATGCCCCAAATA 3’ 162 0.96 ± 0.02 

     

Aqp1 5’ GCTGTCATGTATATCATCGCC 3’ 5’ AGGTCATTTCGGCCAAGTGA 3’ 102 1.03 ± 0.04 

     

Clcnkb 5’ GGCTACCAGCAAACCCTTGT 3’ 5’ CATCAGTGCCCAGGAGTTGT 3’ 151 0.99 ± 0.04 

     

Aqp2 5’ TCACTGGGTCTTCTGGATCG 3’ 5’ CGTTCCTCCCAGTCAGTGT 3’ 147 1.03 ± 0.04 

     

tnAP 5’ CGTTTTCACATTCGGTGGAT3’ 5’ TGGAGACATTTTCCCGTTCA 3’ 155 0.96 ± 0.07 

     

GAPDH 5’ TGCACCACCAACTGCTTAGC 3’ 5’ GGATGCAGGGATGATGTTCT 3’ 176 1.04 ± 0.03 

     

HPRT1 5’ ACATTGTGGCCCTCTGTGTG 3’ 5’ TTATGTCCCCCGTTGACTGA 3’ 162 1.01 ± 0.01 
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Microdissection studies. Renal cortices from male C57/Bl6 mice were dissected and minced, before 

incubation with 0.1% (w/v) type-2 collagenase solution containing 100 μg/ml soybean trypsin 

inhibitor for 30 min at 37°C. After digestion, the supernatant was sieved through 250 μm and 80 μm 

nylon filters. Nephron fragments remained in the 80 μm sieve and were resuspended by flushing. 

Distinct segments (glomeruli, S1 and S3 PT, thick ascending limbs (TAL) and CD) were isolated upon 

their morphological features (23), and preserved in RNA laterTM (Westburgh, Leusden, The 

Netherlands). Four distinct collections were snap-frozen in liquid nitrogen and conserved at –80°C. 

The extraction of total RNA was performed using RNAqueous-MicroTM kit, following the 

manufacturer’s recommendations (Ambion, Huntingdon, UK). 

 

Antibodies. The following antibodies were used : affinity-purified rabbit polyclonal antibodies 

(MD1314) against the C-terminus of rodent CFTR (24, Dr. C.R. Marino, V.A. Medical Center, The 

University of Tennessee, Memphis, TN, USA); the N-terminus of human ClC-5 (18); AQP1 

(Chemicon, Temecula, CA); cubilin (Dr. P. Verroust, INSERM, Paris, France); Rab5a (Santa Cruz 

Biotechnology, Santa Cruz, CA); villin (Dr. D. Louvard and S. Robine, Institut Curie, Paris, France); 

and transferrin (Dako, Glostrup, Denmark); goat polyclonal antibodies against cathepsin D (Santa 

Cruz Biotechnology); sheep polyclonal antibodies against megalin (Dr. P. Verroust); mouse 

monoclonal antibodies (E11) against the E1 subunit of V-ATPase (Dr. S. Gluck, University of 

California, San Francisco, CA); and β-actin (Sigma, St Louis, MO). 

 

Western blotting and deglycosylation studies. Membrane extracts were prepared as described (25). 

Kidney samples were homogenized in ice-cold sucrose buffer containing CompleteTM protease 

inhibitors (Roche, Vilvoorde, Belgium) and centrifuged at 1,000 g for 15 min at 4°C. The supernatant 

was centrifuged at 100,000 g for 120 min at 4°C. The resulting pellet (“membrane” fraction) was 

suspended in ice-cold homogenization buffer and stored at –80°C. Protein concentrations were 

determined with the bicinchoninic acid protein assay using BSA as standard. Deglycosylation studies 

using N-glycosidase F (Roche) and SDS-PAGE and immunoblotting were performed as described 

(25). Equal loading was verified by reprobing against β-actin. All immunoblots were performed at 

least in duplicate. 

 

Immunostaining. Kidney samples were fixed in 4% formaldehyde (Boehringer Ingelheim, Heidelberg, 

Germany) in 0.1 M phosphate buffer, pH 7.4, prior to embedding in paraffin as described (25). Six-μm 

sections were first incubated in 0.01 M citrate buffer, pH 5.8, for 75 min, in a water bath heated at 

97°C, before cooling down and rinsing. After blocking endogenous peroxidase for 30 min with 0.3% 

hydrogen peroxide, sections were incubated with 10% normal serum, then with the primary antibodies 

diluted in PBS containing 2% BSA. After washing, sections were successively incubated with 
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biotinylated secondary anti-IgG antibodies, avidin-biotin peroxidase, and aminoethylcarbazole (Vector 

Laboratories, Brussels, Belgium). Sections were viewed under a Leica DMR coupled to a Leica 

DC300 digital camera (Leica, Heerbrugg, Switzerland).  

 

Analytical subcellular fractionation. Kidneys were homogenized in 0.25 M sucrose, 3 mM imidazole 

buffer, pH 7.4, containing CompleteTM protease inhibitors (Roche), in a Potter-Elvehjem tissue 

homogenizer (Thomas Scientific, Swedesboro, NJ) (26). A low-speed "nuclear" fraction was pelletted 

at 700 x g for 10 min and extracted twice by resuspension/sedimentation; pooled postnuclear 

supernatants were further sedimented at 100,000 x g for 60 min in a 50Ti fixed-angle rotor (Beckman, 

Palo Alto, CA). This high-speed pellet was resuspended in 1 ml of homogenization buffer, mixed with 

7 ml of 16 % (vol/vol) Percoll (average final density: 1.048 g/ml), layered over a 250-μl Percoll 

cushion, and centrifuged at 60,000 x g for 30 min in a 50Ti rotor into a self-generating gradient. Ten 

fractions (750 μl each) were collected from the bottom and numbered from 1 (light) to 10 (dense).   

 

Measurement of endocytic tracer uptake. Mice were anaesthetized under anesketin (Eurovet, Brussels, 

Belgium) and rompun (Bayer, Brussels, Belgium), and injected i.v. with 620 ng/g body weight of 

radiolabeled 125I-β2-microglobulin (Sigma). After 7 min, kidneys were exsanguinated in situ. One 

kidney was fixed for 6 h at 4°C in 4% formaldehyde for immunostaining and autoradiography. The 

contralateral kidney and the liver were homogenized and analyzed biochemically as previously 

reported (22).  

 

Urine and plasma analyses in mice. Animals were kept in metabolic cages for 24 h with ad libitum 

access to food and drinking water. Urine was collected on ice-cold CompleteTM protease inhibitors 

(Roche). Blood was obtained by aorta puncture at the time of sacrifice. Plasma and urine levels of 

electrolytes, urea and creatinine were measured by standard methods (Eastman Kodak Company, 

Rochester, NY), whereas CC16 concentration, a 16 kDa marker for PT dysfunction, was determined in 

duplicate by latex immunoassay (18). 

 

CF patients and controls. Thirty unselected CF patients (range: 3 to 39 year-old) were investigated 

during their routine follow-up at the St-Luc Academic Hospital, Brussels, Belgium, and compared to 

age- and gender-matched controls. The diagnosis of CF was based on clinical characteristic findings and 

a positive sweat testing (3). Genotyping identified the ΔF508 mutation in all patients (homozygous in 

25/30; heterozygous with N1303K, G542X, or 3849 10 kb C T in 3/30; second mutation not identified 

in 2/30). Second-morning urine samples were analyzed routinely for creatinine, albumin, CC16, β2-

microglobulin, transferrin and calcium. The protocol was approved by the Université catholique de 

Louvain Ethical Review Board. All patients and controls gave informed consent. 
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Figure 5.1. Expression of CFTR in mouse kidney: mRNA and protein studies 
 

Panel A. Comparative expression levels of CFTR mRNA in mouse lung and kidney. Quantitative real-
time RT-PCR shows that the abundance of CFTR mRNA in kidney reaches ~60% of that in lung, 
considered as reference organ. Results are presented as ratios (x103) to the reporter gene HPRT1 
(n=4 kidneys/lungs from 4 different mice). 
 

Panels B - C. Differential expression of CFTR in microdissected nephron segments. (B) Semi-
quantitative RT-PCR for segment-specific markers confirms the purity of fractions, with glomeruli 
(podocin), PT (AQP1), TAL (ClC-Kb) and CD (AQP2). RT-PCR products (20 μl per lane) were size-
fractionated on 1.5% agarose gel. (C) Real-time RT-PCR quantification demonstrates that the 
abundance of tissue-nonspecific alkaline phosphatase mRNA (tnAP) is ~8-fold greater in S1 than in 
S3 PT segments. ClC-5 mRNA is equally abundant in S1 and S3 samples, whereas CFTR expression 
is ~ 3-fold  more abundant in S3 than in S1 segments (n=4).  
 

Panel D. Representative immunoblots for CFTR in lung and kidney from Cftr+/+ and Cftr-/- mice. 
Membrane extracts (30 μg/lane) were run on 5% PAGE and transferred to nitrocellulose. The blot was 
probed with MD1314 anti-CFTR antibodies (1/500) and, after stripping, β-actin (1/10.000). In lung, 
both B (150 kDa) and C bands (180 kDa) are present, whereas, in kidney, CFTR is detected as a 
single large band at ~160 kDa (asterisk). In both tissues, immunoreactive bands for CFTR are absent 
in Cftr-/- extracts. 
 

Panel E. Representative immunoblots for DF508-CFTR in lung and kidney. In CftrDF/DF lung, the fully 
glycosylated protein (C band) strongly decreases whereas the B band increases. In the CftrDF/DF 
kidney, there is a strong reduction in the CFTR immunodetection signal at 160 kDa (asterisk), 
requiring longer film exposure (60 min vs. 1 min) for visualization. 
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Statistical analyses. Unless specified otherwise, data are given as mean ± SEM. Non-normally 

distributed human parameters were compared after log-transformation, using SPSS V11.5.1 software 

(Chicago, IL). A multivariate model using stepwise regression was performed to assess the influence 

of previous aminoside treatment on LMW proteinuria.  

 

5.3. Results 
 

5.3.1. Expression and distribution of CFTR mRNA and protein in mouse kidney 

Real-time RT-PCR analyses showed that the level of CFTR mRNA in adult 

mouse kidney reached ∼60% of that found in lung, considered as reference organ 

(Figure 5.1.A). The segmental distribution of CFTR mRNA in mouse nephron was 

investigated using tubular fractions obtained by microdissection. These fractions were 

characterized for segment-specific markers, such as podocin (glomeruli), aquaporin-1 

(AQP1) (PT), ClC-Kb (TAL) and aquaporin-2 (AQP2) (CD) (Figure 5.1.B). The 

tissue-nonspecific alkaline phosphatase (tnAP) was ~ 8-fold enriched in samples from 

the convoluted (S1-S2) part of the PT, allowing to distinguish them from the straight 

(S3) PT segment (Figure 5.1.C) (27). In these tubular fractions, CFTR mRNA was ~3-

fold more abundant in the S3 than in the S1-S2 PT fragments, in contrast with the 

comparable mRNA abundance of ClC-5 (Figure 5.1.C). Note that CFTR was not 

detected in glomeruli, TAL and CD fractions. 

Immunoblotting demonstrated a distinct pattern for CFTR in mouse kidney and 

lung (Figure 5.1.D). In lung samples, both the partially glycosylated precursor (B band 

at ∼150 kDa) and the fully glycosylated (C band at ∼180 kDa) CFTR were clearly 

distinguished. In the kidney, CFTR was detected as a single, ∼160 kDa band. 

Deglycosylation studies using N-glycosidase F demonstrated the same shift to the 

∼150 kDa band in both kidney and lung (data not shown). In contrast to various 

antibodies, the MD1314 antibodies used here did not detect any specific bands at these 

positions in tissue extracts from Cftr-/- mice (Figure 5.1.D). The ΔF508 mutation is 

known to alter CFTR processing in lung (2). As shown in Figure 5.1.E, the fully 

glycosylated C band was markedly reduced in CftrΔF/ΔF lung samples, whereas the B 

band was increased. In CftrΔF/ΔF kidney, a residual expression of ΔF508-CFTR was  
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Figure 5.2. Localization of CFTR in mouse kidney 
 

Immunoperoxidase labeling for CFTR (panels A, C, E, F, H), megalin (B) and 
AQP1 (D, G) in mouse Cftr+/+ (A-D; F-G), CftrΔF/ΔF (E) and Cftr-/- (H) kidney. In 
control kidney, CFTR is preferentially detected at the cortico-medullary junction, 
whereas megalin encompasses both inner and outer cortices and the outer stripe 
of the outer medulla (OSOM) (compare panels A, B). The segmental co-
localization of CFTR and AQP1 (C-D, F-G) indicates that CFTR is particularly 
abundant in the apical area of the distal S3 segment of PT, just before the 
transition with the descending thin limb in the inner stripe of the outer medulla 
(ISOM) (F-G arrowheads). No specific staining is observed in Cftr-/- kidney (panel 
H), whereas DF508-CFTR is detected with a lower intensity (requiring longer 
chromogenic reaction) in the S3 segment of PT (panel E). 
Bars: 500 μm (panels A-B); 100 μm (panels F-G); 50 μm (panels C-D, E, H);        
g, glomerulus  

118



CHAPTER V 
 

detected as a faint specific band at ∼160 kDa. These results validate the specificity of 

anti-CFTR antibodies used in this study, and suggest a tissue-specific processing of 

CFTR. They also show that the defect of CFTR biosynthesis and/or stability caused by 

the ΔF508 mutation, previously documented in lung, also occurs in the kidney. 

 

5.3.2. Segmental localization and subcellular distribution of CFTR  

Immunostaining performed on mouse kidney showed that CFTR is strongly 

detected at the cortico-medullary junction, whereas the distribution of the PT multi-

ligand receptor, megalin, includes both inner and outer cortices, as well as the outer 

stripe of the outer medulla (Figure 5.2.A-B). The co-localization of CFTR with AQP1 

indicated that CFTR was detected in the apical area of PT cells. The signal was faint in 

S1-S2 segments and stronger in the S3 segment of PT, close to the transition to the 

descending thin limb of Henle’s loop (Figure 5.2.C-D, F-G). The segmental location of 

the ΔF508-CFTR was similar to that of normal CFTR, including the apical region of 

the distal part of PT, although the immunoreactive signal was weaker than in control 

kidneys (Figure 5.2.E). No specific signal for CFTR was detected in Cftr-/- kidneys 

(Figure 5.2.H).  

The subcellular distribution of CFTR in the kidney was further investigated by 

fractionation in Percoll gradients (Figure 5.3). These gradients resolved a low-density 

peak (fractions 2–5), including the early endosomal marker, Rab5a, an intermediate 

density peak (fractions 7-9), including the brush border marker, villin, and a bottom 

peak enriched in lysosomes (cathepsin D marker). The bulk of CFTR was detected in 

the endosomal fractions 3-4, where it co-localized with the vacuolar proton pump, V-

ATPase (E1 subunit), and ClC-5.  

As a whole, these data support that, in mouse kidney, CFTR is particularly 

abundant in the S3 PT cells, with a subcellular distribution similar to ClC-5 and the V-

ATPase in PT endosomes. Despite a weaker expression, the segmental location of the 

ΔF508-CFTR was preserved in mouse kidney. 
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Figure 5.3. Subcellular distribution of CFTR in mouse kidney 
 

Percoll gradients of total mouse Cftr+/+ kidney resolve a low-density peak (fractions 2-4), including the 
early endosomal maker, Rab5a; an intermediate density peak (fractions 7-9), including the brush 
border component, villin; and a bottom peak enriched in lysosomes (cathepsin D). 
 

Distributions after centrifugation are presented by comparison with the initial concentration as C/Ci 
(values >1 reflect organelle enrichment and values <1 reflect organelle depletion). Typical densities 
are indicated by a broken line in the lower panel.  
 

CFTR co-distributes with ClC-5 and the vacuolar H+-ATPase (E1 subunit) in endosomal fractions 3-4. 
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5.3.3. Evaluation and characterization of PT function in CF mouse models 

Having established the segmental distribution of CFTR in the kidney, we 

investigated whether its disruption (Cftr-/- mice) or altered processing (CftrΔF/ΔF mice) 

influenced renal and PT function in mice. Plasma and urine analyses (Table 5.2) 

revealed that the renal function was normal in both Cftr-/- and CftrΔF/ΔF mice. However, 

the significant increase in the urinary excretion of the LMW Clara Cell protein (CC16, 

16 kDa) in Cftr-/- animals vs. controls, contrasting with similar plasma levels, 

suggested a deficient PT handling of LMW proteins in Cftr-/- mice.  

 
Table 5.2. Clinical and biological parameters in control and CF mice 
 

    

Genotype Weight  Plasma Urine 
    

    

          
(g) 

Creat 
(mg/dL) 

Urea 
(mg/dL) 

CC16 

(μg/L) 

Diuresis 

(nl/min.g)

Urea 
(g/L) 

Na+ 

(mEq/L) 

Ratio 

CC16/Cr 
         

         

Cftr +/+ (n=5) 28 ± 5 0.6 ± 0.1 19.1 ± 1.8 57.8 ± 6 26 ± 4 161.7 ± 16.1 280 ± 21 5 ± 2 

         

Cftr -/- (n=5) 27 ± 2 0.6 ± 0.1 17.8 ± 1.5 59.6 ± 4 24 ± 3 144.1 ± 5.2 270 ± 22 39 ± 13 * 

         

         

Cftr N/N (n=6) 25 ± 1 0.7 ± 0.1 21.1 ± 0.9 53.9 ± 3 28 ± 2 159.2 ± 13.2 316 ± 19 17 ± 4 

         

CftrΔF/ΔF (n=6) 24 ± 1 0.6 ± 0.1 19.6 ± 1.2 52.1 ± 4 28 ± 3 142.7 ± 15.3 346 ± 16 18 ± 4 

         

 

Values are means ± SEM. Values were compared by non-parametric Mann-Whitney test, and 
differences regarded as significant at p<0.05, *. (Creat: creatinine; CC16: Clara cell protein)   
 

CF and control mice were next injected i.v. with 125I-β2-microglobulin, a LMW 

protein that is freely filtered by the glomerulus and taken up by receptor-mediated 

endocytosis in PT cells (22). After 7 min, renal uptake of 125I-β2-microglobulin was 

significantly decreased (by ~50%) in Cftr-/- mice vs. their matched controls (Figure 

5.4.A). Liver uptake of 125I-β2-microglobulin, which was used as internal control since 

CFTR is not expressed in hepatocytes, was similar in both groups (data not shown). 

The CftrΔF/ΔF population showed a ~30% decrease of 125I-β2-microglobulin uptake, 
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Figure 5.4. Investigation of PT apical endocytosis in CF and control kidneys 
 

Panel A. Quantification of 125I-β2microglobulin uptake in Cftr-/- and in CftrΔF/ΔF versus control kidneys. 
Seven min after iv injection, radioactivity was measured from bleached kidneys. Uptake of 125I-β2-
microglobulin uptake in the Cftr-/- kidneys is significantly decreased in comparison to age- and gender-
matched kidneys (*, p < 0.05); the decrease is less consistent in the ΔF508 population, characterized 
by a large phenotypic heterogeneity. The severe reduction of 125I-β2-microglobulin uptake in Clcn5Y/-  
kidneys (***, p < 0.001) is indicated for comparison (derived from Ref. 22). 
 

Panel B. Representative immunoblot for ΔF508-CFTR in CftrΔF/ΔF kidneys. Membrane extracts from 6 
individual CftrΔF/ΔF kidneys (40 μg/lane) were run on 5% PAGE and transferred to nitrocellulose. The 
blot was probed with MD1314 anti-CFTR antibodies (1/500) and, after stripping, β-actin (1/10.000). 
The residual expression of ΔF508-CFTR is highly variable between CftrΔF/ΔF kidney samples. 
 

Panel C. Comparative localization of CFTR and endocytosed 125I-β2-microglobulin in mouse kidney. 
CFTR immunodetection and autoradiography were performed on serial kidney sections. CFTR is 
preferentially expressed at the cortico-medullary junction, whereas endocytosed 125I-β2-microglobulin 
(7 min) is detected in both inner and outer cortices and in the outer stripe of the outer medulla. The 
CFTR-positive tubules that are positive for 125I-β2-microglobulin (insets, arrowhead) provide a 
molecular explanation for the defect in receptor-mediated endocytosis observed in CF mice.  
Bars: 500 μm; 100 μm (inset) 
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with a phenotype heterogeneity probably reflecting the variable, residual expression of 

ΔF508-CFTR in kidney (Figure 5.4.B). The renal phenotype of Cftr-/- mice was mild in 

comparison to Clcn5Y/- mice, characterized by a major defect (~85%) in 125I-β2-

microglobulin renal uptake (Figure 5.4.A).  

To assess the role of CFTR in the segmental reabsorption of LMW proteins in the 

PT, we correlated the distribution of CFTR (immunostaining) and 125I-β2-

microglobulin (autoradiography) on adjacent serial sections (Figure 5.4.C). These 

studies showed that 125I-β2-microglobulin uptake occurred mostly in S1-S2 PT 

segments expressing megalin and ClC-5, whereas only a residual reabsorption was 

observed in the S3 PT segments with high CFTR immunoreactivity (Figure 5.4.C, 

arrowheads). We next evaluated the total content of endocytic actors (megalin, cubilin, 

ClC-5), in CF versus control kidneys (Figure 5.5). Although no deficit was found at 

the mRNA level (data not shown), a specific ~two-fold decrease of cubilin expression 

was consistently observed in Cftr-/- kidney (Figure 5.5.A-B). Moreover the intensity of 

cubilin staining in PT cells at the cortico-medullary junction was weaker in Cftr-/- than 

in Cftr+/+ kidneys, suggesting an enhanced degradation and/or a trafficking defect of 

this specific receptor in S3 PT cells (Figure 5.5.C). Furthermore, the cubilin defect was 

reflected by the urinary loss of its ligand transferrin (73 kDa) in the Cftr-/- mice (Figure 

5.5.D). Conversely, no significant changes were observed in the kidneys from CftrΔF/ΔF 

mice (data not shown). 

 

These data suggest that in Cftr-/- mice, the complete loss of CFTR induces a 

significant defect of apical receptor-mediated endocytosis in PT cells, with increased 

urinary excretion of LMW ligands of megalin (β2-microglobulin) and cubilin (CC16, 

transferrin). This phenotype is less consistently observed in CftrΔF/ΔF mice, which may 

be explained by a variable functionality of the mutated ΔF508-CFTR in the CftrΔF/ΔF 

kidneys (21,28). 
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Figure 5.5. Total content of endocytic receptors and ClC-5 in Cftr+/+ and Cftr-/- kidneys 
 

Panels A and B. Representative immunoblots for megalin, cubilin and ClC-5 in Cftr-/- versus Cftr+/+ 
kidneys. (A) Membrane extracts (30 μg/lane) were run on 5% PAGE and transferred to nitrocellulose. 
The blots were probed with anti-megalin (1/20.000), anti-cubilin (1/10.000) or anti-ClC-5 (1/1000) 
antibodies and, after stripping, β-actin (1/10.000). (B) Densitometry analyses were obtained from 
duplicate blots, after normalization to β-actin in each lane and comparison to Cftr+/+ samples regarded 
as the 100 % reference. In Cftr-/- extracts, the expression of megalin and ClC-5 is not modified, 
whereas cubilin abundance is reduced by ~50% (*, p<0.05). 
 

Panel C. Immunoperoxidase labeling for the multi-ligand receptors megalin (a-b) and cubilin (c-d) in 
Cftr+/+ (a-c) and Cftr-/- (b-d) kidney. Both receptors are located at the apical surface of straight S3 PT 
segments (a, c) at the cortico-medullary junction of control kidneys. In Cftr-/- kidneys, the expression of 
cubilin is much weaker than in Cftr+/+ samples, without changes in megalin signal. Immunostaining 
experiments were performed strictly in parallel on two distinct Cftr+/+ and Cftr-/- paired samples.  
Bars: 50 μm. 
 

Panel D. Urinary excretion of transferrin in Cftr+/+ and Cftr-/- mice. Urine samples were loaded on 7.5% 
PAGE, blotted to nitrocellulose and incubated with rabbit antibody anti-transferrin (1/1000). Loading 
volume was normalized to urine creatinine concentration; urine from Clcn5Y/- mouse was used as 
positive control. Transferrin, a specific ligand of cubilin, is detected in the urine from Cftr-/- mice, but 
not in the Cftr+/+ samples. 
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5.3.4. Evaluation of PT function in patients with CF  

In order to substantiate the renal phenotype found in CF mouse models, we 

analyzed the urinary excretion of LMW proteins in a series of non-selected, 30 

clinically stable CF patients and controls matched for age and gender (Table 5.3). All 

CF patients harboured the ΔF508 mutation (homozygous in 25/30; heterozygous with 

N1303K, G542X, or 3849 10 kb C T in 3/30; second mutation not identified in 2/30). 

There was a major increase in the urinary excretion of transferrin, as well as a two-fold 

increase in the urinary excretion of albumin and β2-microglobulin in CF patients vs. 

controls. In contrast, the increase in CC16 was not significant and the urinary 

concentration of calcium was similar in both groups. A multivariate model using 

stepwise regression showed that urinary excretion of LMW proteins was independent 

of previous treatment with aminosides.  

 

 
Table 5.3. Clinical and urinary parameters in 30 CF patients and controls. 
 
 

    

 Controls 
(n=30) 

CF patients 
(n=30) 

p value 

    

    

age (years) 17.8 ± 10 17.8 ± 10  

gender (M/F) 17/13 17/13  
    

albumin / creatinine (mg/g) 5.5 (2.6) 10.3 (2.5) 0.012 

CC16 / creatinine (μg/g) 2.0 (3.9) 4.2 (4.6) 0.054 

β2-microglobulin / creatinine (μg/g) 27.7 (4.2) 65.1 (4.3) 0.034 

transferrin / creatinine (mg/g) 0.70 (2.7) 20.69 (4.8) 0.001 

calcium / creatinine (mg/g) 75.2 (2.1) 69.0 (3.2) 0.73 
    

 

Except for age (arithmetic mean ± SD), values are given as the geometric mean with (SD). 
Non-normally distributed parameters were log-transformed before the application of 
Student’s unpaired t-test. (CC16: Clara cell protein) 
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5.4. Discussion 
 

The spectrum of CF, which was previously considered as a respiratory and 

digestive disease associated with a rapidly fatal outcome, has broadened considerably 

over the last decade. The disease includes many milder cases, which are associated 

with a longer survival and a potential for developing complications in multiple organs 

(2,3). Based on recent insights into the role of chloride transporters in the kidney 

(4,15), we analyzed the consequences of a functional loss of CFTR and showed it to be 

associated with an impaired receptor-mediated endocytosis in renal PT cells, leading to 

LMW proteinuria in both mouse and man. Both CFTR and the renal chloride/proton 

exchanger ClC-5 preferentially associate with the endosomal marker, Rab5a, and the 

V-ATPase in PT cells. The striking contrast between the severe PT dysfunction 

associated with ClC-5 loss and the mild renal phenotype of CF probably reflects the 

uneven segmental distribution of these transporters in the PT. 

Although the role of CFTR in exocrine epithelia, including trachea and small 

intestine, has been studied extensively (2,3), the issues of CFTR distribution, 

processing and function in the kidney remain debated (4-9). In rat kidney, 

immunostaining for CFTR was shown at the apical surface of both proximal and distal 

tubules, but was not detected in the outer medullary CD (5). In the human kidney, 

CFTR protein expression was found in the PT, thin limbs of Henle’s loop, distal 

tubules and collecting ducts (5-7). Our studies in mouse kidney (using antibodies of 

strict specificity) show that CFTR is expressed in the apical area of PT cells, with a 

maximal intensity in the S3 part of the PT, and that the electrophoretic mobility of N-

glycosylated CFTR is slightly different in kidney vs. lung. The established relationship 

between CFTR glycosylation and its stability/function at the plasma membrane (29) 

suggests that the distinct CFTR maturation in the kidney may reflect distinct 

trafficking/targeting, and possibly different channel activity, within tubular cells (30).  

In parallel to its role in regulating chloride permeability across the apical 

membrane, CFTR could also affect the acidification of intracellular organelles along 

the endocytic pathway (12). An acidification defect was indeed reported in trans-Golgi 
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and pre-lysosomal compartments in immortalized respiratory epithelial cells and nasal 

polyps from CF patients (13). More recently, however, enhanced rather than decreased 

acidification was reported in endosomes of CF respiratory epithelial cells (14). Our 

fractionation data show that, in mouse kidney, CFTR co-distributes with ClC-5 and the 

V-ATPase in PT endosomes, pointing to a possible involvement in apical endocytosis. 

The endocytic uptake of LMW proteins is mediated by the multi-ligand receptors, 

megalin and cubilin, which are expressed at the apical surface of cells lining the PT 

(16). Recently, the vesicular Cl-/H+ exchanger ClC-5 has clearly been involved in renal 

endocytosis (17-19). Mutations of CLCN5 gene that encodes ClC-5 cause Dent’s 

disease, a tubulopathy essentially characterized by a generalized dysfunction of the PT 

associated with LMW proteinuria, hypercalciuria, and nephrolithiasis (19). Studies in 

Clcn5Y/- mice demonstrated that the loss of ClC-5 induces a defect in intracellular 

trafficking and membrane recycling in PT cells (17,18,22), confirming the essential 

role of vesicular chloride transporters along the endocytic pathway (4,15). Likewise, 

the moderate but significant alteration of LMW proteins handling observed in Cftr-/- 

mice and CF patients suggests that CFTR may similarly participate in PT endocytosis. 

The selective decrease of cubilin expression in the S3 PT segment of Cftr-/- mice, 

without significant changes observed at the mRNA level, indicates an enhanced 

degradation and/or a trafficking defect of this receptor in PT cells, similar to what has 

been reported in Clcn5Y/- mice (22). A similar decrease in cubilin has been observed in 

the small intestine of the CFTR null (CftrtmlUNC) mice, which may explain a reduced 

vitamin B12 absorption in CF patients (31). The defect reported here may also explain 

why the renal clearance of aminoglycosides, which accumulate in PT cells following 

uptake by receptor-mediated endocytosis (32), is enhanced in CF patients (33).  

Several explanations may account for the milder renal phenotype observed in 

Cftr-/- mice and CF patients in comparison to Clcn5 KO mice and patients with Dent’s 

disease (17-19). First, it could reflect the more distal distribution of CFTR as 

compared with ClC-5 along the PT. Indeed, although ClC-5 is evenly distributed in the 

S1 to S3 parts of the PT, CFTR appears to be most abundant in the S3 segment of the 
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PT, which displays lower endocytic activity (34). Second, CFTR functions as a cAMP-

regulated, ATP-dependent chloride channel, whereas the flux of chloride through ClC-

5 depends constitutively on transmembrane Cl- and H+ concentration gradient, together 

with the membrane voltage (15). The number of active CFTR channels is also known 

to be regulated by cAMP-dependent vesicle trafficking, as well as by correct 

glycosylation (2,30). Third, the discrete nature of renal manifestations in CF might be 

due to tissue-specific protective mechanisms, such as the occurrence of functional 

CFTR splice variants (7,8), or alternative pathways for chloride (4). For instance, a 

Ca++-activated Cl- channel is upregulated in the nasal mucosa of CftrtmlUNC mice (35). 

Although ClC-5 might represent a CFTR surrogate, comparative analysis performed 

on Cftr-/- vs. Cftr+/+ kidneys did not show any changes in ClC-5 expression (Figure 

5.5).  

The CF patients examined here, all harbouring at least one ΔF508 mutation, 

showed a mild LMW proteinuria vs. controls. The phenotype was less consistent in the 

CftrΔF/ΔF mice, which showed either unchanged or increased urinary excretion of LMW 

proteins. The mutant ΔF508-CFTR shows defective glycosylation and impaired 

trafficking from the ER to the plasma membrane (2,3). However, ΔF508-CFTR can 

function as a cAMP-regulated chloride channel, both in the plasma membrane and 

intracellularly (24,36). Previous studies demonstrated a residual chloride permeability 

in intestine and gallbaldder of the CftrΔF/ΔF mice used here (21); and the electrolyte and 

water handling is preserved in the PT of Cftrtm2cam ΔF508 mice (37). We documented a 

~2 fold reduction in ΔF508-CFTR mRNA abundance in CftrΔF/ΔF vs. CftrN/N kidneys 

(data not shown), and a large individual variability in the residual expression of 

ΔF508-CFTR protein (Figure 5.4). The expression of ΔF508-CFTR in man is 

strikingly tissue-specific, suggesting that the variable severity of CF in different organs 

reflects heterogeneity of residual expression (28,38). Taken together, these data 

suggest that, in mouse kidney, the ΔF508-CFTR is variably processed into its mature 

form, reaching the plasma membrane and ensuring correct function in some CftrΔF/ΔF 

mice.  
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In conclusion, the functional loss of CFTR is associated with a moderate but 

significant defect in LMW protein handling in mouse and man, supporting a role of 

CFTR within intracellular organelles along the endocytic pathway in renal PT cells. 

These data give new insights into the tissue-specific processing of wild-type and 

mutant CFTR, and the pathophysiology of chloride transporters in the kidney. The PT 

renal phenotype, which can trigger interstitial renal disease (39), must be integrated in 

the multi-systemic complications increasingly observed in CF patients. 
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Summary 
 

The loss of the Cl- transporter ClC-5 in Dent’s disease patients and Clcn5Y/- mice 

causes a severe PT dysfunction. However the metabolic consequences and adaptation 

mechanisms to such disorder remain unknown. First, real-time RT-PCR, immuno-

blotting and -staining demonstrated higher cell proliferation and oxidative stress in 

Clcn5Y/- PT cells. Transcriptome comparison between Clcn5Y/- and Clcn5Y/+ kidneys 

was next performed to isolate genes involved in adaptation mechanisms. Real-time 

RT-PCR and immunoblotting confirmed a 4-fold induction of type III carbonic 

anhydrase (CAIII) in Clcn5Y/- samples. In normal kidney, CAIII expression was ∼5-

fold lower than CAII, with a segmental distribution restricted to scattered PT cells. 

The number of CAIII-positive PT cells in Clcn5Y/- kidney dramatically increased, 

without enhanced apoptosis. These findings were confirmed in human CLCN5 mutated 

kidney samples, as well as in the megalin knockout mice. Moreover CAIII expression 

in HK-2 PT cells was significantly induced following exposure to H2O2 (1 mM). In 

conclusion, we report on a novel renal CA isozyme located in scattered PT cells. The 

induction of CAIII expression in distinct models of renal Fanconi syndrome and H2O2-

exposed PT cells suggests that this isozyme might protect the PT from oxidative 

damage. 

134



CHAPTER VI 
 

6.1.  Introduction 
 

The epithelial cells lining the PT are highly specialized to reabsorb ions, 

glucose, amino acids, vitamins, proteins, and other nutrients from the primitive 

urine filtrated by the glomeruli. In particular, several grams of albumin and 

hundreds of milligrams of LMW proteins are daily filtered, and avidly recaptured 

by PT cells through receptor-mediated endocytosis (Birn, 2006). This endocytic 

pathway involves two multiligand-binding receptors, megalin and cubilin, that are 

abundantly expressed at the brush border of PT cells (Christensen, 2002). Ligand 

binding and interactions between both receptors induce their internalization into 

coated vesicles at the apical membrane of PT cells and their subsequent delivery to 

endosomes and lysosomes for ligand processing and receptor recycling. This 

endocytotic trafficking is dependent on a progressive acidification from early to 

late endosomes and finally to lysosomes (Marshansky, 2002). In PT cells, the 

endosomal acidification is driven by the electrogenic V-ATPase, in parallel with a 

Cl- conductance necessary for the electro-neutrality (Wagner, 2004). Although the 

nature of the endosomal Cl- conductance is still debated, recent findings about the 

Cl- transporter ClC-5 have provided new insights into PT endocytic pathway 

(Jentsch, 2005).  

Acquired or inherited dysfunctions of the PT, collectively named “renal 

Fanconi syndrome”, are associated with LMW proteinuria due to defective 

receptor-mediated endocytosis of PT cells. Chronic exposure to cadmium inhibits 

the V-ATPase and impairs endosomal acidification, thereby causing severe PT 

damage characterized by constant LMW proteinuria (Bernard, 2004). Likewise the 

functional loss of cubilin in Imerslund-Gräsbeck disease (Aminoff, 1999), as well 

as the genetic inactivation of megalin in mice (Leheste, 2003), leads to tubular 

reabsorption deficiency, with increased urinary excretion of LMW proteins. 

Mutations in CLCN5 gene, which encodes the endosomal voltage-gated Cl- 

transporter ClC-5, are associated with Dent’s disease, an X-linked renal tubular 

disorder characterized by LMW proteinuria and hypercalciuria, associated with 
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glucosuria, amino-aciduria, phosphaturia, nephrocalcinosis, and nephrolithiasis 

(Fisher, 1994; Lloyd, 1996). Genetic inactivation of Clcn5 gene in mice causes 

renal tubular defects that mimic human Dent’s disease, including severe PT 

dysfunction with impaired endocytosis and trafficking defects (Piwon, 2000; Wang, 

2000; Christensen, 2003). Despite the severity of the renal Fanconi syndrome, the 

metabolic outcomes at the cellular level remain poorly understood. Recently, 

Wilmer et al. have reported an increased oxidative stress and altered redox status in 

primary PT cells derived form urine of patients with cystinosis, the most frequent 

cause of inborn Fanconi syndrome (Wilmer, 2005). These observations suggest that 

PT dysfunction might be associated with increased solicitation of cell oxidative 

defences.  

In this study, we have used Clcn5 knockout mice, as a well-defined model of 

renal Fanconi syndrome (Wang, 2000), in order to investigate the metabolic 

consequences and adaptative mechanisms to PT dysfunction. Particularly, a 

differential display procedure based on amplified fragment length polymorphism 

(AFLP) was performed on Clcn5Y/- versus Clcn5Y/+ kidneys (Vos, 1995), and 

identified Car3 gene as a candidate gene of such cellular response. Type III 

carbonic anhydrase (CAIII) belongs to the family of zinc metalloenzymes that 

reversibly hydrate carbon dioxide. In the kidney, type II and IV CA represent the 

most abundant CA isozymes, where they participate in correct urine acidification 

and Na+ homeostasis. Here we report on (i) the segmental and subcellular 

distribution of CAIII in mouse kidney; (ii) its increased expression in Clcn5Y/- 

kidneys, which are characterized by higher cell turn-over and oxidative stress; (iii) 

and its induction in samples from the two kidneys of a patient with Dent’s disease. 

These findings were validated in the megalin KO mouse model of PT dysfunction, 

and further investigated in HK-2 PT cells exposed to oxidant conditions. As a 

whole, these results support that CAIII may protect PT cells against oxidative 

damage in case of renal Fanconi syndrome. 
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6.2. Materials and Methods 
 

Mouse models. Experiments were conducted on 12 pairs of 12-week-old (n=6) and 1-year-old (n=6) 

Clcn5 wild-type (Y/+) and KO (Y/-) mice. Renal function of young Clcn5Y/- mice was within normal 

range, whereas plasma creatinine level was tripled in old Clcn5Y/- mice in comparison to age-matched 

controls. The Clcn5Y/- mice, generated by targeted deletion of the exon VI of Clcn5, have been 

extensively characterized and shown to mimic the phenotype of human Dent’s disease (Wang, 2000). 

Real-time RT-PCR studies were performed on kidneys from two additional mouse models of human 

renal Fanconi syndrome, i.e. 3 pairs of megalin KO mice (Willnow, 1996), and 3 pairs of Ctns KO 

mice (Cherqui, 2002). The megalin KO mice exhibit a specific defect in PT endocytic apparatus 

resulting in impaired uptake of filtered LMW proteins, without significant alteration of glucose, 

electrolyte and amino acid transports (Leheste, 1999). The Ctns KO mice present no signs of proximal 

tubulopathy despite the severe PT defects observed in children with infantile cystinosis, which 

suggests alternative rescue pathways in mice (Cherqui, 2002). All samples were obtained in 

accordance with NIH guidelines for the care and use of laboratory animals, and with the approval of 

the Committee for Animal Rights of the Université catholique de Louvain. 

 

RNA extraction and double strand cDNA synthesis. Total RNA was extracted from frozen mouse 

kidneys using Trizol reagent (Invitrogen, Merelbeke, Belgium). The concentration of each RNA 

sample was obtained from optical densitometry (260 nm) measurements and RNA quality was 

confirmed using agarose gel electrophoresis. Poly(A)+ RNA were prepared from 75 μg of total RNA 

using Dynabeads Oligo(dT)25 (Invitrogen). First strand cDNA was synthesized from 500 ng of 

Poly(A)+ RNA using Superscript II RNase H- Reverse Transcriptase (Invitrogen) in a total volume of 

20 μl at 37°C for 50 min. Double strand cDNA was synthesised in the same vial using T4 DNA 

Polymerase and purified using QIAquick Extraction Kit (Qiagen, Venlo, The Netherlands).  

 

AFLP reactions. The AFLP protocol was essentially performed as previously described (Vos, 1995). 

cDNA samples were digested with EcoRI and MseI (Fermentas, Vilnius, Lithuania) for 2 h at 37°C. 

Restriction fragments were next ligated to EcoRI and MseI double strand adapters for 2 h at 20°C. The 

EcoRI and MseI adapters were prepared by mixing equimolar amounts of the oligonucleotide (Table 

6.1): Ad1-Eco, Ad2-Eco (for EcoRI adapter) and Ad1-Mse, Ad2-Mse (for MseI adapter). The 

restriction fragments with ligated adapters were diluted (10X) with TE buffer (100 mM Tris-HCl, 10 

mM EDTA, pH 8.0), and further used as a template for the pre-amplification reaction. This step was 

performed in 20 cycles (94°C, 30 sec; 56°C, 1 min; 72°C, 1 min) with Eco-P0 and Mse-P0 primers 

corresponding to EcoRI and MseI adapters without extension. Following the pre-amplification step, 

the product was diluted (10X) with TE buffer and 5 μl were used for selective amplification, as 

following: 33 cycles including 9 touchdown cycles comprising a decrease of the annealing 
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temperature from 65°C to 56°C, which was maintained for 24 cycles. Twelve primer combinations 

were used for selective amplification: Eco-PAA and Mse-PAA or Mse-PAC or Mse-PAT, Eco-PAC 

and Mse-PAA or Mse-PAC or Mse-PAT, Eco-PAG and Mse-PAA or Mse-PAC or Mse-PAT, Eco-

PAT and Mse-PAA or Mse-PAC or Mse-PAT. All amplification reactions were performed in the 

iCycler thermal cycler (Bio-Rad, Nazareth, Belgium). Selective amplification products were denatured 

at 95°C for 3 min in an equal volume of formamide dye and separated on sequencing gels (6% 

polyacrylamide, 6 M urea) at 60 W. Gels were dried onto Whatman paper and exposed to Kodak 

BioMax film (Amersham Biosciences, Buckinghamshire, UK) overnight at -80°C. The bands of 

interest were selected, removed from the gel and soaked in water. AFLP fragments were recovered by 

PCR under the same conditions as used for the selective amplification. Reamplified cDNAs were 

visualised on a 1.5% (w/v) agarose gel, subcloned into pGEM-T easy vector (Promega, Leiden, The 

Netherlands) and sequenced (Genome Express, Meylan, France). Each reamplified AFLP fragment 

was compared against all sequences in the non-redundant databases using BLAST sequence alignment 

program: http://www.ncbi.nlm.nih.gov/BLAST/ (Altschul, 1990). 

 

Table 6.1. Adapters and primers used for AFLP  
 

  

Name Nucleotide sequence 
  

  

Ad1-Eco 

Ad2-Eco 

Ad1-Mse 

Ad2-Mse 

Eco-P0 

Mse-P0 

Eco-PAA 

Eco-PAC 

Eco-PAG 

Eco-PAT 

Mse-PAA 

Mse-PAC 

Mse-PAT 

5' CTCGTAGACTGCGTACC 3' 

5' AATTGGTACGCAGTCTAC 3' 

5' GACGATGAGTCCTGAG 3' 

5' TACTCAGGACTCAT 3' 

5' GACTGCGTACCAATTC 3' 

5' GATGAGTCCTGAGTAA 3' 

5' GACTGCGTACCAATTCAA 3' 

5' GACTGCGTACCAATTCAC 3' 

5' GACTGCGTACCAATTCAG 3' 

5' GACTGCGTACCAATTCAT 3' 

5' GATGAGTCCTGAGTAAAA 3' 

5' GATGAGTCCTGAGTAAAC 3' 

5' GATGAGTCCTGAGTAAAT 3' 
  

 

Real-time RT-PCR. Total RNA (2.7 μg) was treated with DNase I (Invitrogen) and reverse-

transcribed into cDNA using SuperScript III RNase H- Reverse Transcriptase (Invitrogen). Changes 

in mRNA expression levels were determined by real-time RT-PCR (iCycler IQ System, Bio-Rad) 

using SYBR Green I detection of single PCR product accumulation. Specific primers for Car2, Car3, 
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PCNA, Ki67, cyclin E, osteopontin, catalase, Type I SOD, thioredoxin, HPRT1 and GAPDH were 

designed using Beacon Primer Designer 2.0 (Premier Biosoft International, Palo Alto, CA) and are 

summarized in Table 6.2. The PCR products were size-fractionated on 1.5% agarose gel, stained with 

ethidium bromide, purified by QIAquick Gel Extraction Kit (Qiagen) and subsequently sequenced by 

Genome Express. Real-time RT-PCR analyses were performed in duplicate with 200 nM of both 

forward and reverse primers in a final volume of 25 μl using 1 Unit of Platinum Taq DNA 

Polymerase, 6 mM MgSO4, 400 μM dNTP and SYBR Green I (Invitrogen) diluted 1/100,000. The 

PCR mix contained 10 nM fluorescein for initial well-to-well fluorescence normalization. PCR 

conditions were as follows: 94°C for 3 min, 40 cycles of 30 sec at 95°C, 15 sec at 61°C and 1 min at 

72°C. The melting temperature of the PCR product was checked at the end of each PCR by recording 

SYBR Green fluorescence increase upon slow renaturing DNA. For each assay, standard curves were 

prepared by serial 4-fold dilutions of WT mouse kidney cDNA. The efficiencies of the amplifications 

with each primer set were calculated from the slope of the standard curve [efficiency = (10-1/slope) – 1] 

and were close to 1 (Table 6.2). The relative changes in Target mRNA / GAPDH (or HPRT1) mRNA 

ratio between Clcn5Y/+ and Clcn5Y/- samples were determined by using the formula: Efficiency Δ Δ Ct. 

 

Table 6.2. Primers used for real-time RT-PCR 
 

     

 Forward Reverse Length Efficiency
     
     

Mouse     
     

car2 5' CTTGAAGCACTGCATTCCAT 3' 5' CACGATCCAGGTCACA CATT 3' T 153 1.03 ± 0.09 
     

car3 5’ CTTGATGC CCTGGACAAAAT 3' 5' GAGCCGTGGTAGGTCCAATA 3’ 110 1.04 ± 0.11 
     

PCNA 5' TTGGAATCCCAGAACAGGAG 3' 5' ATTGCCAAGCTCTCCACTTG 3' 155 1.02 ± 0.20 
     

Ki67 5' TGCAAAGGTAGAGGCTCCAT 3' 5' CAGGTAGGCCAGAGCAAGT 3' 152 1.03 ± 0.17 
     

osteopontin 5' TCCAATCGTCCCTACAGTCG 3' 5' CGCTCTTCATGTGAGAGGTG 3' 146 0.98 ± 0.08 
     

catalase 5' CATGGTCTGGGACTTCTGGA 3' 5' GACTGCCTCTCCATCTGCAT 3' 151 0.97 ± 0.27 
     

Type I SOD 5' GGGTTCCACGTCCATCAGTA 3' 5' CAGTCACATTGCCCAGGTCT 3' 136 1.10 ± 0.09 
     

thioredoxin 5' TGATCAAGCCCTTCTTCCAT 3' 5' CCCACCTTTTGACCCTTTTT 3' 151 1.00 ± 0.20 
     

gapdh 5’ TGCACCACCAACTGCTTAGC 3’ 5’ GGATGCAGGGATGATGTTCT 3’ 176 1.04 ± 0.03 
     

hprt1 5’ ACATTGTGGCCCTCTGTGTG 3’ 5’ TTATGTCCCCCGTTGACTGA 3’ 162 0.99 ± 0.01 
     
     

Man     
     

CA2 5' CCCTGGATGGCACTTACAG 3' 5' CAGCTTTCCCAAAATCCCCA 3' 149 1.01 ± 0.10 
     

CA3 5’ GCCGGGACTACTGGACCTA 3' 5' CGTTCTCAGCACTGGAGAG 3’ 144 0.97 ± 0.11 
     

PCNA 5' ACGTCTCTTTGGTGCAGCTC 3' 5' GCGTTATCTTCGGCCCTTAG  3' 157 0.98 ± 0.30 
     

OSTEOPONTIN 5' ATGGCCGAGGTGATAGTGTG 3' 5' GATGGCCTTGTATGCACCAT 3' 146 1.10 ± 0.30 
     

CATALASE 5' TGGCTCATTTTGACCGAGAG 3' 5' GCGATGGGAGTCTTCTTTCC 3' 148 0.95 ± 0.26 
     

THIOREDOXIN 5' TCAGCCACGTGGTGTGGG 3' 5' TGGAATGTTGGCATGCATTT 3' 152 1.20 ± 0.30 
     

GAPDH 5’ GGGGCTCTCCAGAACATCAT 3’ 5’ TCTAGACGGCAGGTCAGGT 3’ 149 0.97 ± 0.12 
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Antibodies. Immuno-blotting and -staining analyses were performed with mouse monoclonal 

antibodies against CAIII (Spectral, Toronto, Canada) (Azzazy, 1998); against V-ATPase E1 subunit (a 

gift of Dr. S. Gluck, University of California, San Francisco, CA, USA) (Brown, 1988); against PCNA 

(clone PC-10, Dako, Heverlee, Belgium); and against β-actin (Sigma, St-Louis, MO); rat monoclonal 

against Ki67 antigen (clone TEC-3, Dako); rabbit polyclonal antibodies against CAIII (Nishita, 2002); 

and against the water channel aquaporin-1 (Chemicon, Temecula, CA); and sheep polyclonal 

antibodies anti-CAII (Serotec, Oxford, UK). 

 

Immunoblotting. Cytosolic proteins were isolated from kidney, and prepared as previously described 

(Wang, 2000). Briefly, tissues were homogenized in ice-cold buffer (0.25 M sucrose, 20 mM 

imidazole, pH 7.4, 1 mM EDTA) containing CompleteTM protease inhibitors (Roche, Vilvoorde, 

Belgium). A low-speed “nuclear” fraction was pelleted from the homogenate by centrifugation at 1000 

g for 10 min and extracted twice by resuspension sedimentation. The resulting supernatant was 

centrifuged at 100,000 g for 60 min at 4°C in a 50Ti fixed-angle rotor (Beckman, Palo Alto, CA). The 

supernatant was considered as the cytosolic fraction, and the high-speed pellet as the membrane 

compartment. Protein concentration was determined using bicinchoninic acid protein assay (Pierce, 

Aalst, Belgium). Proteins (20 μg) were separated through SDS-PAGE and transferred onto 

nitrocellulose membrane (BioRad). After blocking, membranes were incubated overnight at 4°C with 

primary antibodies, rinsed and incubated for 1 h at room temperature with the appropriate secondary 

peroxidase-labelled antibody (Dako). The immunoreactive bands were detected using enhanced 

chemiluminescence (Amersham Biosciences). Normalization for β-actin was obtained after stripping 

the blots and reprobing with the anti-β-actin antibody. Specificity of the immunoblot was determined 

by incubation with non-immune rabbit or mouse IgG (Vector Laboratories, Brussels, Belgium). 

Densitometry analysis was performed with a Canon CanoScan8000F using the NIH Image V1.60 

software. All immunoblots were at least performed in triplicate.  

 

Immunostaining. Kidneys were fixed for 6 h at 4°C in 4% formaldehyde (Boehringer Ingelheim, 

Heidelberg, Germany) in 0.1 M phosphate buffer, pH 7.4, prior to embedding in paraffin. Six-μm 

thick sections were rehydrated and incubated for 30 min with 0.3% hydrogen peroxide to block 

endogenous peroxidase. After incubation with PBS 10% normal goat serum for 20 min, sections were 

incubated for 45 min with primary antibodies in PBS 2% BSA. After washes, sections were incubated 

with appropriate biotinylated secondary antibodies (Vector Laboratories), washed and incubated for 45 

min with the avidin-biotin peroxydase complex (Vectastain Elite, Vector Laboratories) and 

aminoethylcarbazole. All immunostaining were preformed at room temperature in a humidified 

chamber. Control experiments included incubation (i) in the absence of primary antibody, (ii) with 

non-immune rabbit or mouse IgG (Vector Laboratories).  
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Apoptosis assay. Apoptotic cells were detected by the terminal deoxynucleotidyl transferase-mediated 

deoxyuridine triphosphate nick end labeling (TUNEL) method (Cell Death detection kit, Roche). 

Sections were pre-treated with 20 μg/ml proteinase K for 20 minutes. Positive control sections were 

first treated with 100 μg/ml DNAse I for 10 minutes at room temperature, whereas omission of 

transferase was regarded as negative control. 

 

Detection of superoxide anion (O2
–) generation. The in situ production of superoxide in kidney 

samples was assessed using the hydroethidine (HE, dihydroethidium bromide) fluorescence method 

(Piech, 2003). HE is freely permeable to cells, and is oxidized by O2
– to red fluorescent ethidium 

bromide. After excitation at 480 nm, ethidium bromide emits light at a wavelength of 610 nm. After 

embedding in Tissue Tek OCT compound (Sakura Finetek, Zoeterwoude, The Netherlands), kidneys 

were snap-frozen in pre-cooled isopentane, cut into 5-mm-thick cryosections, and stored at –80°C. The 

HE 5 mM stabilized solution in DMSO (Invitrogen) was diluted to 2 x 10-6 M in water before use. 

Fifty μl of HE solution was applied on tissue sections and cover-slipped. The slides were incubated at 

37°C for 30 min in a light-protected and humidified chamber. Red fluorescence from HE-treated 

Clcn5Y/+ and Clcn5Y/- samples was measured during 5 ms using the software KS400 (Zeiss, Zaventem, 

Belgium) through a Zeiss Axiovert S100 microscope equipped with an Axiocam camera. 

 

Immunogold labelling. Kidneys were fixed by retrograde perfusion through the aorta with 2% 

formaldehyde in 0.1 M sodium cacodylate buffer, pH 7.2. Tissues were trimmed into small blocks, 

further fixed by immersion for 1 hour in 1% formaldehyde, infiltrated with 2.3 M sucrose for 30 min 

and frozen in liquid nitrogen. Cryosections (70-90 nm) were obtained at -100oC with an FCS Reichert 

Ultracut S cryoultramicrotome as previously described (Christensen, 1995), and were incubated with 

rabbit anti-CAIII at 4oC overnight followed by incubation for 1 hour with 10 nm goat anti-rabbit gold 

particles (BioCell, Cardiff, UK). The cryosections were embedded in methylcellulose containing 0.3% 

uranyl acetate and studied in a Philips CM100 electron microscope. Control sections were incubated 

with secondary antibody alone or with non-specific rabbit serum. 

 

Human samples. Studies were conducted on frozen and formalin-fixed kidney samples from the two 

kidneys obtained after bilateral nephrectomy of an end-stage patient with Dent’s disease. Clinical 

features of this patient bearing a “G to A” missense mutation (Gly506Glu) in CLCN5 gene were 

reported previously (Frymoyer, 1991; Lloyd, 1996). Comparative real-time RT-PCR and 

immunoblotting studies used 4 end-stage kidneys (chronic interstitial nephritis) removed during renal 

transplantation as controls. These samples were snap-frozen in liquid nitrogen and stored at –80°C, or 

routinely fixed in 4% formaldehyde. The use of these samples has been approved by the Ethical 

Review Board of the Université catholique de Louvain. 
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Figure 6.1. Cell proliferation and oxidative stress in ClC-5-deficient kidney 
 

Panel A. Real-time RT-PCR quantification of mRNA expression of proliferative cell nuclear antigen 
(PCNA), Ki67, cyclin E, osteopontin, catalase, Type I superoxide dismutase (SOD) and thioredoxin in 
kidneys from Clcn5Y/- vs. Clcn5Y/+ 12-week-old mice (n=6 pairs). The mRNA levels were adjusted to 
GAPDH before quantification, and calculated upon the formula: EfficiencyΔΔCt. The Clcn5Y/- kidneys 
show an increased expression of both cell turnover and oxidative stress markers. Values are 
presented as mean ratio ± SD, with Clcn5Y/+ level set at 100%. 
 

Panel B Immunostaining for proliferation markers, proliferative cell nuclear antigen (PCNA) and Ki67, 
and measurement of superoxide generation in Clcn5Y/+ and Clcn5Y/- kidneys. Counting of PCNA- and 
Ki67-positive cells along PT (p in insets) indicates a ~3-fold increase of proliferating PT cells in 
Clcn5Y/- vs. Clcn5Y/+ kidneys (n=4 pairs). Values are presented as means ± SD. The detection of red 
fluorescent ethidium bromide for 5 ms shows a positive signal in Clcn5Y/- PT (p in insets), in strong 
contrast to Clcn5Y/+ samples (n=3 pairs). Bars: 100 μm (insets, 50 μm). 

142



CHAPTER VI 
 

HK-2 (human kidney 2) cells culture. The HK-2 cell line was obtained from ATCC (Teddington, UK). 

Cells were grown on keratinocyte-serum free medium (GIBCO-BRL 17005-042, Invitrogen) with 5 

ng/ml recombinant epidermal growth factor, 50 μg/ml bovine pituitary extract, 50 U/ml penicillin, and 

50 μg/ml streptomycin, at 37°C in 95% air/5% CO2 incubator. When the cultures reached confluence, 

subculture was prepared using a 0.02% EDTA-0.05% trypsin solution (Invitrogen). After 24h-

deprivation of serum, HK-2 cells (passage 12) were treated with H2O2 (1 mM). At various times post 

H2O2-treatment, cells were trypsinized, washed twice in cold PBS, and centrifuged at 300 g for 5 min. 

The pellet was frozen and stored at -80°C for further use.  

 

Statistics. Results are expressed as means ± SD. Comparisons between samples from Clcn5Y/+ and 

Clcn5Y/- mice were made by Student unpaired t-tests. The significance level was set at p<0.05. 

 

6.3. Results 
 

6.3.1. Metabolic outcomes of ClC-5 inactivation in mouse kidney 

Real-time RT-PCR for cell turnover and differentiation markers, such as 

proliferative cell nuclear antigen (PCNA), Ki67, cyclin E and osteopontin, showed a 

higher expression in 12-week-old Clcn5Y/- vs. Clcn5Y/+ mouse kidneys (Figure 6.1, 

panel A). In addition, real-time RT-PCR analyses for distinct reactive oxygen species 

(ROS) scavengers, such as type I superoxide dismutase (SOD) and thioredoxin, but not 

catalase, indicated an increased solicitation of cell oxidative defences in Clcn5Y/- 

samples in comparison to control kidneys (Figure 6.1, panel A). Similar results were 

obtained in 1-year-old Clcn5Y/- mice (data not shown).  

Immunohistochemistry detected a significantly higher number of PCNA- and 

Ki67-positive cells in ClC-5 deficient samples (~2% of PT cells) than in controls 

(~0.5% of PT cells) (Figure 6.1, panel B). Moreover, comparative measurement of 

ethidium bromide fluorescence from Clcn5Y/+ and Clcn5Y/- kidneys demonstrated an 

increased production of superoxide O2
- anion in Clcn5Y/- PT cells (Figure 6.1, panel 

B). These data demonstrate that the inactivation of ClC-5 causes severe cellular 

outcomes in PT cells, with higher cell turnover and major oxidative stress. 
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Figure 6.2. Increased expression of CAIII in Clcn5Y/- vs. Clcn5Y/+ kidneys 
 

Panel A. Real-time RT-PCR quantification of mRNA expression of type III and II CA isozymes in 
Clcn5Y/- vs. Clcn5Y/+ kidneys (n=6 pairs). The mRNA levels were adjusted to reporter genes, GAPDH 
or HPRT1, and then compared between Clcn5Y/- vs. Clcn5Y/+ samples, using the formula: Ratio = 
EfficiencyΔΔCt. In normal mouse kidneys, CAIII mRNA expression represents only ~20% of CAII. By 
contrast, in Clcn5Y/- samples, CAIII expression is increased ~5 times, with no change in CAII level. 
 

Panel B. Real-time RT-PCR quantification of CAIII mRNA expression in Clcn5Y/- vs. Clcn5Y/+ kidneys, 
epididymal fat, liver, skeletal muscle (vastus lateralis), lung and male genital tract (n=6 pairs). After 
adjustment of mRNA levels to the reporter gene GAPDH, CAIII mRNA quantification was compared 
between Clcn5Y/- vs. Clcn5Y/+ samples, using the formula: Ratio = EfficiencyΔΔCt. The induction of CAIII 
expression caused by ClC-5 deficiency involves mostly kidneys and epididymal fat, with no significant 
changes in other Clcn5Y/- organs. 
 

Panel C. Characterization of the antibodies directed against type III and II CA isozymes. Twenty μg of 
cytosolic proteins from total mouse kidneys were separated by SDS-PAGE and blotted onto 
nitrocellulose membrane. Rabbit polyclonal antibodies anti-CAIII (1/1000) detect a unique band 
around ~28 kDa, whereas CAII is identified by sheep polyclonal antibodies (1/2000) at a slightly higher 
molecular weight, without cross-reactivity. 
 

Panels D-E. Representative immunoblots for CAIII and CAII in Clcn5Y/+ and Clcn5Y/- kidneys. Twenty 
μg of cytosolic proteins were loaded in each lane. Blots were probed as in (C), and after stripping, for 
β-actin (1/10,000). Densitometry analyses show that CAIII expression is ~4-fold higher in Clcn5Y/- 
kidneys than in controls, whereas CAII abundance is unchanged. 
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6.3.2. Comparison of Clcn5Y/+ and Clcn5Y/- renal transcriptomes 

In order to identify differentially expressed genes possibly involved in adaptation 

mechanisms, the AFLP procedure was comparatively performed on 12-week-old 

Clcn5Y/- and Clcn5Y/+ kidneys (n = 4 pairs). Using ∼ one third of the possible AFLP 

primer combinations (see section 4), a total of 10 cDNA bands were reproducibly 

identified as differentially expressed in Clcn5Y/- vs. Clcn5Y/+ kidneys. One of these 

bands, significantly upregulated in Clcn5Y/- samples, was identified in the GenBank 

database using the BLAST program (http://www.ncbi.nlm.nih.gov/BLAST/), as a 

transcript of Car3 (GenBank accession number: M27796), encoding Type III carbonic 

anhydrase (CAIII). The other cDNA bands, which were differentially expressed in 

Clcn5Y/- vs. control kidneys, corresponded to unidentified mouse contigs. 

Quantitative real-time RT-PCR analyses were next used to compare the mRNA 

expression of CAIII in 12-week-old Clcn5Y/- vs. Clcn5Y/+ kidneys (Figure 6.2, panel 

A). In parallel, the mRNA expression of CAII, which represents the most abundant CA 

isozyme in kidney, was quantified in the very samples. In normal kidney, CAIII 

mRNA expression was ∼5-fold lower than CAII. In contrast, CAIII transcript was 

significantly upregulated in ClC-5 deficient kidneys (Ratio: 553% ± 48 of Clcn5Y/+ 

level, n=6), whereas CAII mRNA expression remained unchanged (94% ± 8 of 

Clcn5Y/+ level). Of note, CAIII mRNA expression remained increased ∼5-fold in 

uremic kidneys from 1-year-old Clcn5Y/- mice in comparison to age-matched controls 

(data not shown).  

The increased expression of CAIII mRNA associated with the loss of ClC-5 was 

specific to the kidney, as CAIII mRNA expression levels in liver, skeletal muscle 

(vastus lateralis) and lung from Clcn5Y/- mice were unchanged (Figure 6.2, panel B). 

Of note, CAIII mRNA expression was less than doubled in Clcn5Y/- epididymal fat. 

These data demonstrate the usefulness of the AFLP procedure coupled with real-time 

RT-PCR to compare the transcriptome of distinct groups of mice. Here, this technique 

evidenced a significant and kidney-specific induction of Car3 mRNA expression in 

Clcn5Y/- versus Clcn5Y/+ mice. 
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Figure 6.3. Scattered distribution of CAIII in mouse proximal tubule 
 

Immunostaining for CAIII (panels A-C) and V-ATPase E1 subunit (panel D) in Clcn5Y/+ (panels A, C-E) 
and Clcn5Y/- (panel B); C-D are serial sections (p, proximal tubule; g, glomerulus). In mouse control 
kidney, CAIII is present in some tubules in the outer cortex (A). In Clcn5Y/- kidney, CAIII distribution 
includes both outer and inner cortices, with a ~4-fold increased number of CAIII-positive cells (B). At 
higher magnification, CAIII is located in a subset of PT cells (C), identified by co-staining for the V-
ATPase (D). The α-type intercalated cells of the collecting duct, also positive for the V-ATPase, are 
strictly negative for CAIII (C-D, arrowheads). No signal is detected after incubation with non-immune 
rabbit IgG (E).Bars: 100 μm (A-B); 50 μm (C-E). 
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6.3.3. Expression of CAIII in Clcn5Y/- and Clcn5Y/+ kidney 

The specificity of the sheep polyclonal anti-CAII and rabbit polyclonal anti-

CAIII antibodies was first demonstrated by the lack of cross-reactivity between these 

isozymes, which are characterized by a slightly distinct molecular weight 

(http://us.expasy.org/) (Figure 6.2, panel C). Next, immunoblotting analyses confirmed 

the consistent up-regulation of CAIII in 12-week-old ClC-5 deficient kidneys (Figure 

6.2, panels D-E). Densitometry analyses showed that CAIII was ~4 times more 

abundant in Clcn5Y/- than in control samples (385% ± 43 of Clcn5Y/+, n=4), while 

CAII expression was not modified. These data were confirmed by using a commercial 

mouse monoclonal antibody directed against CAIII (data not shown). These results 

support the data obtained by real-time RT-PCR, and further demonstrate that CAIII 

expression is significantly and specifically increased at both mRNA and protein levels 

in ClC-5 deficient kidneys. 

 

6.3.4. Cellular and subcellular distribution of CAIII in mouse kidney  
In normal kidney, a weak immunoreactive signal for CAIII was observed in some 

tubules located in the outer cortex (Figure 6.3, panel A). At higher magnification, the 
staining pattern was restricted to a subset of cells lining the PT, identified by their 
apical reactivity for the E1 subunit of the V-ATPase (Figure 6.3, panels C-D). In ClC-
5 deficient kidney, the total number of CAIII-positive PT cells in the outer cortex was 
increased ~4-fold (17.1% vs. 4.2% of Clcn5Y/+ PT cells) (Figure 6.3, panel B). In 
addition, immunoreactive signal for CAIII was detected in PT of the inner cortex. No 
signal was detected with non-immune rabbit IgG (Figure 6.3, panel E). The number of 
PT cells undergoing apoptosis, based on the classical TUNEL reaction, was similar in 
Clcn5Y/+ and Clcn5Y/- kidneys (data not shown). 

Subcellular fractionation of mouse  kidneys demonstrated that CAIII was 
predominantly located in the cytosol, with residual distribution in membrane and 
nuclear fractions, as reported previously in adipocytes and hepatocytes (Tweedie, 
1989). Immunogold analyses showed that in normal kidney cortex, CAIII distribution 
was mainly cytosolic, also including the apical brush border microvilli (Figure 6.4, 
panels A and D). Nuclei were labelled (Figure 6.4, panels C and F), and a possible 
endosomal labelling could not be excluded (Figure 6.4, panel B). No significant signal 
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was noticed in mitochondria (Figure 6.4, panel E). In Clcn5Y/- samples, CAIII labelling 
appeared stronger than in Clcn5Y/+ kidneys, with a similar distribution (Figure 6.4, 
panels F vs. C). Altogether these data demonstrate that the CAIII isozyme is present in 
mouse kidney, with a subcellular distribution including the cytosol, the nucleus and the 
brush border of a subset of cells lining the PT in the outer cortex. The loss of the Cl- 
transporter ClC-5 causes a significant increase of CAIII expression in PT cells of both 
outer and inner cortices, with a similar subcellular localization. 

 

 
Figure 6.4. Subcellular distribution of CAIII in Clcn5Y/+ and Clcn5Y/- kidneys 
EM immunocytochemistry for CAIII on ultrathin cryosections from renal cortex of Clcn5Y/+ 
(A-C) and Clcn5Y/- mice (D-F). Labeling appears stronger in the Clcn5Y/- samples than in 
controls. The labeling is mainly cytosolic, extending to the apical brush border (BB) 
microvilli (A, D). Nuclei (N) are also labelled (C, F) and a possible endosomal labelling (E) 
in (B) can not be excluded. The very low signal in mitochondria (M in E) was considered to 
be background. Bars. A-C and F: 0.5 μm; D: 0.3 μm; and E: 0.8 μm. 
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6.3.5. Upregulation of CAIII in human Dent’s disease kidney 

The data obtained in the Clcn5Y/- mouse model were assessed in kidney samples 

from one patient with Dent’s disease due to a loss-of-function mutation of CLCN5 

(Gly506Glu) (Frymoyer, 1991; Lloyd, 1996). In comparison to 4 distinct end-stage 

kidney samples with chronic interstitial nephritis, Dent’s kidney was characterized by 

a ~5-fold up-regulation of CAIII at both mRNA and protein levels (Figure 6.5, panels 

A-B). In addition, real-time RT-PCR studies showed that the functional loss of ClC-5 

was associated with an induction of PCNA and thioredoxin expression, which reflects 

a higher cell turnover and oxidative stress, respectively (Figure 6.5, panel C). Despite 

tissue damage due to the end-stage renal disease, the expression of CAIII could be 

located in PT cells, identified by co-staining with the water channel aquaporin-1 

(Figure 6.5, panel D).  

These results demonstrate at the human level that the functional loss of ClC-5 is 

associated with metabolic responses of PT cells, including cell proliferation, protection 

against oxidative damage and induction of CAIII. 

 

6.3.6. Expression of CAIII mRNA in distinct mouse models of PT dysfunction 

As demonstrated above, the severe PT dysfunction caused by the functional loss 

of ClC-5 is associated with increased expression of CAIII in both mouse and man PT 

cells (Figures 6.2-5). In order to clarify whether CAIII induction was specifically 

caused by ClC-5 inactivation or participated in a common cell response to PT 

dysfunction, CAIII mRNA expression was investigated in two additional mouse 

models of human renal Fanconi syndrome, namely the megalin- and cystinosin-

deficient mice. These models can be distinguished from each other by the severity of 

PT defects, as summarized in section 6.2. The expression of CAIII mRNA was 

significantly increased in megalin KO (262 ± 22% of WT level, n=3 pairs), whereas 

no changes were observed in Ctns KO samples.  

These results indicate that the induction of CAIII expression directly correlates 

with the severity of PT dysfunction, suggesting that this isozyme participates in the 

general cellular response to PT dysfunction. 
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Figure 6.5. Expression and distribution of CAIII in human Dent’s disease kidney 
 

Panels A and B. Real-time RT-PCR quantification of mRNA expression of type III and II CA isozymes 
(A), osteopontin, PCNA, catalase and thioredoxin (B) in end-stage renal disease (ESRD) kidneys with 
Dent’s disease (n=1 patient) vs. with an unrelated pathology (n=4 patients). The mRNA levels were 
adjusted to the reporter gene GAPDH, and quantified using the formula: Ratio = EfficiencyΔΔCt. In 
Dent’s disease samples, CAIII mRNA expression is ~4-fold higher than in controls, with a variable 
increase of CAII level. In addition, PCNA and thioredoxin mRNA are increased in Dent’s samples vs. 
controls. 
 

Panel C. Representative immunoblotting for CAIII and CAII isozymes in human ESRD kidneys with 
Dent’s disease and with an unrelated pathology. Blots were probed with antibodies against CAIII 
(1/1000) or CAII (1/2000), and after stripping, β-actin (1/10,000). CAIII expression is ~5-fold higher in 
Dent’s disease kidneys than in controls, with no change in CAII expression level. 
 

Panel D. Immunostaining for CAIII (A) and aquaporin-1 (B) in human Dent’s disease kidney. CAIII is 
located diffusely in some PT cells (p), identified by staining for the water channel, AQP1. 
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6.3.7. Induction of CAIII expression in PT cells exposed to H2O2  
The HK-2 cell line derives from normal man PT cells immortalized by 

transduction with human HPV-16 E6/E7 genes. At baseline, a weak expression of 

CAII and CAIII can be detected in HK-2 cells at both mRNA and protein levels. 

Exposure of HK-2 cells to 1 mM H2O2  induced a significant increase in CAIII mRNA 

expression as early as 3 hours postincubation, with a maximal level observed at 6 

hours posttreatment (Figure 6.6). Immunoblotting analyses showed an early and stable 

induction of CAIII from 6 hours postincubation with H2O2. Similar results were 

obtained with Opossum kidney (OK) cells, which represent another established model 

of PT cells. Exposure of OK cells to  0.3 mM H2O2 was associated with an increased 

expression of CAIII from 6 hours postincubation  (data not shown). These data 

demonstrate that, under oxidative conditions such as exposure to H2O2, PT cells 

rapidly increase their expression of CAIII.  
 

 

Figure 6.6. Time-course of CAIII expression in HK-2 cells after H2O2 exposure 
 

Panel A. Real-time RT-PCR analyses of CAIII and CAII mRNA abundance in HK-2 cells after the 
indicated times of exposure to H2O2 (1 mM). Quantifications were done after adjustment to GAPDH 
mRNA levels and in comparison to time-matched controls. The expression of CAIII mRNA significantly 
increases from 3 hours post H2O2 treatment, whereas no changes are observed in CAII mRNA level. 
Values are presented as means ± SD. 
 

Panel B. Representative immunoblotting for CAIII and CAII expression in HK-2 cells at various time-
points following exposure to H2O2 (1 mM). Thirty μg proteins were loaded, blotted onto nitrocellulose 
membrane, and incubated with antibodies anti-CAIII (1/1000) or anti-CAII (12000). In comparison to 
non-treated cells, H2O2-treated HK-2 cells show an increased expression of CAIII from 6 hours 
posttreatment, with no change in CAII abundance. 
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6.4. Discussion 
 

In this study, we report that CAIII is a novel kidney CA isozyme expressed in 

scattered PT cells. In ClC-5-deficient kidney, the severe PT dysfunction is associated 

with induction of cell oxidative defences and higher cell proliferation, as well as 

increased expression of CAIII at both mRNA and protein levels. This induction is 

specific to the kidney, since no significant changes in CAIII expression are observed in 

other Clcn5Y/- organs investigated. Moreover, CAIII induction is also observed in 

megalin-deficient kidney, as well as in PT cells exposed to oxidant conditions. 

Type III CA belongs to the family of zinc metallo-enzymes that reversibly 

hydrate CO2, thus generating hydrogen and bicarbonate ions essential for acid-base 

homeostasis, respiration, ureagenesis, lipidogenesis, urinary acidification and bone 

resorption (Sly, 1995; Lindskog, 1997). At least 15 different isoforms, with 11 

catalytically active isozymes, have been described in the mammals, with distinct 

kinetic properties and tissue distribution. Subcellularly, four of the active CA isozymes 

are cytosolic (CAI, CAII, CAIII, and CAVII), four are membrane-bound (CAIV, 

CAIX, CAXII and CAXIV), two are mitochondrial (CA VA and VB), and one is a 

secretory isoform (CA VI) (Mori, 1999). In the kidney, type II and IV CA represent 

the two main isozymes, and are located in PT cells where they concurrently participate 

in H+ secretion and HCO3
- reabsorption, as well as to salt homeostasis. In addition 

CAII is present in the cytosol of the IC of the CD, where it ensures net urinary 

acidification (Giebisch, 2003b). The functional loss of CAII causes Guibaud-Vainsel 

disease, an inherited syndrome characterized by renal tubular acidosis, osteopetrosis, 

and cerebral calcifications (Sly, 1985). Other CA isozymes have been located in 

mouse kidney, i.e. CA XIII and CAXIV, but their specific role, as well as their 

interactions with CAII and CAIV in this organ, remains unknown (Mori, 1999; 

Lehtonen, 2004).  

Type III CA is distinguishable from the other CA isozymes by several features, 

particularly its resistance to sulfonamide inhibitors and its low CO2 hydration ability 

which represents ~2% of CAII activity (Jewell, 1991). Its lower catalytic turnover is in 

part explained by the replacement of a histidine at residue 64 by a lysine, which is not 
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efficient for H+ transfer during catalysis (Jewell, 1991). In addition, at residue 198, the 

phenyl side chain of CAIII (Phe instead of Leu in CAII) causes a further steric 

constriction in CAIII active site, which may be responsible for lower catalytic activity 

and resistance to acetazolamide (LoGrasso, 1991; Duda, 2005). Although CAIII is 

abundantly expressed in the cytosol of skeletal muscle cells, adipocytes and 

hepatocytes, its function, as well as its regulation, remains unclear (Kim, 2004). The 

concentration of CAIII in rat male liver was found to be 30 times greater than that in 

females, with a marked reduction after castration (Carter, 2001). However, 

comparative real-time RT-PCR studies in mouse kidney did not find any significant 

difference in CAIII mRNA expression between 15-week-old male and female samples 

(n=5, data not shown). Two reactive sulfhydryl groups of CAIII are rapidly reduced 

and S-thiolated by glutathione after in vivo and in vitro exposure to oxidative 

conditions (Chai, 1991). CAIII may be S-thiolated by two different non-enzymatic 

mechanisms and dethiolated by enzymatic reactions (glutaredoxin and thioredoxin-

like) in intact liver cells. These observations, as well as its protective role against 

hydrogen-peroxide induced apoptosis (Raisanen, 1999), suggest that CAIII isozyme 

may function as an oxyradical scavenger and thus protect cells from oxidative stresses, 

such as renal ischemia-reperfusion injury and aging (Eaton, 2003; Cabiscol, 1995). 

Recently, Kim et al have postulated that CAIII may have evolved into a percarbonic 

acid anhydrase, which would mediate H2O2 + CO2 ↔ H2CO4 (Kim, 2004; Richardson, 

2003).  

The metabolic outcomes of acquired or hereditary PT dysfunction remain 

unclear. Cadmium-induced nephropathy is clearly associated with increased ROS 

production, which depletes endogenous radical scavengers and cause cell oxidative 

damage (Thevenod, 1999). In addition, recent studies have demonstrated elevated 

oxidized glutathione in PT epithelial cells derived from patients with cystinosis 

(Wilmer, 2005). Here, we show that the PT dysfunction caused by the functional loss 

of ClC-5 is associated with higher cell turnover and increased cellular response to 

oxidant damage, as well as induction of CAIII expression. The upregulation of CAIII 

in Clcn5Y/- mice was restricted to the kidney, with no changes observed in the other 
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CAIII-expressing organs. These findings were also observed in kidney samples of a 

patient with Dent’s disease, with a previously reported “G to A” missense mutation in 

CLCN5 (Frymoyer, 1991; Lloyd, 1996). Interestingly, the investigation of another 

mouse model of PT dysfunction caused by the inactivation of megalin (Willnow, 

1996), showed similar features in terms of cell proliferation and response to oxidative 

stress, as well as a significant increase of renal CAIII expression in megalin-deficient 

kidneys. Moreover the exposure of PT cells to oxidant conditions caused a rapid and 

consistent response of CAIII.  

In conclusion, we report on CAIII, a novel kidney CA isozyme with a distribution 

restricted to scattered PT cells. The induction of CAIII expression in Dent’s disease, in 

megalin-deficient kidneys and in PT cells exposed to oxidative stress suggests that this 

isozyme may participate to the common cellular response against oxidative damage in 

case of PT dysfunction. 
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Summary 
 

Investigations of mouse kidney function are usually performed ex vivo, with 

definite ethical and technical obstacles. Therefore, the development of in vivo imaging 

techniques represents an attractive alternative for such functional studies. Here, 

SPECT studies (Linoview) were conducted on control and Clcn5 knockout conscious 

mice as a model of Dent’s disease to in vivo assess PT functions. SPECT 

quantification of 123I-β2-microglobulin and 99mTc-DMSA renal uptake demonstrated a 

major defect in both PT apical endocytosis and basolateral transport in Clcn5Y/- mice. 

Conversely dynamic 99mTc-MAG3 secretion studies detected no differences between 

Clcn5Y/+ and Clcn5Y/- mice. In conclusion, SPECT allowed the in vivo investigation of 

mouse PT functions with (i) avoidance of animal anaesthesia and sacrifice, (ii) 

comparison of distinct radiotracer biodistribution in the same animals, (iii) and 

dynamic imaging to achieve pharmacokinetic evaluations. The data further suggest a 

severe defect in both apical and basolateral PT functions in Clcn5Y/- mice, without 

alteration of the secretory pathway. 
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7.1. Introduction 
 

Transgenic mouse strains have become a widely used research tool to investigate 

the anatomy and physiology of developing and mature organs (Rao, 2000). However, 

most studies are usually performed ex vivo, with definite ethical and technical 

obstacles. Therefore many efforts have been made to develop in vivo functional 

imaging techniques in mice, such as PET (Positron Emission Tomography) or SPECT 

(Single Photon Emission Computed Tomography) (Lewis, 2002; Beekman, 2005; 

Walrand, 2005). Indeed high-resolution imaging would allow the fine visualization of 

organs in vivo. The feasibility of repetitive biodistribution studies in the same animal 

would help compare the handling of distinct radiolabeled compounds, without 

interindividual variance. Moreover quantitative biodistribution analyses starting at the 

time of drug injection would help establish the pharmacokinetic parameters of new 

drugs in rodents, as a prerequisite for further human applications. Intervention studies 

would enable to non-invasively evaluate tissue responses to different acute or 

prolonged experimental conditions, such as variable regimens of drug administration. 

Finally, in vivo imaging would circumvent the complexity of ex vivo approaches, such 

as radioactivity counting or (chemi-) fluorescence imaging, and would avoid animal 

sacrifice, which represents per se a considerable improvement from an ethical point of 

view (Directive 86/609/EC). 

Among its numerous potential applications, SPECT may be especially useful to 

non-invasively investigate the urinary tract in normal and genetically modified 

rodents: quantification of renal function, dynamic imaging, and parenchymal scanning 

(de Jong, 2005). Similarly to routine investigations in man, two main classes of 

radioactive compounds, i.e. glomerular and tubular tracers, can be used for renal 

studies in mice (Trejtnar, 2002; Maisey, 2003). On one hand, glomerular tracers, such 

as 99mTc-labeled diethylenetriamine pentaacetic acid and 51Cr-labeled ethylenediamine 

tetraacetic acid, are passively cleared from the plasma by glomerular filtration, without 

significant tubular reabsorption or secretion (Trejtnar, 2002). On the other hand, 

tubular tracers are classified into two sub-classes of molecules, which are either 

retained in renal parenchyma (captation) or excreted into the urine after tubular uptake 
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from the plasma (secretion). 99mTc-labeled dimercaptosuccinic acid (99mTc-DMSA) 

accumulates in the renal cortex and minimally excreted into the urine, thereby 

providing cortex imaging with fine resolution (Moretti, 1984). The renal uptake of 
99mTc-DMSA from peri-tubular capillaries has been shown to be mediated by the co-

transporter NaC3 (SLC13A3) located in the basolateral membrane of S3 PT cells 

(Burckhardt, 2002). Thus, 99mTc-DMSA uptake can also be used as a marker of PT 

dysfunction in inherited and in drug-induced renal disorders (Van Luijk, 1984; 

Anninga, 1994). 99mTc-labeled mercaptoacetyltriglycine (99mTc-MAG3), a radiolabeled 

analogue of p-aminohippurate, is cleared from plasma by tubular secretion, and is 

regarded as the almost perfect tubular agent for dynamic renography since there is 

hardly any glomerular filtration (Müller-Suur, 1989; Maisey, 2003). Recent in vitro 

studies based on transport experiments in Xenopus oocytes have proposed a model for 
99mTc-MAG3 secretion by PT cells (Shikano, 2004). First 99mTc-MAG3 is actively 

extracted from peri-tubular plasma through the organic anion transporter OAT1 in 

exchange for intracellular dicarboxylates (Burckhardt, 2003). The segmental 

distribution of OAT1 in the nephron includes all segments of the PT (Motohashi, 

2002). This exchanger allows the intracellular accumulation of 99mTc-MAG3 at high 

levels in PT cells, and its subsequent exit at the brush border following its 

electrochemical gradient. The molecular counterpart of 99mTc-MAG3 apical transport 

remains debated (Shikano, 2004), although p-aminohippurate apical transport seems 

mediated by the human Type 1 Na+-dependent phosphate transporter NPT1 and/or the 

multidrug resistance protein MRP2 (Burckhardt, 2001). In addition to these classical 

radiotracers, other compounds can be specifically radiolabeled with gamma emitters to 

investigate particular kidney functions by SPECT. For example, PT apical receptor-

mediated endocytosis of filtered LMW proteins may be investigated by quantification 

of 123I-β2-microglobulin uptake (Christensen, 2003). 

We report on the use of a small-animal SPECT prototype (Linoview Systems, 

Amsterdam, the Netherlands) to investigate PT functions, i.e. apical and basolateral 

uptakes and secretion, in control and Clcn5 KO mice, an established model of Dent’s 

disease. Dent’s disease is an X-linked renal tubulopathy characterized by LMW 
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proteinuria and renal Fanconi syndrome, associated with hypercalciuria, 

nephrocalcinosis, and nephrolithiasis (Lloyd, 1996; Scheinman, 1998). Dent’s disease 

is caused by mutations in the CLCN5 gene, which encodes the endosomal H+/Cl- 

exchanger ClC-5 predominantly expressed in the kidney (Fisher, 1994; Jentsch, 2005). 

Similarly genetic inactivation of Clcn5 gene in mice leads to severe PT dysfunction 

(Piwon, 2000; Wang, 2000), with impaired receptor-mediated endocytosis and 

intracellular trafficking (Christensen, 2003). In this well-defined model of PT 

dysfunction, we conducted a series of experiments to demonstrate the feasibility and 

benefits of in vivo SPECT imaging to explore PT functions in conscious mice. 

 

7.2. Materials and methods 
 

Animals. Experiments were conducted on 4 C57/bl6 20-week-old mice and 6 pairs of 20-week-old 

Clcn5 wild-type (Clcn5Y/+) and KO (Clcn5Y/-) male mice. No significant differences of weight (30.4 g 

± 0.8) and plasma creatinine levels (0.31 mg/dL ± 0.04) were noted between the 2 groups. The 

Clcn5Y/- mice, generated by targeted deletion of the exon VI of Clcn5, have been extensively 

characterized (Wang, 2000). Restricted kidney infarction was induced by clamping the superior pole 

of the organ for 30 min under anaesthesia. All procedures were performed in accordance with NIH 

guidelines for the care and use of laboratory animals, and with the approval of the Committee for 

Animal Rights of the Université catholique de Louvain. 

 

Radiochemicals. Human β2-microglobulin (Sigma, St-Louis, MO) was iodinated with 123I-sodium (GE 

Healthcare, Brussels, Belgium) and IodobeadsTM (Pierce, Aalst, Belgium) as previously described 

(Christensen, 2003). Radiopharmaceutical purity was in excess of 92%, and remained stable over time. 

Commercial kits of dimercaptosuccinic acid (TechneScan® DMSA) or mercaptoacetyltriglycine 

(TechneScan® MAG3) were obtained from Tyco HealthCare (Mechelen, Belgium). Both tracers were 

radiolabeled with 99mTc Na-pertechnetate (Tyco HealthCare) following the standard procedure. 

Radiopharmaceutical purity was in excess of 99%, as confirmed by instant thin-layer chromatography. 

 

Autoradiography. Seven minutes after iv injection of 620 ng/g of body weight of 125I-β2-

microglobulin, kidneys were exsanguinated in situ, removed, and fixed for 6h at 4°C in 4% 

formaldehyde. Ten-μm slices were prepared, treated with emulsion reagent (Ilford Scientific Product, 

Wilrijk, Belgium), and revealed four weeks later. 
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SPECT system. The animal SPECT device (Linoview Systems, Amsterdam, The Netherlands) is made 

of four 2- by 5-in. γ-ray detectors based on pixelated CsI(Na) scintillators (5-mm thickness, 21 x 52 

pixels of 2.44 x 2.44 mm) (Figure 7.1). The intrinsic spatial resolution is 2.5 mm, the intrinsic energy 

resolution at 140 keV is 35%, and the intrinsic sensitivity in an energy window of 35% width centered 

on the photopeak is 42%. The detectors are fitted with a rake collimator equipped with an adjustable 

slit aperture (0-5 mm), made of 2 iridium square rods (2 x 2 x 60 mm) (Walrand, 2005).  

 

 
 

Figure 7.1. Linoview SPECT device (Linoview Systems) 
 

Courtesy of S. Walrand 
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Acquisition procedure.  All kinetic studies were performed on conscious mice placed in a special 

plastic holder to prevent animal motion during imaging. Static SPECT was obtained every hour 

(acquisitions of 5 min each) during 6 hours after iv injection of 700 μCi of 99mTc-DMSA (n=4 

pairs). At 6 hours postinjection, a 30 min-acquisition was performed under anaesthesia in order to 

obtain high-resolution images. Continuous dynamic SPECT (acquisitions of 15 sec each) was 

performed over 30 minutes after iv injection of 600 μCi of 99mTc-MAG3 (n=3 pairs) or 200 μCi 123I-

β2-microglobulin (n=3 pairs), respectively. In addition, dynamic 99mTc-MAG3 SPECT was 

performed before and following anaesthesia (ketamine [Merial, Brussels, Belgium], 100 μg/g; 

xylazine [Bayer, Antwerp, Belgium], 10 μg/g) in two control mice. The linear motion of the 

detectors were set in such a way that the 4 slit apertures would draw the narrowest rectangle 

possible around the animal. Typically the distance between the actual contours and the collimator 

aperture was ~3 mm. Acquisitions were performed in continuous motion. The linear acquisition 

generates linograms forming a complete set of tomographic data allowing the reconstruction of the 

activity map (Walrand, 2002).   

 

Data processing. Reconstructions were performed using the maximum-likelihood expectation 

maximization algorithm with attenuation correction but no scatter correction nor spatial resolution 

recovery (Shepp, 1982; Lange, 1984). Time-activity curves were generated. 99mTc-MAG3 dynamic 

parameters were calculated by fitting the curves to a 2-exponential model. The glomerular filtration 

rate (GFR) of 123I-β2-microglobulin was assessed by fitting the “blood” curve (region of interest 

centred on the heart) by the exponential function: 
tkeA −            (1) 

The GFR can be calculated as: 

pVkGFR =           (2) 

where Vp is the plasma volume. Only the period between 30 and 180 sec postinjection was 

considered in order to avoid the influence of the bolus injection and the effect of 123I-β2-

microglobulin tubular reabsorption and metabolization. The plasma volume of the mice was 

approximated using a standard blood volume (8% body weight) and 0.45 as haematocrit value (Qi, 

2004). All kinetic parameters of renal uptake were calculated using SigmaPlot 2000 (Systat 

Software GmbH, Erkrath, Germany).  

 

Statistics. Results are expressed as means ± standard deviation (SD). Comparisons between Clcn5Y/+ 

and Clcn5Y/- mice were made by Student non-paired t-tests. The significance level was set at p<0.05. 

Inter-assay variability was calculated by the ratio [(SDx100)/mean]. 
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Figure 7.2. Uptake of 99mTc-DMSA in Clcn5Y/- versus Clcn5Y/+ mice 
 

Panel A. Repetitive static SPECT analysis of 99mTc-DMSA uptake in control mice (n=8 kidneys from 4 
mice). The same symbol is used for one given animal, with empty and dotted symbols representing 
the left and right kidneys, respectively. The asymptotic curve was fitted on the mean uptake data, and 
shows a plateau phase from 6 hours postinjection. Renal uptake of 99mTc-DMSA is abolished in 
Clcn5Y/- mice (n=8 kidneys from 4 mice).  
 

Panel B. Representative 99mTc-DMSA SPECT imaging of Clcn5Y/+ and Clcn5Y/- kidneys (transverse 
slices at 6 hours postinjection) before and after furosemide administration (10 mg/kg BW). In Clcn5Y/+ 
kidney, the tracer remains concentrated over the cortex area, even after furosemide injection. In 
contrast, 99mTc-DMSA signal is minimal in Clcn5Y/- mice, located in the pelvis, and rapidly cleared after 
furosemide injection. Dotted circles represent the cortical contours in Clcn5Y/- kidneys. Bar: 5 mm. 
 

Panel C. 99mTc-DMSA SPECT image after experimental infarction of the upper right kidney (R). 
Coronal (upper panel) and transverse (lower panel) slices show no activity tracer in the infarcted area 
(arrowheads). Bar: 5 mm. 
 

Panel D. Hematoxylin-eosine staining of kidneys corresponding to Panel C. The superior pole of the 
right kidney (R) is necrotic, whereas normal histology is observed elsewhere in the cortex. Bar: 2 mm. 
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7.3. Results 
 

7.3.1. Renal uptake of 99mTc-DMSA in Clcn5Y/+ versus Clcn5Y/- mice 

The kinetics of 99mTc-DMSA renal uptake in control mice showed a progressive 

increase (T1/2 ~75min) to a plateau level (Figure 7.2, panel A). At 6 hours 

postinjection, the activity uptake was close to the steady state, reaching 9.8 ± 0.4% of 

injected dose / kidney. Of note, SPECT quantification of uptake was previously shown 

to fit with measurements obtained by standard ex vivo counting (Walrand, 2005). 

Statistical calculations of the inter-assay coefficient of variation (CV, 5.6%) 

demonstrated a high reproducibility of this procedure. At steady state, the spatial 

resolution of 99mTc-DMSA SPECT imaging enabled a clear delineation of the 

radioactivity distributed over the functional renal cortex, whereas the medulla and the 

pelvis area (~1 mm) showed no detectable signal (Figure 7.2, panel C). When a focal 

kidney infarction was generated, SPECT imaging showed a lack of cortical 

accumulation of the tracer in the infarcted zone, in strict correlation with pathological 

examination (Figure 7.2, panel D).  

The uptake of 99mTc-DMSA in Clcn5Y/- mice, investigated in identical conditions, 

was completely abolished (Table 7.1), with a small residual activity detected in the 

pelvis (Figure 7.2, panel B). Following furosemide injection, no significant changes 

were observed in controls, whereas most of the 99mTc-DMSA signal was cleared from 

Clcn5Y/- animals (Figure 7.2, panel B).  

These results demonstrate that the spatial resolution obtained by SPECT imaging 

clearly delineates the radioactivity distributed over the functional renal cortex. In 

control mice, the kinetics of 99mTc-DMSA uptake in mouse kidney is similar to the 

asymptotic curve observed in man. Furthermore, the lack of cortical retention of 99mTc-

DMSA clearly demonstrate a profound dysfunction of the basolateral uptake in 

Clcn5Y/- PT cells. 
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Figure 7.3. Secretion of 99mTc-MAG3 in Clcn5Y/- versus Clcn5Y/+ mice 
 

In both Clcn5Y/- versus Clcn5Y/+ mice, dynamic SPECT shows a rapid 99mTc-MAG3 kidney uptake, 
followed by its secretion into the urine (n=6 kidneys from 3 mice of each genotype). The elimination of 
the tracer from the kidney is slightly faster in Clcn5Y/- mice than in controls. (% ID: % of injected dose) 
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7.3.2. Renal secretion of 99mTc-MAG3 in Clcn5Y/+ versus Clcn5Y/- mice 

The handling of 99mTc-MAG3 in control mice was characterized by a rapid 

extraction from blood (T1/2IN, 0.4 ± 0.1 min), maximal renal accumulation between 90 

and 120 seconds after iv injection (11.7 ± 1.6% of injected dose / kidney), and 

subsequent tubular secretion (T1/2OUT, 4.7 ± 0.4 min) (Figure 7.3). Inter-assay 

variability in 99mTc-MAG3 secretion parameters was low (CVIN, 12.2%; CVOUT, 9.1%) 

in conscious mice. Conversely, dynamic studies performed on the same animals after 

ketamine-xylazine anaesthesia showed variable curves, with delayed clearance of 
99mTc-MAG3 in anaesthetised mice. As a whole, the kinetic parameters of 99mTc-

MAG3 handling were not significantly different between Clcn5Y/- and Clcn5Y/+ mice 

(Table 7.1), except for a faster elimination in Clcn5Y/- mice (Figure 7.3). This most 

probably reflects the polyuria-polydypsia syndrome observed in such animals (Wang, 

2000). These data demonstrate the feasibility of dynamic SPECT kidney imaging in 

conscious mice with a timeframe of 30 minutes. Importantly, comparative dynamic 

studies before and after anaesthesia showed a marked but variable effect of anaesthesia 

on 99mTc-MAG3 secretion and excretion. However the functional loss of ClC-5 was 

not associated with significant changes of 99mTc-MAG3 uptake and secretion.   

 

7.3.3. Renal uptake of 123I-β2-microglobulin in Clcn5Y/+ versus Clcn5Y/- mice 

Dynamic SPECT quantification of apical 123I-β2-microglobulin uptake in control 

mice showed a rapid glomerular filtration followed by a progressive accumulation of 
123I-β2-microglobulin in the kidney cortex, with maximal activity (6.4 ± 0.8% of 

injected dose / kidney) measured at 7 min postinjection (Figure 7.4). Efficient 

breakdown of 123I-β2-microglobulin in PT cells induced 123I reflux to circulating blood 

and a subsequent decrease of renal activity.  Indeed, biochemical analyses 

demonstrated that the 123I present in Clcn5Y/+ urine at 60 min postinjection was mostly 

free iodine (92.1 ± 2.5% of total urine activity). In strong contrast, Clcn5Y/- mice 

showed a severe defect in 123I-β2-microglobulin reabsorption (see Table 7.1), with  
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Figure 7.4. Uptake of 123I-β2-microglobulin in Clcn5Y/- versus Clcn5Y/+ mice 
 

Panel A. Dynamic SPECT analysis of 123I-β2-microglobulin uptake in Clcn5Y/+ (O) and Clcn5Y/- ( ) 
kidneys, and Clcn5Y/- cortex ( ). The curves show the average of 6 distinct kidneys in each group. In 
Clcn5Y/+ mice, 123I-β2-microglobulin progressively accumulates in the cortex, with subsequent 
breakdown and release of free 123I to the circulation. In Clcn5Y/- mice, the minimal 123I-β2-microglobulin 
uptake in the cortex can be distinguished from the strong signal detected in the pelvis region, which 
reflects the glomerular filtration and the urinary loss of the tracer. 
 

Panel B. Representative distribution of β2-microglobulin at 7 min postinjection in Clcn5Y/+ and Clcn5Y/- 
kidney: in vivo SPECT imaging vs. autoradiography (transverse sections). In Clcn5Y/+ kidney, 123I-β2-
microglobulin is strictly located in the cortex area, with a segmental distribution including the PT. In 
strong contrast, most 123I-β2-microglobulin is located in the pelvis of the Clcn5Y/- mouse, and no 
significant signal can be detected in the cortex. Dotted circles in left panel represent the cortical 
contours in Clcn5Y/- kidney. Bars: 5 mm (left panel); 1 mm (right panel). 
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predominant urinary loss of intact 123I-β2-microglobulin (62.2 ± 4.2% of total urine 

activity) (Figure 7.4). Likewise, autoradiography analyses performed at 7 minutes 

postinjection of 125I-β2-microglobulin showed a strong signal in PT of control kidney, 

whereas no significant uptake of 125I-β2-microglobulin could be detected in Clcn5Y/- 

kidney (Figure 7.4, panel B). Both in vivo and ex vivo investigations of β2-

microglobulin uptake were performed on the same animals. Of note, the calculated 

glomerular filtration rate (~0.22 ± 0.02 ml/min) was similar in both Clcn5Y/- and 

control mice.  

Based on 30-min dynamic SPECT acquisitions, these data, as a whole, 

established the first in vivo kinetic measurement of kidney receptor-mediated 

endocytosis in conscious mice. This further confirmed the major PT apical dysfunction 

caused by the functional loss of ClC-5 (Wang, 2000; Christensen, 2003). 

 
Table 7.1. Summary of SPECT quantifications in Clcn5Y/+ versus Clcn5Y/- mice 
 

    

 Clcn5Y/+ Clcn5Y/- p value 
    
    
99mTc-DMSA    
    

Uptake (% ID / kidney) 9.3 ± 0.5 0.4 ± 0.1 < 0.01 
    
    
123I-β2-microglobulin    
    

Tmax (min) [6.75 ; 7.25] [1.75 ; 3] < 0.01 
    

Uat 7min (% ID / kidney) 6.4 ± 0.8 0.5 ± 0.2 < 0.01 
    
    
99mTc-MAG3    
    

T1/2 IN (min) 0.4 ± 0.1 0.4 ± 0.1 NS 
    

T1/2 OUT (min) 4.7 ± 0.5 4.2 ± 1.2 NS 
    

 

Data are expressed as means ± SD. Non-paired Student t-test was used to compare Clcn5Y/- 
to Clcn5Y/+ mice (% ID: % of injected dose). 
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7.3. Discussion 
 

The data reported in this study demonstrate the feasibility and the benefits of 

both static and dynamic SPECT studies to investigate PT functions in conscious mice. 

The renal uptake of 99mTc-DMSA allows a fine resolution of the functional cortex. 

Dynamic 99mTc-MAG3 SPECT studies further investigate PT basolateral captation and 

apical secretion, whereas the handling of 123I-β2-microglobulin especially assesses 

apical receptor-mediated endocytosis in PT cells. Particularly, our SPECT studies 

suggest that the functional loss of ClC-5 causes a severe defect in both apical and 

basolateral PT functions, without alteration of the secretory pathway. 

The renal uptake of 99mTc-DMSA in mice shows a progressive accumulation in 

kidney cortex, matching standard curves reported in man  (Moretti, 1984). At the 

plateau phase (~6 hours postinjection), SPECT nephrography gives a millimetric 

resolution of the cortex apart from the medulla and the pelvis. Moreover, functional 

imaging by 99mTc-DMSA SPECT clearly identifies restricted kidney damage such as 

infarction. Such characterization of 99mTc-DMSA handling in conscious mice shows a 

low inter-assay variability, and supports the usefulness of SPECT for repetitive and 

long-term biodistribution studies, as well as intervention studies in the same animals. 

Likewise, dynamic 99mTc-MAG3 SPECT demonstrates the feasibility of continuous 

monitoring of drug handling in conscious mice from the time of intravenous injection. 

Clearance studies in mice are thus far performed by different approaches at various 

experimental levels, such as repetitive blood and urine sampling, kidney perfusion 

technique, or isolated functionally intact tubules (Trejtnar, 2002). Although providing 

useful information about renal physiology, these techniques are complex and time-

consuming, and may be biased by the procedure itself, such as the need for anaesthesia 

(Rao, 2000). Our findings emphasize the versatile adverse impact of ketamine/xylazine 

anaesthesia on baseline renal function, urging caution in interpreting data from 

anaesthetized mice (Yang, 1999). SPECT imaging in conscious mice offers thus an 

attractive alternative for such in vivo functional investigations. As an example, the 
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dynamic SPECT quantification of β2-microglobulin renal uptake establishes the first in 

vivo time-course of PT receptor-mediated endocytosis in conscious mice. Moreover, 

mathematical analyses of 123I-β2-microglobulin biodistribution enable to precisely 

determine in vivo the glomerular filtration rate in mouse (Qi, 2004). The radiolabeled 

LMW protein is largely filtered by the glomeruli, avidly captured in the renal cortex, 

and rapidly degraded with subsequent release of the radiotracer and residual 

peptide/amino acids to peri-tubular capillaries (Birn, 2006). Free iodine is then filtered 

by the glomeruli and lost in urine, as demonstrated here in control mice. 

To further assess the usefulness of SPECT imaging in the evaluation of PT 

function, SPECT analyses were performed comparatively on control and Clcn5 KO 

mice, which represent a well-defined model of severe PT dysfunction, with constant 

LMW proteinuria (Wang, 2000). Recently, the functional loss of ClC-5 was associated 

with a major and selective loss of the multiligand receptors, megalin and cubilin, at the 

brush border, reflecting a generalized trafficking defect in PT cells (Christensen, 

2003). For the first time, our study aims to non-invasively investigate PT activities in 

this mouse model of inherited PT dysfunction in order to establish correlates between 

ex vivo findings and in vivo behaviour. This may have important implications for the 

evaluation of drugs or regimens aimed to prevent PT deficiency in conditions where 

tubular injury is anticipated (e.g. chemotherapy). First, the dramatic defect in PT apical 

receptor-mediated endocytosis previously reported in Clcn5Y/- mice by ex vivo 

counting (Christensen, 2003), is confirmed by in vivo SPECT quantification of 123I-β2-

microglobulin uptake. Dynamic studies demonstrate that the glomerular filtration rate 

of 123I-β2-microglobulin is similar in both Clcn5Y/+ and Clcn5Y/- mice, whereas its 

tubular reabsorption occurring mostly in S1-S2 PT segments is significantly impaired 

in Clcn5Y/- mice, with subsequent loss into the urine as the native labeled protein. 

Similarly to β2-microglobulin clearance, the renal handling of 99mTc-DMSA has been 

regarded as an indicator of PT function in man and animal models (Van luijk, 1984; 

Anninga, 1994). For example, treatment of rats with Na-maleate induces a typical 
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renal Fanconi syndrome, with LMW proteinuria, glucosuria, phosphaturia, and marked 

reduction of 99mTc-DMSA uptake (Provoost, 1985). In our study, SPECT 

quantification of 99mTc-DMSA renal capture shows that the genetic inactivation of 

Clcn5 is associated with the lack of accumulation of the tracer in the renal cortex, 

suggesting a severe defect in PT basolateral function. It is likely that the residual 

signal detected in the pelvis area of Clcn5Y/- mice – and cleared following furosemide 

injection – represents a small glomerular filtration of 99mTc-DMSA, an accessory 

pathway of renal handling described with this tracer (Müller-Suur, 1995). Transport of 
99mTc-DMSA in PT cells is mediated by the co-transporter NaC3 (SLC13A3), which 

couples the downhill movement of Na+ to the concentrative uptake of succinate 

(Markovich, 2004). Recent in vitro studies have shown that the co-expression of non-

conducting fragments of ClC-5 with NaC transporter alters its translation and/or 

trafficking in Xenopus oocytes, resulting in decreased expression at the surface 

membrane (Mo, 2004). The severe deficit in both apical and basolateral uptake 

reported here in Clcn5Y/- mice further supports a generalized intracellular trafficking in 

PT cells caused by the functional loss of ClC-5 (Piwon, 2000; Christensen, 2003). 

Renal scintigraphy with the analogue of p-aminohippurate, 99mTc-MAG3, can 

provide excellent image quality, even in patients with severely decreased renal 

function (Itoh, 2001). Our results demonstrate that the PT dysfunction caused by the 

functional loss of ClC-5 is not associated with a defect in 99mTc-MAG3 renal handling. 

The strong contrast between the complete loss of 99mTc-DMSA uptake and the 

preserved 99mTc-MAG3 secretion in Clcn5 KO kidney suggests that these two 

pathways are not functionally dependent on each other (Shikano, 2004). These data 

further support distribution studies showing the absence of co-localization of NaC3 

and OAT1 in S1-S2 PT segments (Burckhardt, 2003). Additional SPECT studies using 

mouse models invalidated for distinct organic anion transporters may help establish 

the metabolic pathways responsible for the handling of these particular radiotracers, as 

well as those for other drugs and metabolites. 
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In conclusion, SPECT analysis represents a novel approach to characterize in 

vivo the renal function in conscious mice. Acute and/or repetitive biodistribution 

studies allow to define the pharmacokinetic parameters of distinct radiolabeled 

compounds, as a prerequisite for further human applications. It should be kept in mind 

that such methodology will not substitute the sophisticated armamentarium that is 

currently available for function analyses. In particular, spatial resolution of SPECT 

remains limited to the millimeter range and cannot compete with classical microscopic 

techniques, including all their possible refinements, nor with the more recently 

evolving live-microscopy methods. Although most pharmacokinetic studies can be 

performed with a temporal resolution of 5-10 seconds, this may not be sufficient to 

explore almost instantaneous functions such as organ activation or cell trafficking. 

Nevertheless, the development of creative approaches like in vivo SPECT analysis 

using devices dedicated to small animal imaging will permit further functional 

investigations of transgenic mouse strains, and finally help better understand renal 

physiology or functions in general. 
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CHAPTER VIII. DISCUSSION AND PERSPECTIVES 
 

The first part of our project investigates the expression, segmental distribution, 
and maturation of the Cl- transporter ClC-5 and the multisubunit complex V-ATPase 
in the developing kidney. These studies indicate that the segmental co-distribution of 
ClC-5 and the V-ATPase in PT cells is essentially acquired at E15.5 in mice and 
during the second trimester of gestation in man (Chapter II). These results complete 
previous observations that the establishment of the brush border and endocytic 
compartments in PT cells coincides with the onset of glomerular filtration 
(Biemesderfer, 1992). The ability of PT cells to reabsorb filtered LMW proteins in 
utero is further suggested by the progressive decrease of the [LMW proteins] in the AF 
during late gestation (Cagdas, 2000). Accordingly, the disruption of PT endocytic 
pathway observed in congenital PT disorders like cystinosis, Dent’s disease, OCRL 
syndrome, and Imerslund–Gräsbeck disease, may result in LMW proteinuria detected 
during early infancy.  

The developmental pattern of ClC-5 is characterized by a complex maturation of 
ClC-5 isoforms, which may result from alternative splicing variants and/or post-
translational modifications like N-glycosylation and phosphorylation. Recent studies 
have identified at least 4 different in-frame start sites for the transcription of CLCN5 
gene, with tissue-specific expression of the variants (Ludwig, 2003). By analogy, two 
transcripts for CLCN3 have been identified in man developing lung, with a differential 
expression in fœtal versus mature tissues (Lamb, 2001). The ontogeny and segmental 
distribution of ClC-5 variants is also likely to differ in the developing kidney. The 
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hypothesis is that the earliest and transient appearance of ClC-5 in the branching UB 
may correspond to fœtal isoforms possibly involved in fluid secretion and lumen 
formation, as previously suggested by the detection of the aquaporin-2 and the Cl- 
channel CFTR at this location (Devuyst, 1996a-b). Conversely, the progressive 
increase in mature ClC-5 isoforms that parallels the induction of the V-ATPase during 
late nephrogenesis may reflect PT maturation. Northern blotting and in situ 
hybridization analyses are needed to clarify the respective roles of ClC-5 variants 
during kidney organogenesis. In addition, post-translational modifications such as N-
glycosylation may account for the variability in the apparent molecular mass of ClC-5 
observed in foetal vs. adult samples, as well as in different tissues. As an example, 
deglycosylation studies with N-glycosidase F have recently demonstrated that ClC-5 
bears more glycan chains in the thyroid gland than in the kidney (van den Hove, 
2006). Several functional roles for N-glycans have been reported including cell 
adhesion, signal transduction, and protein sorting (Gut, 1998). Further investigations 
on the complex maturation of ClC-5 during development and in the different tissues 
may help precise its precise role in the different cellular compartments, namely the 
endosomes and the plasma membrane. In any case, the absence of overt developmental 
abnormalities in Clcn5 KO mice suggests that ClC-5 is not required for kidney 
development. However, investigations of ClC-5-deficient fœtuses may help 
characterize PT receptor-mediated endocytic pathway in utero, and further identify 
early compensatory mechanisms in PT dysfunction. 

In addition to PT cells, ClC-5 and the V-ATPase are co-detected in the apical 

area of α-type IC from E15.5 in mouse nephrogenesis and at the end of the second 
trimester in human gestation (Chapter II). The structure of the V-ATPase located in 
the plasma membrane of mature IC differs from the ubiquitous complex by the 
presence of IC-specific subunit isoforms. Our studies demonstrate a strong contrast 
between the developmental patterns of ubiquitous versus IC-specific V-ATPase 
subunits during kidney organogenesis (Chapter III). The early expression of 
ubiquitous subunits of the V-ATPase in the developing kidney, with a preferential 
distribution in endosomes, confirms its essential role for mouse development, as well 
as its participation in PT maturation. Conversely, the expression of IC-specific V-
ATPase isoforms appears induced by the forkhead trasncription factor Foxi1 in late 
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nephrogenesis, in parallel with other IC markers. These results corroborate the model 
proposed by Blomqvist et al. for IC differentiation from a common epithelial precursor 
along the CD (Blomqvist, 2004), and further support that maturation of acid-base 
secretory functions in this nephron segment occurs around birth (Bonnici, 2004). 
Nevertheless, the developmental pathway by which Foxi1 determines the identity of 
the IC may be more complex. For instance, Foxi1 may interact positively or negatively 
with other transcription factors (e.g. the paired-box PAX family) implicated in cell 
specification, as reported for other forkhead members (Clifton-Bligh, 1998). 
Furthermore, its absence could also be responsible for principal cell differentiation. 
Thus, the identification of the role of Foxi1 in cell specification along the CD and the 
possible association of FOXI1 mutations with hereditary distal RTA represent an 
exciting new chapter in the field of nephrogenesis and congenital tubular disorders. 

The typical developmental pattern of IC-specific subunit isoforms of the V-
ATPase represents a useful tool to further characterize any newly discovered subunit. 
Our investigations of the novel V0 d2 subunit reveal a progressive induction during 
late nephrogenesis in parallel with the IC-specific a4 and B1, which differs from the 
ontogeny of the ubiquitously expressed d1 and E1 subunits (Chapter IV). The 
distribution of d2 appears restricted to the V-ATPase located in the plasma membrane 
of IC and osteoclasts. Of note, these cells are of different embryological origin, and the 
role of the transcription factor Foxi1 in bone development and/or remodeling remains 
unknown. The murine d2 isoform can be co-immunoprecipitated from renal tissue with 
the B1 but not the ubiquitously expressed B2 subunit, which further supports that d2 is 
only present in the specialized IC-specific V-ATPase complex (Sun-Wada, 2003). The 
specificity of d2 distribution further proposes ATP6V0D2 gene as a candidate gene for 
inherited distal RTA and osteopetrosis, as observed in Guibaud-Vainsel syndrome 
(marble brain disease, OMIM +259730) caused by mutations in CA2. In conclusion, 
our comparative ontogeny of the Cl- transporter ClC-5 and the multisubunit complex 
V-ATPase provides new insight into the complex maturation of PT cells and IC, and 
helps decipher the pathophysiology of early phenotypic variants of Dent’s disease and 
inherited distal RTA. 

 

* * * 
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The spectrum of CF-related disorders has broadened considerably over the last 

decade, and includes many milder cases, which are associated with a longer survival 

and a potential for developing complications in multiple organs. Our investigations 

support that the functional loss of CFTR is associated with impaired receptor-mediated 

endocytosis in renal PT cells, leading to LMW proteinuria in both mouse and man 

(Chapter V). The segmental and subcellular distribution of CFTR along the nephron 

includes predominantly (but not exclusively) S3 PT cells, in which it co-localizes with 

ClC-5 and the V-ATPase in apical endosomes. Previous studies support a role for 

CFTR in the acidification of intracellular organelles along the endosomal and 

biosynthetic pathways, with a possible involvement in intracellular trafficking 

(Bradbury, 1999). Particularly, the defect in acidification of the trans-Golgi network 

caused by the functional loss of CFTR may impair post-translational maturation (e.g. 

sialylation, glycosylation) and targeting of secreted proteins. Our results show a 

decrease of cubilin expression in the S3 PT segment of Cftr-/- mice without significant 

changes observed at the mRNA level, suggesting an enhanced degradation and/or a 

trafficking defect of cubilin-AMN complexes in PT cells. The apical sorting of this 

complex is indeed dependent on the correct glycosylation of cubilin extracellular 

domains (Coudroy, 2005), and further deglycosylation studies on CF vs. control 

kidneys may help precise the role of CFTR in cubam maturation. These data give 

explanation for the reduced vitamin B12 absorption, as well as the enhanced renal 

clearance of aminoglycosides observed in CF patients. However, the renal phenotype 

observed in Cftr-/- mice and CF patients remains minor in comparison to Clcn5Y/- mice 

and patients with Dent’s disease. The magnitude in the endocytic defect caused by 

CFTR vs. ClC-5 loss likely reflects the differences in segmental distribution and 

functional regulation between these Cl- transporters. In addition, tissue-specific 

protective mechanisms, such as the occurrence of functional CFTR splice variants 

and/or alternative pathways for Cl- conductance, may account for the discrete nature of 

renal manifestations in CF. 

Our immunoblotting studies show that the electrophoretic mobility of N-

glycosylated CFTR is different in kidney vs. lung, although CFTR core protein is 
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located at ~150kDa in both tissue samples. Since the stability and function of CFTR in 

the plasma membrane is dependent on its glycosylation maturation, the distinctive 

CFTR processing in kidney may reflect differential trafficking/targeting within tubular 

cells. Particularly, the mutant ΔF508-CFTR shows defective processing and 

maturation to the fully glycosylated form, resulting in its retention in the ER by 

molecular chaperones and degradation via the ubiquitin-proteasome pathway. 

However, ΔF508-CFTR can function as cAMP-regulated Cl- channel, both in the ER 

and at the plasma membrane under permissive conditions. The severity in ΔF508-

CFTR processing defect has been shown to be tissue-specific, suggesting that the 

variable CF phenotype in different organs reflects the heterogeneity of residual CFTR 

expression. Previous studies have demonstrated the presence of cAMP-dependent Cl- 

permeability in intestine and gallbladder of the CftrΔF/ΔF mice used in our studies. Our 

investigations further support a large individual variability in the residual expression 

of ΔF508-CFTR protein in CftrΔF/ΔF kidney. These observations may account for the 

variable phenotype noted on CftrΔF/ΔF mice that are characterized by either unchanged 

or increased urinary excretion of LMW proteins. Conversely, all CF patients examined 

in our series harbour at least one ΔF508 mutation (as expected from the prevalence of 

this mutation in our Caucasian population), and show a significant LMW proteinuria 

vs. age- and gender-matched controls. Further investigations may help unravel the 

differences in CFTR processing in rodent vs. human kidney, as well as the functional 

consequences of the ΔF508 mutation. In addition, the characterization of the renal 

phenotype in a series of CF patients harbouring mutations of different type and 

severity (e.g. Type I mutations particularly present in the Ashkenazi Jewish 

population), as well as in “control patients” with similar disease like chronic 

bronchitis, may substantiate our findings, and eventually establish novel genotype-

phenotype correlations.  

As a whole, the preferential distribution of CFTR in the straight part of the PT 

supports a segmental differentiation of mouse PT. By analogy to other species, this 

segment may be particularly involved in the secretion of metabolites and drugs 

(Wright, 2004). In the near future, we plan to perform comparative clearance studies in 
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Cftr-/-, CftrΔF/ΔF and control mice by SPECT (see Chapter VII) to address the putative 

role of CFTR along the secretory activity of PT cells. The direct or indirect 

interactions between CFTR and organic anion transporters located in PT brush border 

may result in enhanced tubular clearance of certain drugs, as indeed observed in 

patients with CF (Woodland, 1998). In any case, the functional loss of CFTR is 

associated with a moderate but significant defect in LMW protein handling in mouse 

and man, supporting a role of CFTR within intracellular organelles along the endocytic 

pathway in renal PT cells. This renal phenotype, which can trigger interstitial renal 

disease, must be integrated in the multi-systemic complications increasingly observed 

in CF patients. 

 

* * * 
 

The metabolic outcomes of the renal Fanconi syndrome at the cellular level 

remain unknown, although recent studies have suggested increased sollicitation of cell 

oxidative defences in acquired and inherited PT dysfunction. Our investigations in 

both man and mouse show that the functional loss of ClC-5 in Dent’s disease is 

associated with higher cell turnover and increased cellular response to oxidant damage, 

as well as the induction of CAIII expression (Chapter VI). The upregulation of CAIII 

in Clcn5Y/- mice is restricted to the kidney, with no changes observed in the other 

CAIII-expressing organs. Moreover, a significant increase of renal CAIII expression is 

also observed in megalin-deficient mice, as well as in PT cells exposed to H2O2. 

Type III CA belongs to the family of zinc metallo-enzymes that reversibly 

hydrate CO2, of which at least 15 different isoforms have been identified in mammals. 

Type III CA is abundantly expressed in the cytosol of skeletal muscle cells, adipocytes 

and hepatocytes. In contrast to most CA isozymes, two unique amino acids in its 

catalytic site confer resistance to sulfonamide inhibitors and result in low CO2 

hydration ability. In addition, CAIII exhibits two reactive sulfhydryl groups that are 

rapidly S-glutathiolated following exposure to oxidative conditions. Recent in vitro 

studies proposed that CAIII acts as oxyradical scavenger and protects cells from H2O2-

178



CHAPTER VIII 
 

induced apoptosis. Moreover, structural analyses suggest that CAIII has evolved into a 

percarbonic acid anhydrase, which would mediate H2O2 + CO2 ↔ H2CO4. Our 

observations support that CAIII isozyme participates in the common cellular response 

against oxidative damage in case of PT dysfunction. These findings will be soon 

investigated in distinct in vitro models of PT cells invalidated for ClC-5 (siRNA) in 

order to decipher the role of CAIII induction observed in Dent’s disease. Moreover, 

we are currently characterizing a CAIII-deficient mouse model recently engineered by 

Kim et al. (Kim, 2004). This in vivo model will help us define the role of CAIII in 

baseline kidney function and in acquired renal Fanconi syndrome (e.g. cadmium-

induced nephropathy). Finally, recent observations indicate that the abundance of 

CAIII urinary excretion may reflect the severity of PT dysfunction in man and mouse, 

suggesting CAIII as a potential novel biomarker of renal Fanconi syndrome. This will 

be further evaluated by quantification of urine [CAIII] in patients suffering from 

various acquired or toxic kidney diseases. 

During embryogenesis, CAIII is regarded as an early mesodermal marker, with a 

distribution including the myotomes, the notochord, and the developing adipocytes. 

Since nephrogenesis involves reciprocal induction between mesodermal structures, 

namely the mesonephric UB and the metanephric mesenchyme, one could speculate 

that CAIII also participates in kidney development. Our preliminary results 

(immunoblotting and real-time RT-PCR analyses) show an early and strong induction 

(from E13.5 to E15.5) of CAIII, followed by a rapid decrease of its expression 

throughout nephrogenesis. Immunostaining detects CAIII in stromal cells surrounding 

differentiating UB, as early as E13.5. From E15.5, CAIII-positive cells are located 

around pelvis and developing ureter, and can be identified as smooth muscle cells. 

Although no specific signal is observed in any stage of nephron differentiation, CAIII 

is detected after birth in some scattered cells of the PT, like in adult kidney. These 

observations prompted us to investigate CAIII expression in dysplastic kidney 

samples. Renal dysplasia refers to altered metanephric differentiation likely due to 

intra-uterine urinary obstruction or insufficient fœtal urine production. The 

histopathology of renal dysplasia includes islands of hyaline cartilage and poorly 
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branched primitive ducts surrounded by stromal/mesenchymal-type cells. Preliminary 

data indicate that CAIII is present in some cells of these fibromuscular collars. These 

observations provide new insights into the differentiation and fate of renal stromal 

cells, as well as into the ureterogenesis. Further investigations of kidney development 

in CAIII-deficient mice, as well as the characterization of CAIII distribution in human 

dysplastic kidneys and in animal models of in utero urinary obstruction, may help 

decipher the contribution of the metanephric stroma in the pathophysiology of renal 

dysplasia. 

Thus the identification of CAIII in the developing and mature kidney has opened 

a new field of investigations in the pathophysiology of distinct human diseases like 

renal dysplasia and renal Fanconi syndrome, which may lead to direct clinical 

applications. 

 

* * * 
 

The development of creative approaches to investigate both anatomy and 

function of small laboratory animals has been stimulated by the increasing availability 

of transgenic mouse models of gene deletion and human disease. Although the 

literature is abundant on in vitro studies performed on mouse samples, there is a 

relative paucity of in vivo functional studies in mice, in part due to the technical 

difficulties associated with their small size and the lack of detailed information about 

anaesthesia influence and normal physiological parameters (Rao, 2000). Therefore, the 

development of in vivo imaging techniques, like small-animal PET or SPECT, 

represents an attractive alternative for structural and functional studies in mice. 

Moreover these techniques may circumvent the complexity of ex vivo approaches and 

avoid animal sacrifice, which represents per se a considerable improvement from an 

ethical point of view. 

In the last part of our project, we use the well-defined Clcn5 KO mouse model of 

PT dysfunction to demonstrate the feasibility and benefits of SPECT imaging to 

explore PT functions in conscious mice (Chapter VII). Our in vivo SPECT studies 
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first confirm the severe deficit in PT apical receptor-mediated endocytosis previously 

reported in Clcn5Y/- mice by standard ex vivo procedures (Christensen, 2003). In 

addition, we show that the functional loss of ClC-5 is associated with defective PT 

basolateral transport, without alteration of the secretory pathway. Importantly, our data 

also demonstrate the unpredictable adverse impact of ketamine/xylazine anaesthesia 

on baseline renal function, urging caution in interpreting data from anaesthetized mice. 

Numerous applications can be extrapolated from these experiments. For example, 

the feasibility of repetitive biodistribution studies in the same animal will allow 

comparisons of distinct compound handling, without the pitfalls of inter-individual 

variance. Likewise, quantitative biodistribution analyses starting at the time of drug 

injection will determine the pharmacokinetic parameters of new drugs in rodents 

before any human applications. Intervention studies will enable to non-invasively 

evaluate tissue responses to different acute or prolonged experimental conditions, such 

as drug administration at different dosages. Although SPECT spatial resolution will 

never compete with classical microscopic techniques, the development of such devices 

dedicated to small animal imaging will permit further functional investigations of 

transgenic mouse strains, and finally help better understand in vivo renal physiology or 

functions in general. 

 

* * * 
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SUMMARY 

The chloride transporters ClC-5 and CFTR (cystic fibrosis transmembrane 
conductance regulator) and the vacuolar H+-ATPase (V-ATPase) co-distribute in 
proximal tubule (PT) cells. In PT endosomes, ClC-5 and the V-ATPase participate in 
the receptor-mediated endocytic uptake of low-molecular-weight (LMW) proteins 
from the ultrafiltrate. Mutations in the CLCN5 gene are associated with Dent’s disease, 
an X-linked renal tubulopathy characterized by early LMW proteinuria, 
hypercalciuria, nephrolithiasis, and nephrocalcinosis. Likewise, the inhibition of the 
V-ATPase results in a generalized PT dysfunction, with severe LMW proteinuria. In 
contrast, the role of CFTR in PT function remains poorly understood, and no 
overwhelming renal phenotype has been documented in cystic fibrosis (CF). In 
addition to PT cells, ClC-5 and the V-ATPase co-distribute in the intercalated cells 
(IC) of the collecting duct, which are mainly involved in acid-base homeostasis. At 
this location, the V-ATPase complex is located at the plasma membrane, and is made 
of particular subunit isoforms. Mutations in ATP6V1B1 and ATP6V0A4 genes 
encoding such IC-specific subunits of the V-ATPase cause metabolic acidosis in 
infancy or early childhood. These clinical observations prompted us to firstly 
investigate the ontogeny of ClC-5 and the V-ATPase in man and mouse kidney 
development. Our data support that their segmental distribution in PT cells is acquired 
during early nephrogenesis, in parallel with the onset of glomerular filtration. 
Conversely, the developmental pattern of the IC-specific V-ATPase isoforms, 
including the novel V0 d2 subunit, is characterized by a later appearance, following 
the induction of the transcription factor Foxi1. Next, our studies have demonstrated 
that the functional loss of CFTR in two distinct mouse models of CF, as well as in a 

representative cohort of CF patients harbouring the ΔF508 mutation, is associated with 
a moderate but significant defect in the reabsorption of LMW proteins. Finally, we 
have investigated the metabolic outcomes of the severe PT dysfunction observed in the 
Clcn5 knockout mice, and postulated a role for Type III carbonic anhydrase in 
oxidative defences of injured PT cells. In parallel, we have demonstrated the usefulness 
of a small-animal SPECT (single photon emission computed tomography) prototype to 
in vivo explore PT functions in conscious mice. In conclusion, these studies provide new 
insights into the implication of the Cl- transporters ClC-5 and CFTR and the V-ATPase 
in renal tubular maturation and in the pathophysiology of inherited tubular disorders. 
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RÉSUMÉ 

Les transporteurs de chlorure, ClC-5 et CFTR (cystic fibrosis transmembrane 
conductance regulator), co-localisent avec la pompe à proton vacuolaire (V-ATPase) 
dans les cellules du tube proximal (TP). Au niveau des endosomes de ce segment du 
néphron, ClC-5 et la V-ATPase participent à l’endocytose médiée par récepteur des 
protéines ultrafiltrées. La perte fonctionnelle de ClC-5 par mutation du gène CLCN5 
cause la maladie de Dent, désordre tubulaire héréditaire lié à l’X associant protéinurie de 
bas poids moléculaire (BPM) précoce, hypercalciurie, lithiase rénale et néphrocalcinose. 
De même, l’inhibition de la V-ATPase in vivo cause une dysfonction généralisée du TP, 
caractérisée par une protéinurie de BPM sévère. A contrario, le rôle de CFTR dans la 
fonction du TP, ainsi que l’effet de son inactivation sur la fonction rénale des patients 
mucoviscidosiques, restent largement méconnus. En plus du TP, ClC-5 et la V-ATPase 
co-localisent dans les cellules intercalaires (CI) du néphron distal, qui participent à 
l’homéostasie acido-basique. Le complexe V-ATPase se trouve à la surface 
membranaire de ces cellules, où il est composé d’isoformes spécifiques de certaines 
sous-unités. La perte de ces sous-unités par mutation des gènes ATP6V1B1 et 
ATP6V0A4 entraîne l’apparition d’une acidose métabolique précoce durant l’enfance. 
Ces observations cliniques nous ont incités à investiguer l’ontogénie de ClC-5 et de la 
V-ATPase durant le développement rénal chez l’homme et la souris. Nos données 
indiquent que leur distribution segmentaire au niveau du TP est acquise durant la 
néphrogenèse précoce, au moment où la filtration glomérulaire commence. A l’inverse, 
les sous-unités spécifiques de la V-ATPase des CI, y compris la nouvelle sous-unité V0 
d2, apparaissent plus tardivement, suivant l’induction du facteur de transcription Foxi1. 
Dans un second temps, nous avons montré que la perte fonctionnelle de CFTR, dans 
deux modèles murins de la mucoviscidose et dans une série de patients 
mucoviscidosiques porteurs de la mutation ΔF508, entraîne un déficit modéré, mais 
significatif, de la réabsorption tubulaire proximale des protéines de BPM. In fine, nous 
avons investigué les conséquences métaboliques du désordre tubulaire sévère observé 
chez les souris inactivées pour le gène Clcn5, et révélé un possible rôle pour l’anhydrase 
carbonique de type III dans la défense du TP contre le stress oxydatif. Par ailleurs, la 
mise au point récente d’un prototype SPECT (single photon emission computed 
tomography) nous a permis d’explorer in vivo la fonction rénale de ces souris. En 
conclusion, notre étude des transporteurs ClC-5 et CFTR et de la V-ATPase au cours de 
la maturation tubulaire et dans le rein adulte, permet une meilleure compréhension de la 
physiopathologie des désordres tubulaires congénitaux. 
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