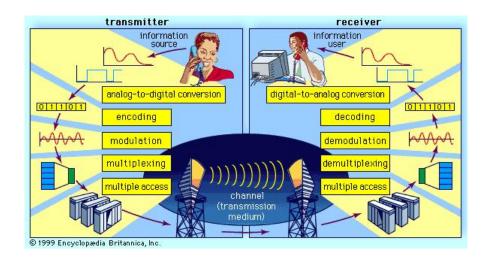
Satellite Communications

Marc Van Droogenbroeck

Department of Electrical Engineering and Computer Science University of Liège


Academic year 2023-2024 https://orbi.uliege.be/handle/2268/133976

◆ロ▶ ◆昼▶ ◆夏▶ ◆夏 ◆ りへで

Marc Van Droogenbroeck

Satellite Communications

Example of an analog communication system

Main components:

- signal
- 2 transmitting channel (cable, radio)
- electronics (amplifiers, filters, modems, etc)

and a lot of engineering!

Outline

- Signal processing elements
 - Signal ≡ information!
 - Source coding (dealing with the information content)
 - Modulation
 - Multiplexing
- Propagation and radio communications
 - Introduction to radio communications
 - Radiowave propagation
 - Examples of antennas
- 3 Engineering
 - Noise
 - Link budget

Marc Van Droogenbroeck

Signal processing elements
Propagation and radio communications
Engineering

Satellite Communications

Signal \equiv information!

Source coding (dealing with the information content) Modulation

Multiplexing

Outline

- Signal processing elements
 - Signal ≡ information!
 - Source coding (dealing with the information content)
 - Modulation
 - Multiplexing
- Propagation and radio communications
 - Introduction to radio communications
 - Radiowave propagation
 - Examples of antennas
- 3 Engineering
 - Noise
 - Link budget

Main *type*s of satellite \rightarrow different *types* of information

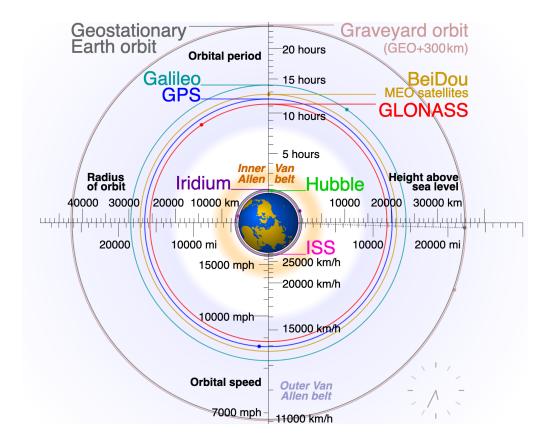
- <u>Astronomical</u> satellites: used for the observation of distant planets, galaxies, and other outer space objects.
- Navigational satellites [GPS, Galileo, BeiDou, GLONASS]: they use radio time signals transmitted to enable mobile receivers on the ground to determine their exact location (positioning).
- <u>Earth observation</u> satellites: for environmental monitoring, meteorology, map making (Sentinel constellations).
- <u>Miniaturized</u> satellites: satellites of unusually low masses and small sizes. For example, for educational purposes (OUFTI-1/2).
- **Communications** satellites: stationed in space for the purpose of telecommunications. Modern communications satellites typically use geosynchronous orbits, or Low Earth orbits (LEO).

Marc Van Droogenbroeck

Satellite Communications

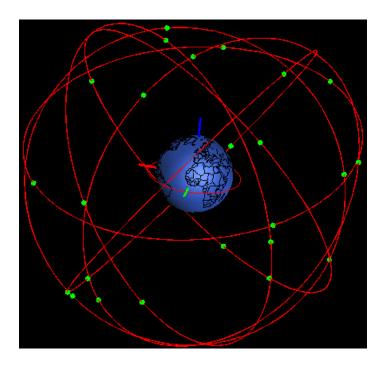
Types of data streams

Types of data	Characteristics
Control data	Must be very reliable
Payload	Unicast communication for mobile ground station
	Accurate signals with constant monitoring
	High volume of downstream data
▷ Positioning data	Accurate time reference (synchronization)
▷ Broadcasting	Digital television channels
▷ Digital data	Voice + data (Internet) for remote areas


Because the purposes of data sent are different, the mechanisms to transmit the data are designed according to the constraints.

Simplified *typology* of data streams:

- control data (this communication channel needs a backup!)
- payload (+ some unavoidable overhead)

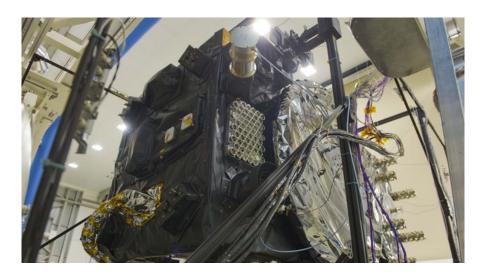

990

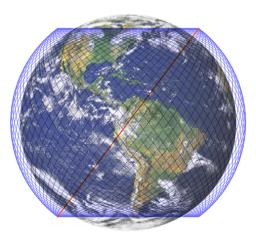
Positioning systems

Example: constellation of GPS satellites

- 6 planes with a 55⁰ angle with the equator, spaced by 60⁰ and with 4 satellites per plane (24 satellites in total)
- Located on high orbits (but sub-geostationary)/revolution in 12 hours
- Transmitting power of 20 to 50 [W]

Galileo

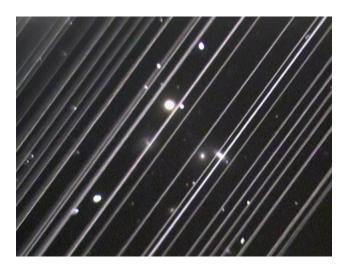

- Orbital altitude: 23,222 [km] (MEO Medium Earth Orbit)
- 3 orbital planes, 56^0 inclination, separated by 120^0 longitude
- Constellation of 30 satellites (with working 24 [3x8] satellites and 6 [3x2] spares)


Deployment of Galileo

- First launches: 2 satellites in October 2011, 2 satellites in October 2012. These were test satellites.
- First Full Operational Capability satellite launched in November 2013.
- August 2014, two more satellites (but ... injected on a wrong orbit).
- October 2022: 23 satellites fully operational, 1 unavailable, and 4 not usable.

Starlink Initial Phase

1,584 satellites into 72 orbital planes
of 22 satellites each



Main characteristics:

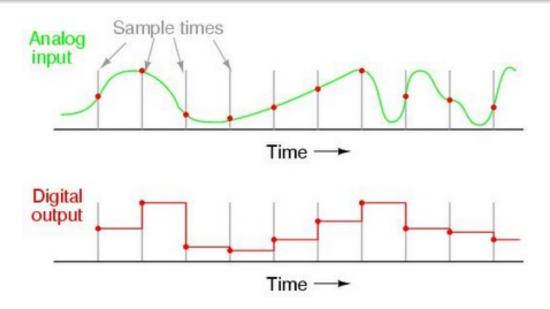
- LEO orbits (550 km for phase 1)
- 4.519 launched and on orbit (July 2023)
- American regulator (FCC) approved 12.000 satellites
- Internet service: 2.000.000 subscribers (September 2023)

Starlink: controversy

Main issues:

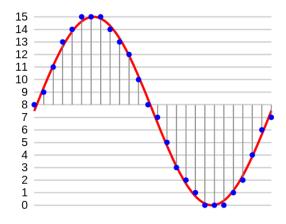
- light pollution; ground based astronomy is jeopardized (creation of trails in the sky)
- presence of space debris, danger for satellite collision
- technology not fully tested
- usefulness ?! (it's available in Belgium)

Main issues related to signals


- Signal source handling (preparation of the signal, at the source, in the transmitter):
 - filtering (remove what is useless for communications)
 - analog ↔ digital (digitization)
 - remove the redundancy in the signal: compression
- ② Signal over the channel:
 - signal shaping to make it suitable for transmission (coding, modulation, multiplexing, etc)
 - signal power versus the noise signal (protect the signal against noise effects)

Marc Van Droogenbroeck

Satellite Communications


Digitization I

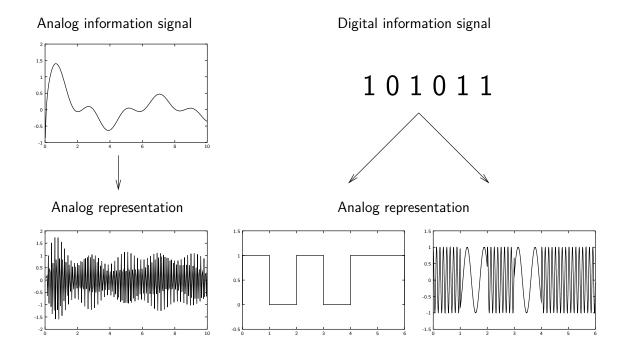
Reasons for going digital:

- possibility to regenerate a digital signal
- 2 better bandwidth usage

Digitization II

Digitization = from analog to digital

analog	digital
g(t)	samples $g[iT]$, with
	$i = 0, 1, 2, \dots$ and
	T= a time period
signal over time	sampling rate
	⇒ series of <i>samples</i>
	each sample is
	encoded with <i>n</i> bits
	(quantization)
	finally, we have a bit
	stream: 01110


Digitization III

Digitization in numbers:

- - ullet Let W be the highest frequency of the signal to be converted
 - theoretical lower bound: $f_s > 2W$ [Shannon's theorem]
 - practical rule (NYQUIST criterion): $f_s > 2.2 W$
- 2 n: number of bits par sample (quantization)
- 3 bit rate = $f_s \times n$

signal	band	W	f_{s}	n	bit rate
units	Hz	Hz	sample/s	b/sa.	b/s
audio	[300 Hz,	3400 Hz	8000 sa./s	8	64 kb/s
(telephone)	3400 Hz]				
audio (CD)	[0 Hz, 20 kHz]	20 kHz	44.1 ksa./s	16	705.6 kb/s

Analog and digital signals: don't confuse information and its representation!

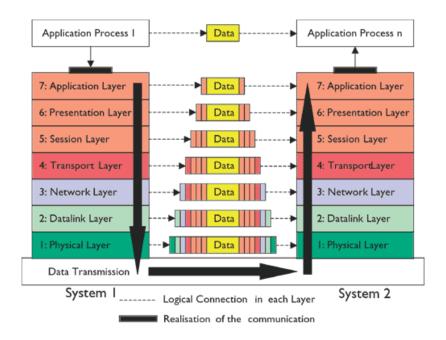
Marc Van Droogenbroeck

Satellite Communications

Characterization of signals over the channel

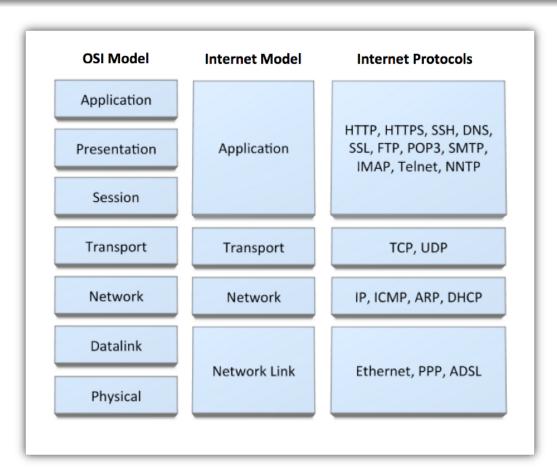
Analog signal	Digital signal			
bandwidth [Hz]	bit rate [bit/s]			
Signal to Noise Ratio (S/N or SNR)	Bit Error Rate (BER)			
bandwidth of the underlying channel [Hz]				

Reasons for going digital:


- possibility to regenerate a digital signal
- better bandwidth usage

Example (better bandwidth usage: from analog to digital television)

- analog PAL television channel: bandwidth of 8 [MHz]
- digital television, PAL quality $\sim 5 [Mb/s]$
 - With a 64-QAM modulation, whose spectral efficiency is 6 b/s per Hz. A bandwidth of 8 [MHz] allows for 48 [Mb/s].
 - <u>Conclusion</u>: thanks to digitization, there is room for 10 digital television channels instead of 1 analog television channel.


9 Q Q

Software organization of a transmitter/receiver: the OSI reference model

Consequence: encapsulation \Rightarrow overhead

OSI reference model vs Internet model (+ some corresponding Internet protocols)

Elements of a communication system

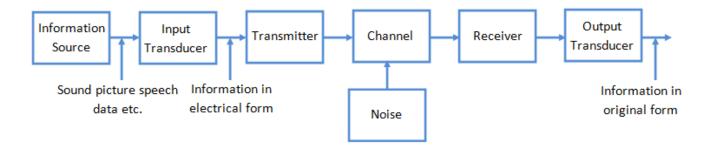


Figure: Block diagram of a communication channel for a **single signal/user** (no sharing of the channel).

◆ロ → ◆団 > ◆ = > ◆ = > へ ?

Elements of a communication system II

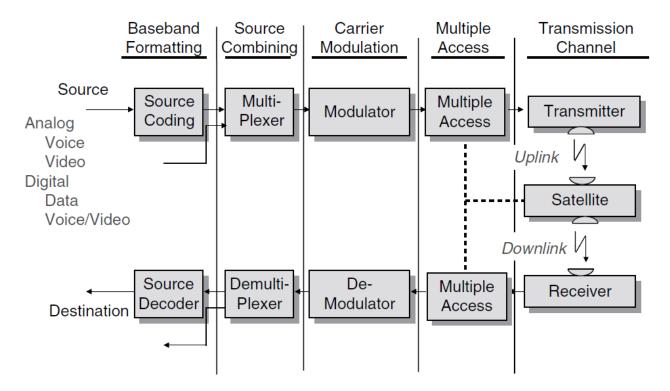


Figure: Block diagram of a communication channel for multiple users (multiplexing, modulation and multiple access are added).

Outline

- Signal processing elements
 - Signal \equiv information!
 - Source coding (dealing with the information content)
 - Modulation
 - Multiplexing
- Propagation and radio communications
 - Introduction to radio communications
 - Radiowave propagation
 - Examples of antennas
- 3 Engineering
 - Noise
 - Link budget

Marc Van Droogenbroeck

Signal processing elements
Propagation and radio communications
Engineering

Satellite Communications

Source coding (dealing with the information content)

Modulation
Multiplexing

Information theory and channel capacity: there is a maximum bit rate (the sky is not the limit...)! I

Theorem (SHANNON-HARTLEY)

The channel capacity C (condition for the Bit Error Rate $BER \rightarrow 0$) is expressed in bits (of information) per second and given by

$$C[b/s] = W \log_2\left(1 + \frac{S}{N}\right) \tag{1}$$

where

- \bullet W is the channel bandwidth in Hz
- $\frac{S}{N}$ the Signal to Noise ratio (in watts/watts, not in dB).

Consequences of the capacity theorem

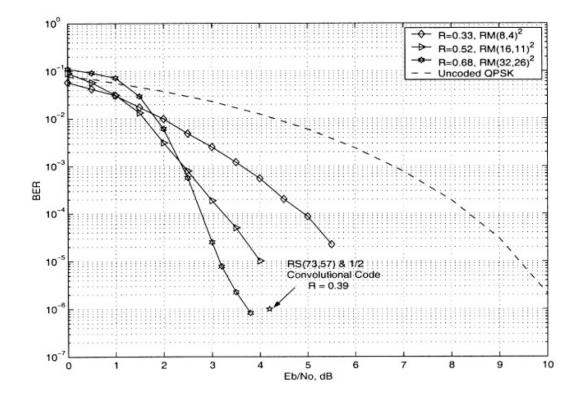
Let R_b be the bit rate [b/s] and E_b the energy per bit [Joule/b], we have $S = E_b R_b$ [W], and $N = N_0 W$ (where N_0 is the noise spectral power density; $N_0 = k_B T$ as discussed later). Therefore:

$$C = W \log_2 \left(1 + \frac{E_b}{N_0} \frac{R_b}{W} \right) = W \log_2 \left(1 + \frac{E_b}{N_0} \eta \right)$$
 (2)

The ratio $\frac{R_b}{W}$ is defined as the *spectral efficiency* η given in [b/s] per [Hz].

Consequences: 3 degrees of freedom (but not more)

- 1 the $\frac{E_b}{N_0}$ ratio. We only have control over E_b (it is our own design); N_0 is not controllable.
- 2 the spectral efficiency $\eta = \frac{R_b}{W}$ (which depends on the technology \rightarrow this is also our choice).
- 3 for a fixed $\frac{E_b}{N_0}$ ratio and spectral efficiency, C can only be increased by increasing the bandwidth. But the bandwidth W is a scarce resource.


Forward Error Coding

A simplistic example of Forward Error Coding (FEC) consists to transmit each data bit 3 times, known as a (3,1) repetition code.

Received bits	Interpreted as
000	0 (error free)
001	0
0 <mark>1</mark> 0	0
1 00	0
111	1 (error free)
110	1
101	1
011	1

Other forward error codes

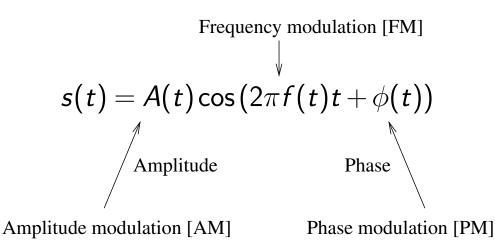
- Hamming code
- Reed–Solomon code
- Turbo code, ...

Signal processing elements
Propagation and radio communications
Engineering

Signal ≡ information!
Source coding (dealing with the information content)

Modulation

Multiplexing

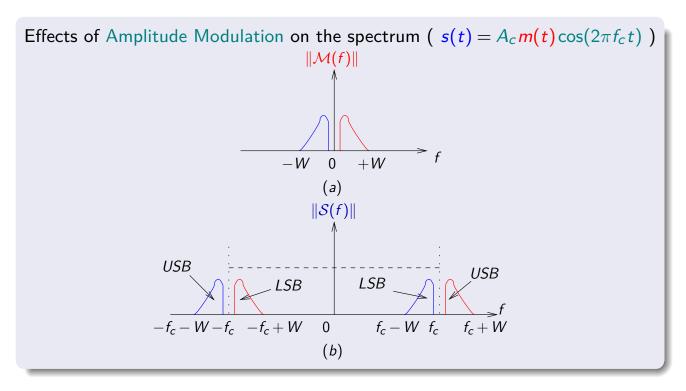

Outline

- Signal processing elements
 - Signal ≡ information!
 - Source coding (dealing with the information content)
 - Modulation
 - Multiplexing
- Propagation and radio communications
 - Introduction to radio communications
 - Radiowave propagation
 - Examples of antennas
- 3 Engineering
 - Noise
 - Link budget

Modulation: principles

Principle

Modulation is all about using of a carrier cosine at frequency f_c for transmitting information. The carrier is $A_c \cos(2\pi f_c t)$



Marc Van Droogenbroeck

Satellite Communications

Consequences of modulation

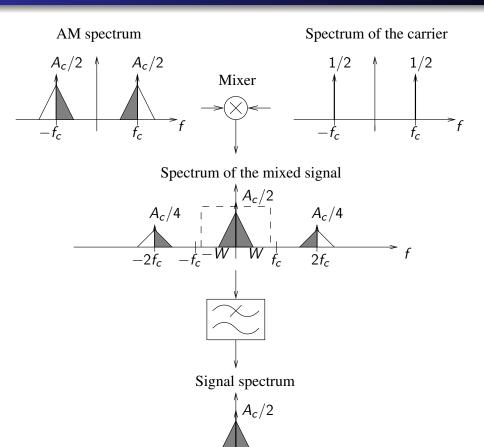
- frequency band is shifted towards the carrier frequency $(\Rightarrow f_c)$
- bandwidth modification, compared to that of the modulating signal m(t)

Demodulation of an AM modulated signal: principles

Received signal: $s(t) = m(t)\cos(2\pi f_c t)$. Task: recover m(t).

Principles of a synchronous demodulation. At the receiver:

- **1** acquire a local, synchronous, copy of the carrier $f_c \Rightarrow$ build a local copy of $\cos(2\pi f_c t)$
- 2 multiply s(t) by $cos(2\pi f_c t)$: $[cos a cos b = \frac{1}{2}cos(a-b) + \frac{1}{2}cos(a+b)]$


$$s(t)\cos(2\pi f_c t) = m(t)\cos^2(2\pi f_c t) \tag{3}$$

$$= m(t) \left[\frac{1}{2} + \frac{1}{2} \cos(2\pi (2f_c)t) \right] \tag{4}$$


$$= \frac{1}{2}m(t) + \frac{1}{2}m(t)\cos(2\pi(2f_c)t)] \qquad (5)$$

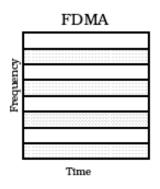
3 filter out the $2f_c$ components $\rightarrow \frac{1}{2}m(t)$

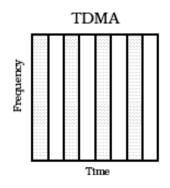
Demodulation of an AM modulated signal: interpretation in the spectral domain

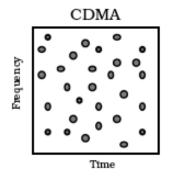
Basic digital modulation (coding) techniques

Signal processing elements
Propagation and radio communications
Engineering

 $\begin{array}{l} {\sf Signal} \equiv {\sf information!} \\ {\sf Source \ coding \ (dealing \ with \ the \ information \ content)} \\ {\sf Modulation} \\ {\sf Multiplexing} \end{array}$

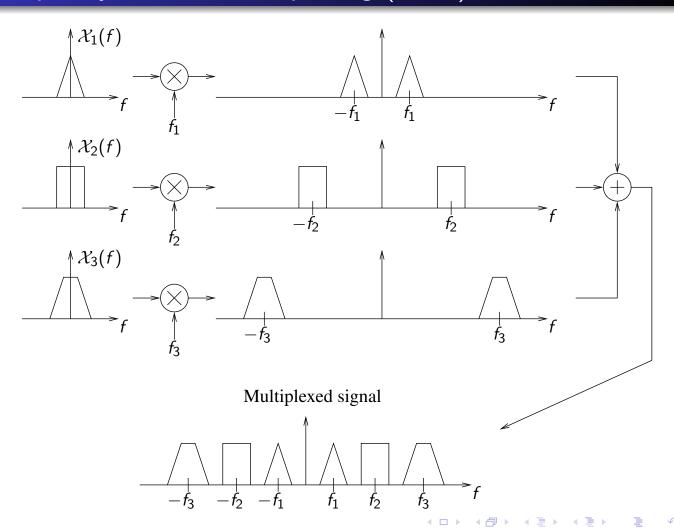

Outline

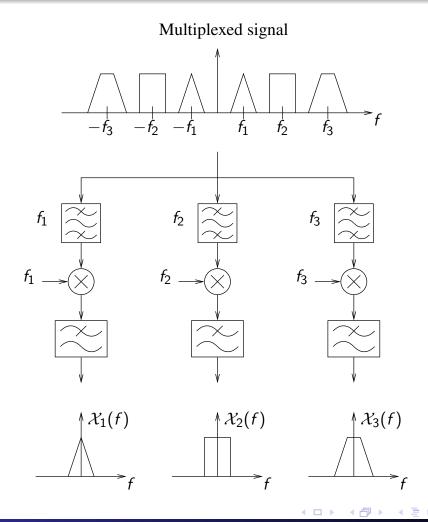

- Signal processing elements
 - Signal ≡ information!
 - Source coding (dealing with the information content)
 - Modulation
 - Multiplexing
- Propagation and radio communications
 - Introduction to radio communications
 - Radiowave propagation
 - Examples of antennas
- 3 Engineering
 - Noise
 - Link budget


Multiplexing: combining several sources

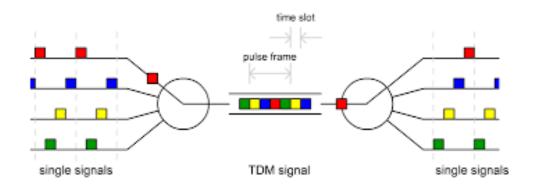
Mechanisms to share resources between users:

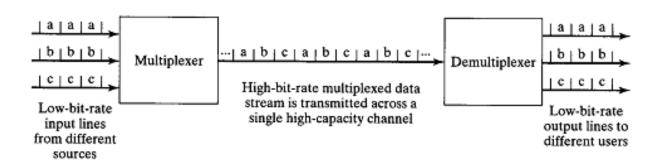
- Frequency Division Multiplexing (FDM)
- Time Division Multiplexing (TDM)
- Code Division Multiplexing (CDM)
- Space Division Multiplexing
- + combinations!



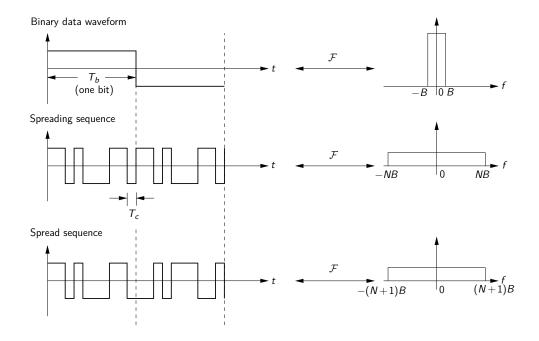

Marc Van Droogenbroeck

Satellite Communications

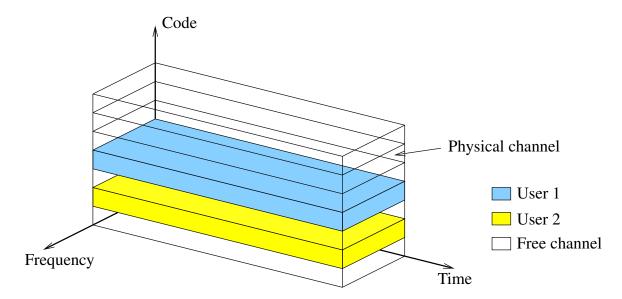

Frequency Division Multiplexing (FDM)

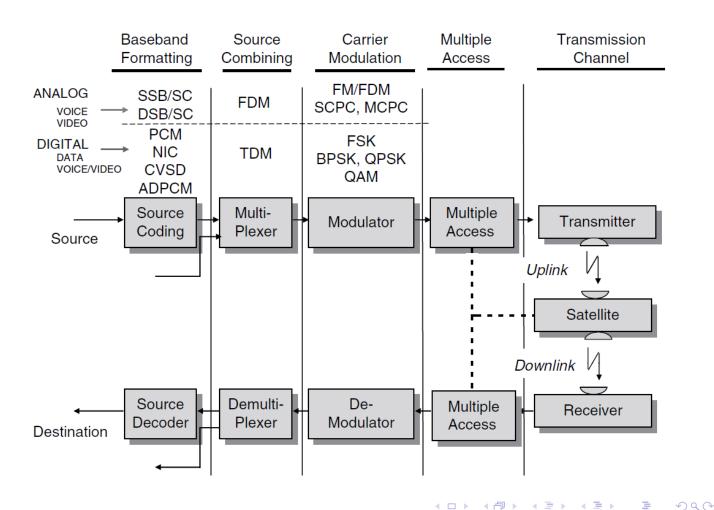


Demultiplexing


Time Division Multiplexing (TDM)

Spread spectrum for Code Division Multiplexing

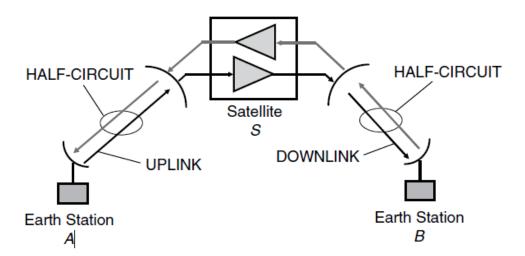

Principle of spread spectrum: multiply a digital signal with a faster pseudo-random sequence (spreading step)


At the receiver, the <u>same</u>, <u>synchronized</u>, pseudo-random sequence is generated and used to "despread" the signal (despreading step)

Code Division Multiple Access

- Each user is given its own code (multiple codes can be used simultaneously).
- All the users occupy the same bandwidth
- ightarrow very convenient when the number of users is dynamic

Summary

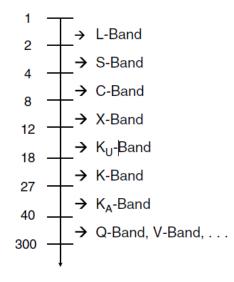


Signal processing elements Propagation and radio communications Engineering Introduction to radio communications Radiowave propagation Examples of antennas

Outline

- Signal processing elements
 - Signal ≡ information!
 - Source coding (dealing with the information content)
 - Modulation
 - Multiplexing
- Propagation and radio communications
 - Introduction to radio communications
 - Radiowave propagation
 - Examples of antennas
- 3 Engineering
 - Noise
 - Link budget

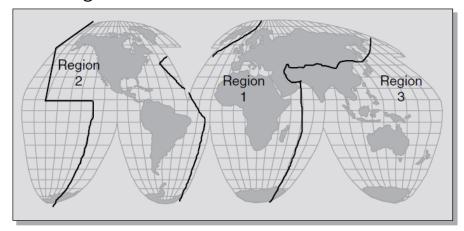
Satellite link definition


CHANNEL – one way link from $A \rightarrow B$ or $B \rightarrow A$ CIRCUIT – full duplex link – $A \rightleftharpoons B$ HALF CIRCUIT – two way link – $A \rightleftharpoons S$ or $S \rightleftharpoons B$ TRANSPONDER – \triangleright basic satellite repeater electronics, usually one channel

Marc Van Droogenbroeck

Satellite Communications

Frequency bands


Frequency (GHz)

But it is also common to designate the carrier frequency and bandwidth directly.

Regulatory bodies

- International Telecommunications Union (ITU): Radio-communications Sector (ITU-R)
 - service regions

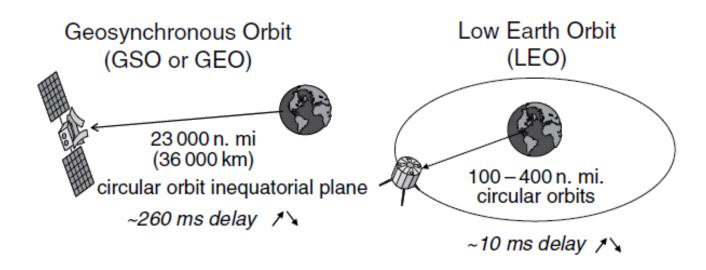
- organizes WARC (World Administrative Radio Conference) worldwide allocation of frequencies
- Regional body: European Conference of Postal and Telecommunications Administrations (CEPT)

Excerpt of the allocation plan/radio spectrum (by the ITU)

		1610-1670 M	Hz (UHF)		
	International Table		United States Table		Remarks
Region 1	Region 2	Region 3	Federal Government	Non-Federal Government	
1610-1610.6 MOBILE-SATELLITE (Earth-to-space) AERONAUTICAL RADIONAVIGATION	1610-1610.6 MOBILE-SATELLITE (Earth-to-space) AERONAUTICAL RADIONAVIGATION RADIODETERMINATION- SATELLITE (Earth-to-space)	1610-1610.6 MOBILE-SATELLITE (Earth-to-space) AERONAUTICAL RADIONAVIGATION Radiodetermination-Satellite (Earth-to-space)	1610-1610.6 MOBILE-SATELLITE (Earth-to-space) US319 AERONAUTICAL RADIONAVIGATION US260 RADIODETERMINATION-SATELLITE(Earth-to-space)		Satellite Communications (25) Aviation (87)
\$5.341 \$5.355 \$5.359 \$5.363 \$5.364 \$5.366 \$5.367 \$5.368 \$5.369 \$5.371 \$5.372	S5.341 S5.364 S5.366 S5.367 S5.368 S5.370 S5.372	\$5.341 \$5.355 \$5.359 \$5.364 \$5.366 \$5.367 \$5.368 \$5.369 \$5.372	S5.341 S5.364 S5.366 S5.367	S5.368 S5.372 US208	
1610.6-1613.8 MOBILE-SATELLITE (Earth-to-space) RADIO ASTRONOMY AERONAUTICAL RADIONAVIGATION	1610.6-1613.8 MOBILE-SATELLITE (Earth-to-space) RADIO ASTRONOMY AERONAUTICAL RADIONAVIGATION RADIODETERMINATION- SATELLITE (Earth-to-space)	1610.6-1613.8 MOBILE-SATELLITE (Earth-to-space) RADIO ASTRONOMY AERONAUTICAL RADIONAVIGATION Radiodetermination-satellite (Earth-to-space)	1610.6-1613.8 MOBILE-SATELLITE (Earth-to-space) US319 RADIO ASTRONOMY AERONAUTICAL RADIONAVIGATION US260 RADIODETERMINATION-SATELLITE (Earth-to-space)		
\$5.149 \$5.341 \$5.355 \$5.359 \$5.363 \$5.364 \$5.366 \$5.367 \$5.368 \$5.369 \$5.371 \$5.372	\$5.149 \$5.341 \$5.364 \$5.366 \$5.367 \$5.368 \$5.370 \$5.372	\$5.149 \$5.341 \$5.355 \$5.359 \$5.364 \$5.366 \$5.367 \$5.368 \$5.369 \$5.372	\$5.341 \$5.364 \$5.366 \$5.367	S5.368 S5.372 US208	
1613.8-1626.5 MOBILE-SATELLITE (Earth-to-space) AERONAUTICAL RADIONAVIGATION Mobile-satellite (space-to-Earth)	1613.8-1626.5 MOBILE-SATELLITE (Earth-to-space) AERONAUTICAL RADIONAVIGATION RADIODETERMINATION- SATELLITE (Earth-to-space) Mobile-satellite (space-to-Earth)	1613.8-1626.5 MOBILE-SATELLITE (Earth-to-space) AERONAUTICAL RADIONAVIGATION Mobile-satellite (space-to- Earth) Radiodetermination- satellite (Earth-to-space)	1613.8-1626.5 MOBILE-SATELLITE (Earth-AERONAUTICAL RADIONA RADIODE TERMINATION-S. Mobile-satellite (space-to-Earth	VIGATION US260 ATELLITE (Earth-to-space)	
\$5.341 \$5.355 \$5.359 \$5.363 \$5.364 \$5.365 \$5.366 \$5.367 \$5.368 \$5.369 \$5.371 \$5.372	S5.341 S5.364 S5.365 S5.366 S5.367 S5.368 S5.370 S5.372	\$5.341 \$5.355 \$5.359 \$5.364 \$5.365 \$5.366 \$5.367 \$5.368 \$5.369 \$5.372	S5.341 S5.364 S5.365 S5.366	S5.367 S5.368 S5.372 US208	

Frequency allocations (see [2])

Radio-communications service	Typical up/down link	Terminology
Fixed satellite service (FSS)	6/4[GHz]	C band
	8/7[GHz]	X band
	14/12.1 [GHz]	Ku band
	30/20 [GHz]	Ka band
	50/40 [GHz]	V band
Mobile satellite service (MSS)	1.6/1.5 [GHz]	L band
	30/20 [GHz]	Ka band
Broadcasting satellite service (BSS)	2/2.2[GHzz]	S band
	12 [GHzz]	Ku band
	2.6/2.5 [GHz]	S band


- Note that frequencies for down links are usually lower than for up links: this is because the power loss increases with the frequency.
- The use of higher frequencies allows larger bandwidths, better tracking capability, and minimizes ionospheric effects. But it also requires greater pointing accuracy

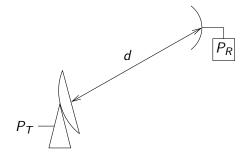
Frequency allocations (see [2])

Radio-communications service	Typical up/down link	Terminology
Fixed satellite service (FSS)	6/4[GHz]	C band
	8/7[GHz]	X band
	14/12.1 [GHz]	Ku band
	30/20 [GHz]	Ka band
	50/40 [GHz]	V band
Mobile satellite service (MSS)	1.6/1.5 [GHz]	L band
	30/20 [GHz]	Ka band
Broadcasting satellite service (BSS)	2/2.2[GHzz]	S band
	12 [GHzz]	Ku band
	2.6/2.5 [GHz]	S band

- Note that frequencies for down links are usually lower than for up links: this is because the power loss increases with the frequency.
- The use of higher frequencies allows larger bandwidths, better tracking capability, and minimizes ionospheric effects. But it also requires greater pointing accuracy

Engineering considerations:

- distance between user and satellite.
 - delay (increases with the distance)
 - attenuation of the signal (increases with the distance)
- relative position of the user/satellite pair (orientation)

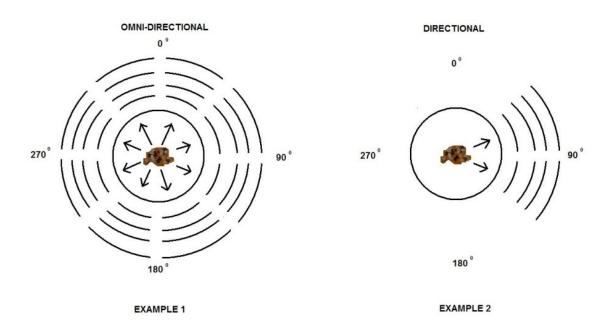

Signal processing elements Propagation and radio communications Engineering

Introduction to radio communications Radiowave propagation Examples of antennas

Outline

- Signal processing elements
 - Signal ≡ information!
 - Source coding (dealing with the information content)
 - Modulation
 - Multiplexing
- Propagation and radio communications
 - Introduction to radio communications
 - Radiowave propagation
 - Examples of antennas
- 3 Engineering
 - Noise
 - Link budget

Radiowave propagation

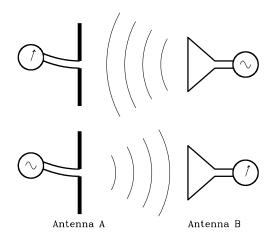

Important issues:

- channel characteristics
 - attenuation (distance)
 - atmospheric effects
 - wave polarization
 - rain mitigation
- antenna design
- power budget (related to the Signal to Noise ratio)

990

Marc VAN DROOGENBROECK Satellite Communications

Two main types of radiation pattern


Reciprocity

Theorem (Reciprocity for antennas)

The electrical characteristics of an antenna such as gain, radiation pattern, impedance, bandwidth, resonant frequency and polarization, are the same whether the antenna is transmitting (T) or receiving (R).

Theorem (Strong reciprocity)

If a voltage is applied to an antenna A and the current is measured at another antenna B, then an equal current (in both amplitude and phase) will appear at A if the same voltage is applied to B.

Inverse square law of radiation

The *power flux density* (or *power density*) S, over the surface of a sphere of radius r_a from the point P, is given by (POYNTING vector)

$$S_a = \frac{P_t}{4\pi r_a^2} \left[\frac{W}{m^2} \right] \tag{6}$$

Effective Isotropic Radiated Power [EIRP]

Definition (EIRP)

The Effective Isotropic Radiated Power (EIRP) of a transmitter is the power that the transmitter appears to have if the transmitter were an isotropic radiator (if the antenna radiated equally in all directions).

From the receiver's point of view,

$$P_t = P_T G_T \tag{7}$$

where:

- \bullet P_t is the power of an fictive isotropic antenna.
- P_T is the transmitter power and G_T is its gain (in that direction).

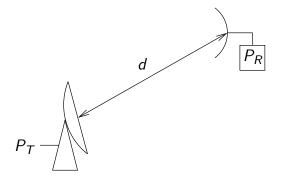
If the cable losses can be neglected, then $EIRP = P_T G_T$.

Effective area

Definition (Effective area)

The effective area of an antenna is the ratio of the available power to the power flux density (Poynting vector):

$$A_{\text{eff},R} = \frac{P_R}{S_{\text{eff},R}} \tag{8}$$


Theorem ((no proof given))

The effective area of an antenna is related to its gain by the following formula

$$A_{eff,R} = G_R \frac{\lambda^2}{4\pi} \tag{9}$$

By reciprocity, all these results are equally valid for a transmitting antenna T.

Friis's relationship

We have

$$\begin{split} P_R &= S_{\text{eff},\,R} A_{\text{eff},\,R} \\ &= \left(\frac{P_T \, G_T}{4\pi \, d^2}\right) A_{\text{eff},\,R} = \left(\frac{P_T \, G_T}{4\pi \, d^2}\right) \left(\frac{\lambda^2}{4\pi}\right) G_R = P_T \, G_T \, G_R \left(\frac{\lambda}{4\pi \, d}\right)^2 \end{split}$$

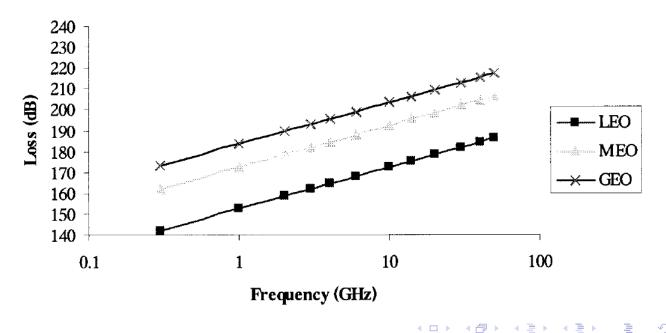
Free space path loss	FRIIS's relationship
$L_{FS} = \left(\frac{\lambda}{4\pi d}\right)^2$	$\epsilon = \frac{P_{T}}{P_{R}} = \left(\frac{4\pi d}{\lambda}\right)^2 \frac{1}{G_{T} G_{R}}$

Decibel as a common power unit

$$x \leftrightarrow 10\log_{10}(x)[\mathsf{dB}] \tag{10}$$

x[W]	$10\log_{10}(x)[dBW]$
1 [W]	0 [dBW]
2 [W]	3 [dBW]
0,5 [W]	-3 [dBW]
5 [W]	7 [dBW]
10 ⁿ [W]	$10 \times n$ [dBW]

Orders of magnitude in satellite communications:


• transmitter power: 100 [W]≡20 [dB]

• received power: $100[pW] = 100 \times 10^{-12}[W] \equiv -100[dB]$

$$L_{FS} = \left(\frac{\lambda}{4\pi d}\right)^2 = \left(\frac{c}{4\pi df}\right)^2 \tag{11}$$

where *c* is the speed of light.

Are high frequencies less adequate?

In [dB], Friis's relationship becomes

$$\epsilon = 32.5 + 20 \log f_{[MHz]} + 20 \log d_{[km]} - G_{T[dB]} - G_{R[dB]}$$
 (12)

The attenuation (loss) increases with f. So ?!

In fact, $G_{T[dB]}$ and $G_{R[dB]}$ also depend on the frequency; the gains increase with the frequency.

There is thus a trade-off, that depends on the antenna gains!

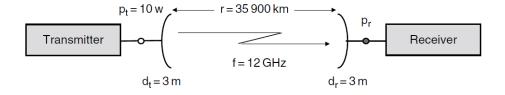
In the end, the attenuation still increases with the frequency but not as fast as $20 \log f_{[MHz]}$.

Are high frequencies less adequate?

In [dB], Friis's relationship becomes

$$\epsilon = 32.5 + 20 \log f_{\text{[MHz]}} + 20 \log d_{\text{[km]}} - G_{T \text{[dB]}} - G_{R \text{[dB]}}$$
 (12)

The attenuation (loss) increases with f. So ?!


In fact, $G_{T[dB]}$ and $G_{R[dB]}$ also depend on the frequency; the gains increase with the frequency.

There is thus a trade-off, that depends on the antenna gains!

In the end, the attenuation still increases with the frequency but not as fast as $20 \log f_{[MHz]}$.

◆ロト ◆昼ト ◆星ト ■ からぐ

Practical case: VSAT in the Ku-band (see [1])

Antenna gains: 48.93 [dB]

The *free space path loss* is, in [dB],

$$L_{FS} = 32.5 + 20 \log f_{[MHz]} + 20 \log d_{[km]} = 205.1 [dB]$$
 (13)

The received power is, in [dB],

$$P_R = P_T + G_T + G_R - L_{FS} \tag{14}$$

$$= 10 + 48.93 + 48.93 - 205.1 = -97.24 [dB]$$
 (15)

In [W], the received power is

$$P_R = 10^{-\frac{97.24}{10}} = 10^{-9.724} = 1.89 \times 10^{-10} \,[W] = 189 \,[pW]$$
 (16)

Outline

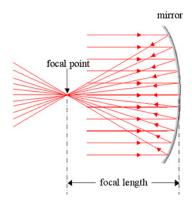
- Signal processing elements
 - Signal ≡ information!
 - Source coding (dealing with the information content)
 - Modulation
 - Multiplexing
- Propagation and radio communications
 - Introduction to radio communications
 - Radiowave propagation
 - Examples of antennas
- 3 Engineering
 - Noise
 - Link budget

Marc Van Droogenbroeck

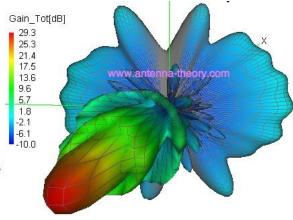
Signal processing elements
Propagation and radio communications
Engineering

Satellite Communications

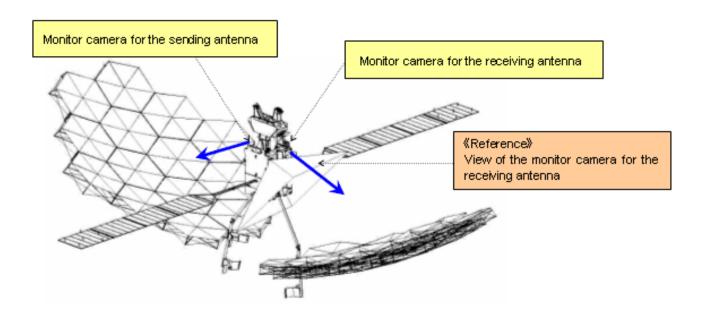
Introduction to radio communications Radiowave propagation Examples of antennas


Terrestrial antennas

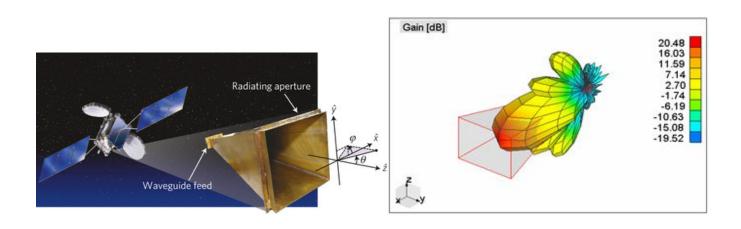
Ground station antenna



Parabolic (dish) antenna

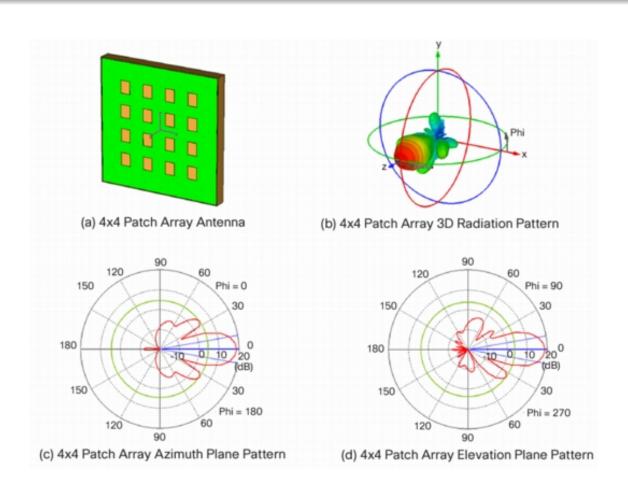


Radiation pattern Gain_Tot[dB] 29.3 25.3 21.4 17.5



Deployable antenna

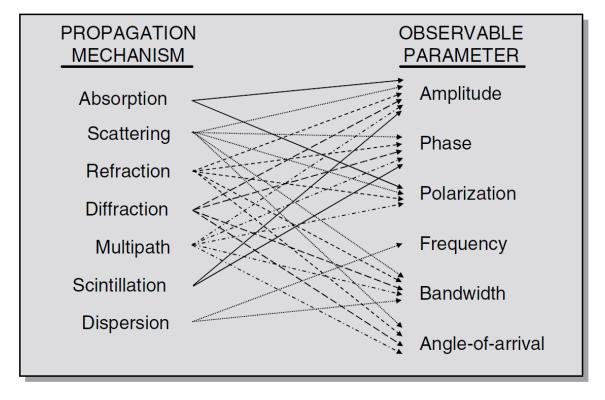
Horn antenna and waveguide feed



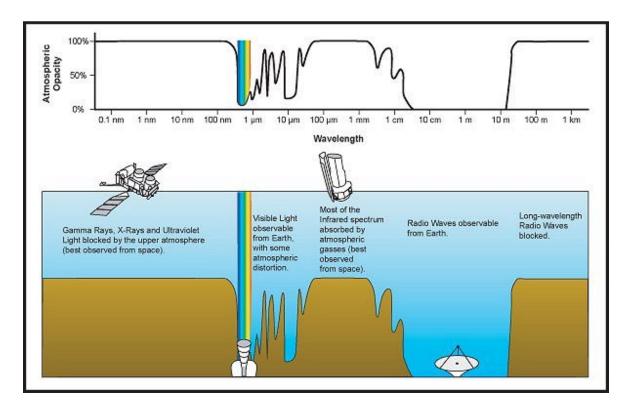
Yagi antenna

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● めのの

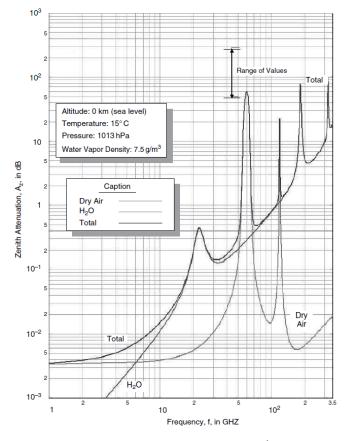
Patch array antenna



Phased array antenna

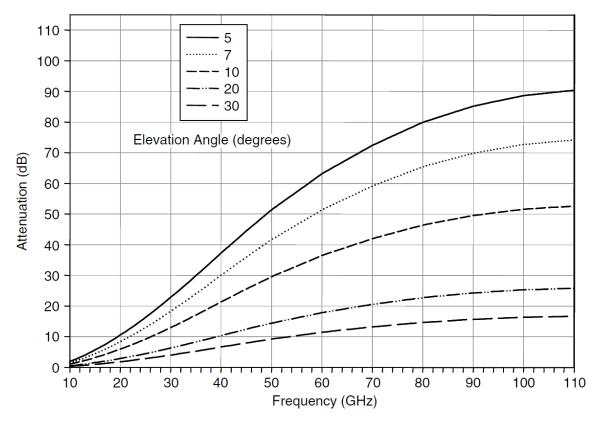

Radiowave propagation mechanisms

+ Doppler effect

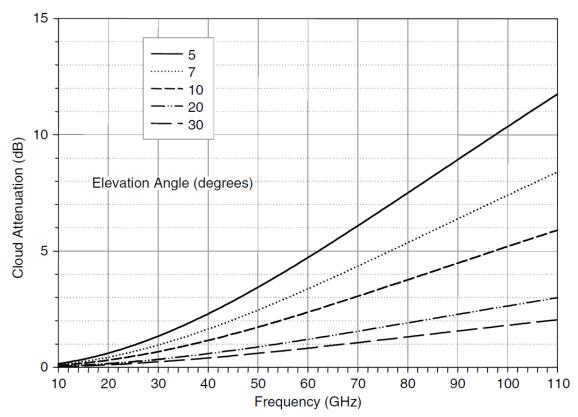

Earth atmosphere absorption

Expressed in terms of the wavelength: $\lambda [{\rm m}] = {c \over f} = {3 \times 10^8 \, [{\rm m/s}] \over f \, [{\rm Hz}]}$

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥QQQ


Attenuation due to atmospheric gases

Zenith attenuation due to atmospheric gases (source: ITU-R P.676-6) $[O_2 \text{ and } H_2O \text{ are the main contributors}]$



Rain attenuation

Total path rain attenuation as a function of frequency and elevation angle. Location: Washington, DC, Link Availability: 99%

Cloud attenuation

Cloud attenuation as a function of frequency, for elevation angles from 5 to 30^{0}

Total attenuation

The ITU recommends that all tropospheric contributions to signal attenuation are combined as follows:

$$A_T(\mathbf{p}) = A_G(\mathbf{p}) + \sqrt{(A_R(\mathbf{p}) + A_c(\mathbf{p}))^2 + A_s(\mathbf{p})}$$
(17)

where:

- $A_T(p)$ is the total attenuation for a given probability
- $A_G(p)$ is the attenuation due to water vapor and oxygen
- $A_R(p)$ is the attenuation due to rain
- $A_c(p)$ is the attenuation due to *clouds*
- $A_s(p)$ is the attenuation due to *scintillation* (rapid fluctuations attributed to irregularities in the tropospheric refractive index)

Signal processing elements
Propagation and radio communications
Engineering

Noise Link budget

Outline

- Signal processing elements
 - Signal \equiv information!
 - Source coding (dealing with the information content)
 - Modulation
 - Multiplexing
- 2 Propagation and radio communications
 - Introduction to radio communications
 - Radiowave propagation
 - Examples of antennas
- 3 Engineering
 - Noise
 - Link budget

Questions to address

- What is the amount of noise generated by the equipment?
- In a receiver, we cascade filter, line, amplifier, decoder, mixer,
 - How do we characterize a single two-port circuit (≡ quadripole) in terms of noise?
 - 2 How do we characterize a cascade of two-port circuits?
- Calculate the final signal to noise ratio (to determine the capacity or determine the BER, etc.).

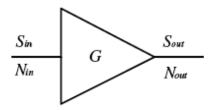
Noise

A natural source of noise is thermal noise, caused by the omnipresent motion of free electrons in conducting material.

Theorem (NyQUIST'S formula for a one-port noise generator)

The available power from a thermal source in a bandwidth of W is

$$P_N = k_B T W \tag{18}$$


where

- $k_B = 1.38 \times 10^{-23} [J/K]$ is the constant of BOLTZMANN (-198 [dBm/K/Hz] = -228.6 [dBW/K/Hz])
- T is the equivalent noise temperature of the noise source
- W is the bandwidth of the system

Thermal noise is one the main sources of noise in a satellite \rightarrow put electronics in the cold "zone" of a satellite

Noise in two-port circuits

Definitions

Noise Factor (F): [provided by the manufacturer]

$$F = \frac{\left(\frac{S}{N}\right)_{\text{in}}}{\left(\frac{S}{N}\right)_{\text{out}}} > 1 \tag{19}$$

Noise Figure (NF):

$$NF=10\log_{10}F\tag{20}$$

Effective noise temperature T_e ($T_0 = 290 [K]$):

$$T_e = T_0(F - 1) \tag{21}$$

◆□ ▶ ◆■ ▶ ◆■ ▶ ■ か990

Noise factor of a two-port cascade

In a cascade, each two-port element is noisy \longrightarrow it contributes to degrade the overall noise factor

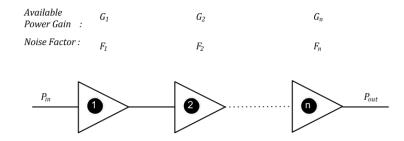


Figure: Cascading two-port elements.

For a two-port network with n stages,

$$F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots = F_1 + \sum_{i=2}^n \frac{F_i - 1}{\prod_{j=1}^{i-1} G_j}$$
 (22)

Noise factor of a two-port cascade |

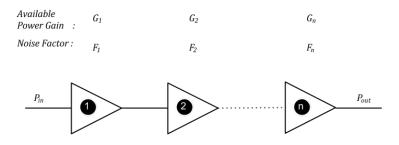


Figure: Cascading two-port elements.

Likewise,

$$T_e = T_{e1} + \frac{T_{e2}}{G_1} + \frac{T_{e3}}{G_1 G_2} + \dots = T_{e1} + \sum_{i=2}^n \frac{T_{ei}}{\prod_{j=1}^{i-1} G_j}$$
 (23)

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 9Q(

Receiver front end I

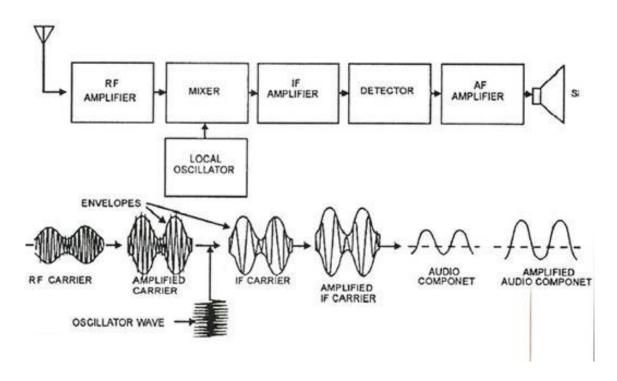
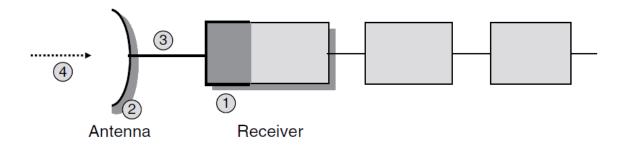
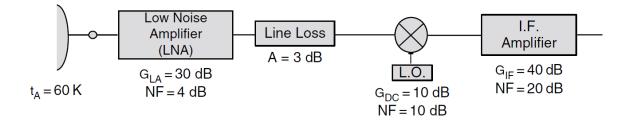



Figure: Block diagram of a typical receiver.


Rule of thumb: highest gain (G_1) and best noise figure (F_1) first.

Then

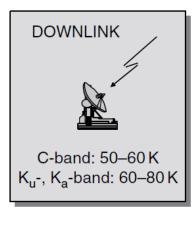
$$F = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots \simeq F_1 + \frac{F_2 - 1}{G_1}$$
 (24)

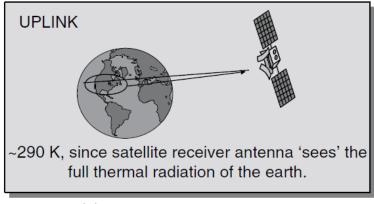
$$T_e = T_{e1} + \frac{T_{e2}}{G_1} + \frac{T_{e3}}{G_1 G_2} + \dots \simeq T_{e1} + \frac{T_{e2}}{G_1}$$
 (25)

Example of the calculation of a noise budget (see [1])

- Low Noise Amplifier: $T_{LA} = 290 \times (10^{\frac{4}{10}} 1) = 438 [K]$
- Line. For a *passive* two-port circuit, the noise factor is equal to the attenuation: $F_0 = A$.

•
$$T_{Line} = 290 \times (10^{\frac{3}{10}} - 1) = 289 [K],$$


•
$$G_{Line}=\frac{1}{2}$$


The effective noise temperature, including the antenna noise t_A , is

$$T_e = t_A + T_{e1} + \frac{T_{e2}}{G_1} + \frac{T_{e3}}{G_1 G_2} + \cdots$$
 (26)

$$= \underbrace{60 + 438}_{498} + \frac{289}{1000} + \frac{2610}{1000 \times \frac{1}{2}} + \dots = 509.3 [K]$$
 (27)

Typical values for the increase in antenna temperature due to rain [1]

(a)

TYPICAL ANTENNA TEMPERATURE VALUES (NO RAIN)

Rain Fade Level (dB)	1	3	10	20	30
Noise Tempeature (°K)	56	135	243	267	270

(b)

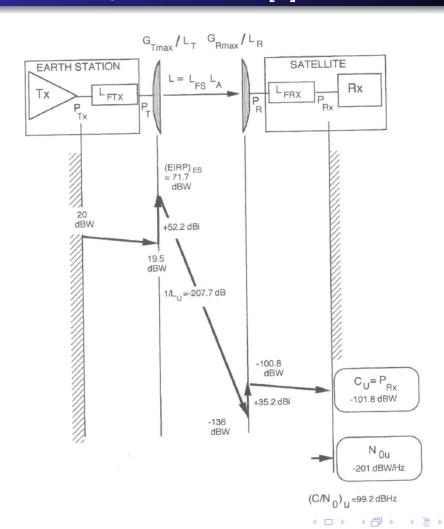
ADDITIONAL RADIO NOISE CAUSED BY RAIN

Signal processing elements
Propagation and radio communications
Engineering

Noise Link budget

Outline

- Signal processing elements
 - Signal \equiv information!
 - Source coding (dealing with the information content)
 - Modulation
 - Multiplexing
- Propagation and radio communications
 - Introduction to radio communications
 - Radiowave propagation
 - Examples of antennas
- 3 Engineering
 - Noise
 - Link budget


Example of parameter values for a communication satellite [1]

Parameter	uplink	downlink
Frequency	14.1 [GHz]	12.1 [GHz]
Bandwidth	30 [MHz]	30 [MHz]
Transmitter power	100 - 1000 [W]	20 – 200 [W]
Transmitter antenna gain	54 [dB <i>i</i>]	36.9 [dB <i>i</i>]
Receiver antenna gain	37.9 [dB <i>i</i>]	52.6 [dB <i>i</i>]
Receiver noise figure	8 [dB]	3[dB]
Receiver antenna temperature	290 [K]	50[K]
Free space path loss (30 ⁰ elevation)	207.2 [dB]	205.8 [dB]

Marc Van Droogenbroeck

Satellite Communications

Clear sky downlink performance [2]

For further reading

- L. Ippolito.
 - Satellite Communications Systems Engineering: Atmospheric Effects, Satellite Link Design and System Performance. Wiley, 2008.
- G. Maral, M. Bousquet. Satellite Communications Systems: Systems, Techniques and Technology. Wiley, 2002.
- J. Gibsons.
 The Communications Handbook. CRC Press, 1997.
- Wikipedia. http://wikipedia.org

