SHORT-TERM MEMORY, ARTICULATION RATE AND

SUBVOCAL REHEARSAL IN DOWN'S SYNDROME

Annick COMBLAIN, Université de Liège, Laboratoire de Psycholinguistique

Baddeley (1986): Working Memory Model

- → There is a significant link between articulation rate and memory span (the faster is the articulation rate the more a subject can recapitulate items in a memory span task).
- \rightarrow Word-length effect is strongly related to articulation rate and subvocal rehearsal.

<u>BUT</u>

 \rightarrow Some authors recently showed that word-length effect can be the result of the delay at recall.

Gathercole, Adams & Hitch (1994): Developmental studies of working memory

- → In young children there is significant link between articulation rate and immediate memory span <u>but</u> these variables are closely related in adults.
- \rightarrow Word-length effect in children is obtained with auditorily presented stimuli.
- → Children do not rehearse during auditory memory tasks. Word-length effect is due to the delay at recall

Hulme and Mackenzie (1992): Working memory in mentally handicapped subjects

 \rightarrow Mentally retarded persons do not rehearse.

Comblain (1995): Working memory in Down's syndrome subjects

 \rightarrow There is a highly significant word-length effect in Down's syndrome subjects.

Hypothesis:

If Baddeley's model is right, word-length effect is the cue of subvocal rehearsal in Down's syndrome, than:

- → memory span and articulation rate will be highly correlated in Down's syndrome subjects
- \rightarrow Hulme and Mackenzie assumption is false and Down's syndrome subjects rehearse.

If Gathercole's assumption is right than:

 \rightarrow memory span and articulation rate are not correlated.

→ Hulme and Mackenzie assumption is right and Down's syndrome subjects do not rehearse.

EXPERIMENT 1:

Subjects:

* 43 Down's syndrome subjects:

Non-verbal mental age	< 4 years	4 - 5 years	5 - 6 years	> 6 years
	N = 13	N = 11	N = 10	N = 9
Mean	3; 4 years	4; 8 years	5; 9 years	6; 11 years
Standard deviation	1 month	5 months	3 months	9 months

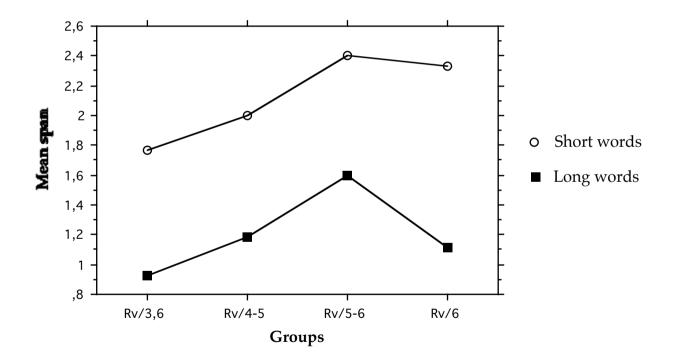
Method:

- * Short-words span /
 - Long-words span /
- Progressive Color Matrix (Raven).

* Individual testing

Results:

* Mean short-words span = 2.09 (SD: 0.68) Mean long-words span = 1.19 (SD: 2.82)


	Short-words span	Long-words span
Group: <4 years	1.77 (SD: 0.73)	0.92 (SD: 0.95)
Group: 4 - 5 years	2.00 (SD: 0.63)	1.18 (SD: 0.75)
Group: 5 - 6 years	2.40 (SD: 0.52)	1.60 (SD: 0.70)
Group: > 6 years	2.33 (SD: 0.71)	1.11 (SD: 0.78)

SD = standard deviation

* ANOVA 1 factor intra- 1 factor inter-group:

- ° Global length effect: F(1,39) = 95.57, p<0.0001
- ° No global group effect: F(3;39) = 1.84, NS

° No interaction between length and group: F(3,39) = 1.03, NS

Conclusion:

* There is a word-length effect in Down's syndrome subjects.

* The size of this effect is similar in the four groups.

EXPERIMENT 2:

Subjects:

* 43 Down's syndrome subjects:

Non-verbal mental age	< 4 years N = 13	4 - 5 years N = 11	5 - 6 years N = 10	> 6 years N = 9		
Mean	3; 4 years	4; 8 years	5; 9 years	6; 11 years		
Standard deviation	1 month	5 months	3 months	9 months		

Method:

* Digits span / Letters span / Short-words span / Progressive Color Matrix (Raven) / Articulation

rate

* Mean span = mean between letters span, short-words span and digits span

* Individual testing

Results:

* Mean digit span = 2.33 (SD: 0.75)
* Mean word span = 2.09 (SD: 0.68)
Mean span = 2.03 (SD: 0.63)

* Mean articulation rate = 35.25 words per minute (SD: 8.9)

* Mean non-verbal level = 12.95 (SD: 4.83) correspond to the mean non-verbal level of children of 4; 10 years old.

	1	2	3	4	5	6	7
1. Digits span	1.00						
2. words span	.70*	1.00					
3. Letters span	.63*	.63*	1.00				
4. Mean span	.89*	.88*	.86*	1.00			
5. Articulation rate	.37**	.21	.31**	.34**	1.00		
6. Non-verbal intelligence	.53*	.41*	.52*	.56*	.39*	1.00	
7. Chronological age	1	.02	.09	.004	16	22	1.00

Correlations between memory span measures, articulation rate, non verbal intelligence and chronological age. (* significant level p < 0.01, ** significant level p < 0.05).

- * High correlation between the memory span tasks (p<0.0001).
- * Correlation between articulation rate and some of the memory span measures (p<0.05).
- * High correlation between non-verbal intelligence and memory span measures (p<0.0001).
- * High correlation between non-verbal intelligence and articulation rate (p<0.01).

Can we conclude that there is a clear relationship between memory span and articulation rate ?

 \rightarrow Gathercole and Hitch (1993) showed that digits span of three years-old is not correlated with articulation rate.

 \rightarrow Distribution of the subjects in four groups:

Group: < 4 years	1	2	3	4	5	6	7
1. Digits span	1.00						
2. words span	.92*	1.00					
3. Letters span	.33	.38	1.00				
4. Mean span	.91*	.93*	.67*	1.00			
5. Articulation rate	.02	.12	33	07	1.00		
6. Non-verbal intelligence	.22	.26	.70*	.46	03	1.00	
7. Chronological age	15	004	.02	07	.02	38	1.00
Group: 4 - 5 years	1	2	3	4	5	6	7
1. Digits span	1.00						
2. words span	.52	1.00					
3. Letters span	.24	.63**	1.00				
4. Mean span	.75*	.90*	.74*	1.00			
5. Articulation rate	.21	11	.16	.10	1.00		
6. Non-verbal intelligence	.52	0	52	006	14	1.00	
7. Chronological age	46	08	.16	18	26	30	1.00
Group: 5 - 6 years	1	2	3	4	5	6	7
1. Digits span	1.00						
2. words span	.36	1.00					
3. Letters span	.69**	.61	1.00				
4. Mean span	.80*	.78*	.92*	1.00			
5. Articulation rate	05	37	27	28	1.00		
6. Non-verbal intelligence	.08	15	02	02	.21	1.00	
7. Chronological age	.38	.50	.49	.54	42	.26	1.00
Group: > 6 years	1	2	3	4	5	6	7

1. Digits span	1.00						
2. words span	.68**	1.00					
3. Letters span	.86*	.70**	1.00				
4. Mean span	.94*	.84*	.98*	1.00			
5. Articulation rate	.85*	.44	.74**	.77**	1.00		
6. Non-verbal intelligence	.72**	.45	.52	.63	.41	1.00	
7. Chronological age	.26	.28	.49	.38	.16	.40	1.00

Correlations between memory span measures, articulation rate, non verbal intelligence and chronological age. (* significant level p<0.01, ** significant level p<0.05).

In the four groups:

° No significant correlation between articulation rate and memory span measures in children under 6 years-old of nonverbal mental age.

Conclusion:

* Our results seems to be similar to those of Gathercole and al. (1994).

¥

There is no relationship between articulation rate and memory span measure before the age of 4 years-old

Positive association between the two variables in adults

* In experiment 1: clear length effect in all groups.

* In experiment 2: no correlation between memory span measures and articulation rate.

 \Rightarrow in young normal children and in Down's syndrome subjects: hypothesis of a direct access of the auditive stimulations to the phonological store where information is maintained until the trace decay.

 \rightarrow individual difference and possibility (in some young children) to recall 5 items without using rehearsal is due to the variability in the rate of decay.

 \rightarrow in Down's syndrome subjects, it seems that the phonological store is sufficient to maintain a certain amount of items without rehearsal (3 items regarding the limited capacity of the phonological store).