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Abstract: Cardiovascular disease is the major cause of mortality in the developed world. Due to its high prevalence, cardiac dysfunction is a leading cause of admission in the intensive care unit (ICU). Cardiac assessment in an ICU is usually based on a minimal set of measurements including blood pressure, cardiac output and ECG. However, complex interactions in these measurements can hide the underlying disease state, so that clinicians typically rely on their experience to make a diagnosis. This paper describes an innovative means of revealing a patient’s cardiac status using only measurements available in an ICU. A cardiovascular model and patient specific parameter identification process are used to aggregate the measurements into a clear picture of a patient’s cardiac physiology.  The approach is tested  in animal trials where significant invasive data sets are available. The model accurately identifies the major physiological trends related to pulmonary embolism and closely matches measured outputs. In particular, the model captures ventricle volumes and pressures that would normally require either expensive echocardiography, or extra invasive catheters. The results suggest the potential for implementation in a ICU setting.
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1. INTRODUCTION

Cardiovascular disease has the highest mortality in the western world and in New Zealand accounts for 36% of all deaths (Rosamond et al., 2008). The primary problem is that with limited data available different disease states can look the same on cardiovascular system monitors (Dickstein, 2005) so that the diagnosis is often dependent on the experience of the attending clinical staff. Cardiac dysfunction is a leading cause of mortality in intensive care due to the high incidence cardiovascular disease in society. 
Currently, cardiac assessment of critical care patients involves the analysis of changes in the aortic pressure, cardiac output, electrocardiogram (ECG), central venous pressure, heart rate and gas exchange measurements. However, complex interactions in these measurements and a lack of understanding of fundamental cardiac physiology, can hide the underlying disease state so that the clinicians receive no clear picture of the overall circulatory status or function. For example, clinical staff typically titrate inotropes to increase mean arterial pressure (MAP) to reveal changes in the left ventricle pressure-volume loops a primary indicator of function (Guyton et al., 2000).

This research aims to use patient specific modelling to aggregate common ICU measurements in to a more physiological form so that the fundamental concepts in Guyton et al. (2000) can become part of mainstream critical care. The challenge is to create a realistic computational model of the heart and circulation which is applicable at the bedside while adding no new invasive monitoring or equipment. For example, echocardiography or computed tomography (CT) scans can reveal a lot of detail on heart function, however these measurements are not available immediately at the bedside, and they require expert technical skills and interpretation. In addition, no intermittent diagnostic test can tell clinicians what is going on as it happens, which is critical in the ICU since the condition of the patient can change rapidly and with unstable patients less tolerant to incorrect treatments. Hence, a cardiac model must be robust, have the ability in real time to predict significant changes in a given patient changes and provide a reasonable picture of the underlying hemodynamics which are not apparent on the ICU monitors.  To achieve these requirements, this research initially uses animal data containing a large amount of cardiac information that is typically not available in humans. 
For this paper the modelling methodology developed is tested on an animal model of pulmonary embolism, where continuous measurements at 200Hz of left and right ventricle pressure and volume, aortic and pulmonary pressures are available (Ghuysen et al., 2007). Previous work (Starfinger, 2008a, b) assumed that the maximum and minimum volumes were known and the valve resistances were constrained to population values. This assumption is reasonable in the porcine data (Guyton et al., 2000) as it was known a priori that the pigs did not have any ventricular disease, but cannot be assumed in ICU patients as for example mitral stenosis is known to increase the difference between the left ventricular and aortic pressure. This paper develops models to capture the progression of pulmonary embolism using only information that is available in the standard ICU monitors of the Tramrac (General electric company, Schenectady, New York,  USA) and PiCCO (Pulson medical systems AG, Munich, Germany). 
2. METHODOLOGY

2.1  Cardiac Model
The model consists of 8 elastic chambers, representing the left and right ventricles, aorta, systemic veins (of the body), vena cava, pulmonary artery, pulmonary capillaries, and pulmonary vein. Each pressure-volume chamber is characterised by its elastance, resistance to flow in and out of the chamber, upstream and downstream pressures, and the inertia of blood through the valves.

For a description of the model see Starfinger et al. (2008). The approach in this paper is to identify simplified models of the cardiovascular system then bootstrap these to more complicated models. Due to space constraints, the paper only outlines results for identifying a slightly simplified six chamber model.
For conciseness, only the left ventricle systemic side of the model is given
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where driL is the left ventricle driver function. The driver function or time varying elastance is a common way representing the cardiac muscle activation (Smith, 2004), and is defined as:
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2.2  Simplified Models
As an initial step to identifying the full 6 chamber model, the model is split into two simplified models as shown in Figure 1. For details of this process see Hann et al. (2010a).  
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The input parameters and output waveforms for the systemic and pulmonary models from Figure 2 (a) are:
Systemic input parameters
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Systemic output waveforms 
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Pulmonary input parameters
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Pulmonary output waveforms 
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The driver functions, driL and driR used in the simplified models are defined by (11) where the true right ventricle volume and pressure are used to find driR. However, ventricular pressures and volumes are normally unknown. In this case the left and right ventricle driver functions are obtained through relationships with the aortic and pulmonary pressure waveforms respectively using a method similar to one described by Hann et al (2010b).
2.3  Porcine Experiments and Data
All procedures and protocols used in the porcine experiments were reviewed and approved by the Ethics Committee of the Medical Faculty at the University of Liege. Details are given in Ghuysen et al. (2007). This research uses data from 5 of the pigs (Pig 1, Pig 2, Pig 7, Pig 8, and Pig 9) in the study.
2.4  Parameter Identification Process
2.4.1 Identifying Valve Resistances
To start the parameter identification process the systemic system model of Figure 2(a) is initially identified using a method described in depth in Hann et al. (2010a). Proportional control is used to iteratively optimise the input parameter set for the systemic model of Equation (12). The result is: 
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The timing of the mitral valve closure corresponds to the end of atrial contraction which can be detected by the end of the P wave in the ECG or the ‘a wave’ in the central venous pressure (Muralidhar, 2002). So the left ventricle filling pressure which corresponds to Ppu in the simplified systemic model of Figure 2 (a) can be estimated by:
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Another important feature available is the maximum gradient or inflection point in the ascending part of the aortic pressure wave. In the model the parameter Rav has a significant effect on the gradient at the inflection point. With all other parameters held constant it is seen that changes in Rav are inversely proportional to changes in maximum aortic gradient. So Rav is optimised using the formula:
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In Equation (20), Pao,true is the measured aortic pressure and Pao,approx is the corresponding simulated pressure. Also, tinflect,true is the time of the maximum aortic pressure gradient and tmin,true and tmin,approx are the times of the minimum, measured and simulated aortic pressure.
2.4.2 Identifying Ventricular Contractilites
The final parameter Ees,lvf can not yet be identified as there is no direct measurement of left ventricle volume. Analysis of the model has shown that changes in the sum of left and right ventricle end systolic elastances, Ees,tot are inversely related to GEDV when all other model parameters are held constant. So, identification of the total end systolic elastance is achieved by the equation: 
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There is a strong correlation (R=0.95) between Ees,lvf and Ees,tot, through a relationship defined:
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However when the mean aortic pressure is less than two times larger than the mean pulmonary artery pressure (PAP) the hemodynamic reflex responses of the pigs can no longer cope with the increased effects of pulmonary embolism.
When this effect occurs, the relation of Equation (22) no longer holds and instead a similar relation is defined:
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where GEDVapprox and GEDVtrue are the simulated and measured GEDV.

The presented method is iterative and starts with initial guesses for Ees,lvf and Ees,rvf, which are used to converge the other parameters of both the systemic and pulmonary models. Once both have converged the approximated ventricular volumes are used to calculate GEDVapprox. The parameters Ees,lvf and Ees,rvf are then updated using Equations (21)-(23) and the parameters for the systemic and pulmonary models are re-identified. This process is repeated until GEDVapprox has converged to the measured GEDV.
2.4.3 Identifying Ventricular Interaction and Pericardium Pressure

Pericardium pressure, Ppcd as defined by Equation (2) and ventricular volume, Vspt are then added to the simplified models, thus introducing coupling between the left and right ventricles. An in depth description on the modelling and calculation of Vspt can be found at Hann et al. (2005).
One of the major problems with identifying an individual’s parameters results from inter-beat variability of the measured data. This is especially a problem when identifying the valve resistances which physiologically stay constant over period spanning several days. However in the identification process changes in the maximum aortic gradient due to wave reflections can cause large changes in Rav. To enforce constant valve resistances the simplified models are identified using several different periods of the measured data, taken at times greater than 5 minutes a part. The valve resistances identified in these simulations are stored and averaged. The now constant valve resistances may be used to re-identify the other parameters of the simplified models using the same periods of the measured data.
Once all the parameters of the simplified models of Figure 2 have been identified a 6 chamber model is used to identify the vena cava and pulmonary vein chambers. In the identification of Evc, Ppu is held constant whereas Pvc is allowed to vary. The changes in Pvc are then used to identify Evc by the formula:
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As a secondary effect of changing altering Evc the pulmonary volume waveform, Vpu,approx changes allowing Epu to be identified using equation (25). Where the output Ppu from the simplified models is assumed to be the true pulmonary vein pressure.
2.4.4 Summary of Identification Process

The overall parameter identification algorithm is summarised in Figure 3.
Step 1
Approximate left and right ventricular driver functions.
Step 2 
Estimate an initial set of input parameters for systemic and pulmonary models.

Step 3 
Simulate systemic model of Figure 2 (a).

Step 4 
Identify Rmt, Eao and Rsys for the systemic model with Equations (16)-(18).

Step 5 
Re-simulate the simple model.

Step 6 
If the maximum/minimum aortic pressures and stroke volume have converged go to Step 7, otherwise go back to Step 4.

Step 7 
Compute Ppv and Rav and if they have converged go to Step 8, otherwise repeat Step 4.
Step 8 
Repeat Steps 3 to 7 for the pulmonary model and then go to Figure 3.
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Step 1 
Identify Ees,lvf and Ees,rvf with Equations (21)-(23) and calculate Vspt and Ppcd. If GEDV, Vspt and Ppcd have converged go to Step 10 otherwise go to Step 2 of Figure 3.

Step 2
Repeat process of Figure 3 with several different periods of the measured data and store the derived valve resistances.

Step 3
Average the stored valve resistance and repeat Steps 1 to 9 using averaged valve resistances (ie without identifying Rmt, Rav, Rtc, and Rpv) and go to Step 4.
Step 4
Simulate 6 chamber model.

Step 5
Identify Evc and Epu with Equations (24) and (25).
Step 6
If Pvc has converged go to Figure 5, otherwise go to Step 4.
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3. RESULTS AND DISCUSSION
Testing of the model identification process was achieved using 46 sets of porcine data from 5 pigs with induced pulmonary embolism. Although a large amount of measurements were recorded for each data set, identification of the 6 chamber model was achieved using only measurements available in an ICU. To describe the activation of the left and right ventricles in the model, time and patient specific driver functions were approximated from features in the aortic and pulmonary pressure waves as described in Hann et al. (2010a). Identification of the CVS parameters was achieved using an iterative approach, where parameters are continually optimised, so the outputs of the models match the measured data. 
3.1 Simulated Model Results
An example of model outputs matching the aortic and pulmonary pressure waves are illustrated in Figure 6 for measurements taken at 30, 120 and 210 minutes into the 
porcine trial from Pig 8. For the same measured data sets, Figure 7 shows the ability of the model to accurately capture the pressure-volume loops of the left and right ventricles.
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Figure 7: Comparison of identified and measured left and right ventricle pressure-volume loops at 30, 120, and 210 minutes (dashed is measured and solid is identified).

Figure 6: Comparison of identified and measured aortic and pulmonary pressure waveforms at 30, 120, and 210 minutes (dashed is measured and solid is identified).
The simulated outputs for the mean left and right ventricle volumes, maximum left and right ventricle pressures, and mean aortic and pulmonary pressures all lie within absolute error range of 0.1% to 20.8% of their true value. Table 1 summarises the average absolute error in the simulated results across the 5 pigs

3.2 Detecting Pulmonary Embolism

The model also captures the expected pathophysiological changes in the progression of pulmonary embolism during the pig trials. For example, pulmonary resistance increases as shown in Figure 8. This result is expected as mechanical obstruction to the blood flow increases as more emboli lodge in the pulmonary vasculature. 
A further increase in resistance results from intrapulmonary reflexes that cause the pulmonary vessels to constrict. As pulmonary resistance increases, more blood is stored in the pulmonary circulation with less blood flowing into the left heart. To compensate the CVS responds by increasing Rsys to maintain preload on the left ventricle. This result is observed in the simulated parameters, as represented in Figure 9, where an initial increase in Rsys is noticed. However, as the trials advance a systemic resistance drop is observed in some of the pigs as the reflex responses can no longer cope with the increasing influence of the pulmonary embolism. 

Figure 8: Identified pulmonary resistance (Rsys) during the porcine trials.

Figure 9: Identified systemic resistance (Rsys) during trhe porcine trials.
3.3 Identifying the Severity of Pulmonary Embolism
 As pulmonary embolism develops, increased afterload (Rpul) causes the right ventricle to dilate (Goldhaber, 1998). This expansion of the right heart produces a leftward shift in the intraventricular septum wall, resulting in a decrease volume in the left ventricle. The ventricular volume index, defined as the ratio of the right to left end diastolic volume (RVEDV/LVEDV), can therefore be used to track the severity of pulmonary embolism. Figure 10 compares the ventricular volume index of the identified Pig 1 and Pig 9 CVS models. Comparison of the pigs clearly shows that after 240mins the severity of pulmonary embolism increases sharply in Pig 1, whereas Pig 9 only appears to be suffering from acute pulmonary embolism throughout the study. This result is also seen in the ratio of the measured ventricular volumes further validating the model and methods.

Figure 10: Identified volume index (RVEDV/LVEDV) for Pig 1 and Pig 9during porcine trials.
The coupling between the left ventricle contractility and the systemic resistance (Elv/Rsys) is an important indictator of cardiovascular health. In a healthy patient the contractility will track changes in resistance to maintain cardiac output . The ratio of CO to the coupling (Elv/Rsys) for Pig 1 decreases rapidly after 210 minutes, whereas the ratio for Pig 9 appears to stay relatively constant, reiterating the result of Figure 10.
4. CONCLUSION
An accurate method for identifying a patient’s time varying hemodynamic state has been developed and tested on a porcine model of pulmonary embolism. Importantly, only information on existing ICU monitors is required. The model can be used to infer information on the left and right ventricle pressure volume loops which would be important when assessing for example the effect of inotropes. This approach is now at a stage where it can be readily implemented in a critical care environment, but requires validation in human trials which have begun. Further improvements to the model could be made through use of relations to predict the PAP and CO. For example there is a very high correlation between dicrotic notch and mean PAP. In otherwords, the time point at the mean PAP predicts the end of right ventricle ejection. This correlation is not present in the cardiac model, so effectively provides an extra measurement that could help identify PAP. These relationships would enable the identification algorithm to predict the cardiac status of wider range of patients with fewer measurements needed.
5. REFERENCES

Dickstein, K. (2005). Diagnosis and assessment of the heart patient: the cornerstone of effective management, European journal of heart failure, vol. 7, pp. 303-8.
Goldhaber, S.Z., Visani, L., and Rosa, M.D. (1999), Acut pulmonary embolism:clinical outcomes in the international cooperative pulmonary embolism registry (icoper), Lancet, vol. 353, pp. 1386-1389.
Ghuysen, A., Lambermont, B., Kolh, P., Tchana-Sato, S., Magis, D., Gerard, P., Mommens V., Janssen, N., Desaive, T., D’Orio, V. (2007). Alteration of right ventricular-pulmonary vascular coupling in a porcine model of progressive pressure overloading. Shock, vol 29(2), pp. 197-204.
Guyton, A.C. and Hall, J.E. (2000). Textbook of medical physiology: Tenth edition, chp. 9-24, W. B. Saunders Company, Philadelphia.

Hann, C.E., Chase, J.G., Desaive, T., Frosissart, C.F., Revie, J., Stevenson, D., Lambermont, B., Ghuysen, A., Kolh, P., and Shaw, G.M. (2010a). Unique parameter identification for cardiac diagnosis in critical care using minimal data sets, Computer methods and Programs in Biomedicine¸ in press.
Hann, C.E., Revie, J., Stevenson, D., Heldmann, S., Desaive, T., Froissart, C.F., Lambermont. B., Ghuysen, A., Kolh, P., Shaw, G.M., and Chase, J.G. (2010b), Modelling and control in biological medical systems, in press.
Hann, C.E., Chase, J.G., Shaw, G.M. (2005), Efficient implementation of non-linear valve law and ventricular interaction dynamics in the minimal cardiac model, Computer methods and programs in biomedicine, vol. 80, pp. 65-74.
Muralidhar K. (2002). Central venous pressure and pulmonary capillary wedge pressure monitoring, Indian Journal of Anaesthesia, vol. 46, pp. 298-303. 
Rosamond, W., Flegal, K., Furie, K, Go, A, Greenlund, K., Haase, N., Hailpern, S.M., Ho, M., Howard, V., Kissela, B., Kittner, S., Lloyd-Jones, D., McDermott, M., Meigs, J., Moy, C., Nichol, G., O’Donnell, C., Roger, V., Sorlie, P., Steinberger, J., Thom, Y., Wilson, M. and Hong, Y. (2008). Heart disease and stroke statistics – 2008 update. Circulation, vol. 117, pp. e25-e146.
Smith, B.W., Chase, J.G., Nokes, R.I., Shaw, G.M., and Wake, G. (2004). Minimal heamodynamic system model including ventricular interaction and valve dynamics, Medical Engineering and Physics, vol. 26(2), pp. 131-9.
Starfinger, C., Chase, J.G., Hann, C.E., Shaw, G.M., Lambermont, B., Ghuysen, A., Kolh, P., Dauby, P.C., and Desaive, T.  (2008a). Model-based identification of induced endotoxic shock with hemofiltration, Mathematical Biosciences, vol. 216(2), pp. 132-139. 
Starfinger, C., Chase, J.G., Hann, C.E., Shaw, G.M., Lambermont, B., Smith, B.W., Sloth, E., Lasson, A., Andreassen, S., Rees, S., (2008b), Prediction of hemodynamic changes towards PEEP titrations at different volemic levels using a minimal cardiovascular model, Computer methods and programs in biomedicine, vol. 91(2), pp. 128-134.

80





60








100








20





























80





























60
























































0




















-20








40





















































100





Table � SEQ Table \* ARABIC �1�: Mean absolute percentage errors of identified models outputs compared to measurements. 





 �
Pig 1�
Pig 2�
Pig 7�
Pig 8�
Pig 9�
Total�
�
mean Vlv�
10.7%�
10.8%�
8.2%�
2.6%�
5.7%�
7.6%�
�
mean Vrv�
12.9%�
10.6%�
10.9%�
2.5%�
5.2%�
8.4%�
�
max Plv�
12.1%�
14.7%�
4.2%�
2.3%�
3.1%�
7.3%�
�
max Prv�
17.4%�
7.3%�
5.7%�
3.3%�
8.2%�
8.4%�
�
mean Pao�
5.9%�
0.6%�
0.3%�
0.2%�
0.7%�
1.6%�
�
mean Ppa�
0.3%�
0.2%�
0.0%�
0.0%�
0.1%�
0.1%�
�






Figure 1 – (a) simplified model of the systemic system and (b) simplified model of the pulmonary system with inertia, septum interaction, and pericardium dynamics removed.
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Figure 2: Summary of the process of identifying the simplified models








Figure 3: Summary of the 6 chamber identification process





120





90





-20





0





20





40





60





80





100





120





V





l





v





60





70





80





90





-50





0





50





100





150





V





l





v





60





80





100





-10





0





10





20





30





40





50





V





r





v





30 minutes





P





r





v





40





60





80





100





-10





0





10





20





30





40





50





V





r





v





120 minutes





60





70





80





90





-20





0

















V





r





v





210 minutes












_1331376763.unknown

_1331455234.unknown

_1332847978.unknown

_1332951117.unknown

_1332951148.unknown

_1332849136.unknown

_1331462874.unknown

_1331483286.unknown

_1332675736.unknown

_1331483174.unknown

_1331460792.unknown

_1331452374.unknown

_1331453958.unknown

_1331454010.unknown

_1331453880.unknown

_1331452372.unknown

_1331452373.unknown

_1331452274.unknown

_1331376112.unknown

_1331376197.unknown

_1331376504.unknown

_1331376162.unknown

_1331375834.unknown

_1331375958.unknown

_1331375587.unknown

