Clinical data based optimal STI strategies for HIV: a reinforcement learning approach

Damien Ernst

Department of Electrical Engineering and Computer Science
University of Liège

Montefiore - March 9, 2006

Presentation based on the paper: “Clinical data based optimal STI strategies for HIV: a reinforcement learning approach”. D. Ernst, G.B. Stan, J. Gonçalves and L. Wehenkel
HIV

- Human Immunodeficiency Virus (HIV) is a retrovirus at the source of the Acquired Immune Deficiency Syndrome (AIDS)
- HIV particles target cells of the immune system (mostly CD4+ lymphocytes and macrophages)
- Inclusion of HIV particles in immune cells lead to massive production of new viral particles, death of the infected cells and, ultimately, devastation of the immune system
Current anti-HIV drugs

Two main categories:
1. Reverse Transcriptase Inhibitors (RTI)
2. Protease Inhibitor (PI)

Figure: Taken from http://www.cellsalive.com/hiv0.htm
Treatments for infected patients

- Highly Active Anti-Retroviral Therapy (HAART): combination of two or more drugs. Usually one or more RTIs in combinations with a PI.

- Two main concerns about the long-term used of anti retroviral drugs: undesirable side effects (leading to poor compliance) and mutation of the virus (need to change drugs or even inability to find appropriate pharmaceutical treatments).

- Need for efficient drug scheduling strategies.

- Idealistically, a drug-scheduling strategy should bring the system to a state where the immune system has control over the virus (with low amount of drugs and low systemic effects).
Structured Treatment Interruption (STI)

- STI: to cycle the patient on and off drug therapy
- STI strategies often well received by patients since they offer them period of relief from treatment
- In some remarkable cases, STI strategies have enabled the patients to maintain immune control over the virus in the absence of treatment

Goal of this research: to compute optimal STI strategies
If CD4+ cell count falls below a certain threshold, put the patient on drugs. Otherwise put him off. This practice has met some problems:

Strategies for Management of Antiretroviral Therapy Study

Conclusion

Episodic use of ART based on CD4+ cell count levels as per the SMART study design is inferior to continuous ART for the management of treatment-experienced patients. Thus, this strategy should not be recommended.

Figure: Taken from http://www.cpcra.org/docs/pubs/2006/croi2006-smart.pdf
Some authors have proposed to design STI treatments by exploiting mathematical models of the HIV infection.

Models are under the form of a set of Ordinary Differential Equations (ODEs).

Deduction of STI strategies is done by using methods from the control theory.

But modelling of the HIV dynamics is a difficult task. Indeed, one has

- to select the right parametric system of ODEs
- to fit the parameters to reflect quantitatively biological observations
An interesting alternative

- Infer directly from clinical data good STI strategies, without modelling the HIV infection dynamics.
- Clinical data: time evolution of patient’s state (CD4$^+$ T cell count, systemic costs of the drugs, etc) recorded at discrete-time instant and sequence of drugs administered.
- Clinical data can be seen as trajectories of the immune system responding to treatment.
Problem of inferring from trajectories appropriate control policy has been studied in control theory and computer science.

One way to approach it: state an optimality criterion and search for strategies optimizing this criterion.

Classical approach: infer a model and derive from it and the optimality criterion an optimal strategy.

Reinforcement learning approach: compute optimal strategies directly from the trajectory, without identifying a model.
The trajectories are processed by using reinforcement learning techniques.

A pool of HIV infected patients

The patients follow some (possibly suboptimal) STI protocols and are monitored at regular intervals.

The monitoring of each patient generates a trajectory for the optimal STI problem which typically contains the following information:

- state of the patient at time t_0
- drugs taken by the patient between t_0 and $t_1 = t_0 + n$ days
- state of the patient at time t_1
- drugs taken by the patient between t_1 and $t_2 = t_1 + n$ days
- state of the patient at time t_2
- drugs taken by the patient between t_2 and $t_3 = t_2 + n$ days

Processing of the trajectories gives some (near) optimal STI strategies, often under the form of a mapping between the state of the patient at a given time and the drugs he has to take till the next time his state is monitored.

The trajectories are processed by using reinforcement learning techniques.

Figure: Determination of optimal STI strategies from clinical data by using reinforcement learning algorithms: the overall principle.
Problem formulation
Discrete-time dynamics:

\[x_{t+1} = f(x_t, u_t) \quad t = 0, 1, \ldots \]

where \(x_t \in X \) and \(u_t \in U \).

Cost function: \(c(x, u) : X \times U \rightarrow \mathbb{R} \). \(c(x, u) \) bounded by \(B_c \).

Discounted infinite horizon cost associated to stationary policy \(\mu : X \rightarrow U \): \(J^\mu(x) = \lim_{N \to \infty} \sum_{t=0}^{N-1} \gamma^t c(x_t, \mu(x_t)) \)

Optimal stationary policy \(\mu^* : Policy that minimizes \(J^\mu \) for all \(x \).

Objective: Find an optimal policy \(\mu^* \).

We do not know: The discrete-time dynamics.

We know instead: A set of trajectories \((x_0, u_0, x_1, \ldots, u_{T-1}, x_T)\).
Some dynamic programming results

Sequence of functions $Q_N: X \times U \rightarrow \mathbb{R}$

$$Q_N(x, u) = c(x, u) + \gamma \min_{u' \in U} Q_{N-1}(f(x, u), u'), \quad \forall N > 1$$

with $Q_1(x, u) \equiv c(x, u)$, converges to the Q-function, unique solution of the Bellman equation:

$$Q(x, u) = c(x, u) + \gamma \min_{u' \in U} Q(f(x, u), u').$$

Necessary and sufficient optimality condition:

$$\mu^*(x) \in \arg \min_{u \in U} Q(x, u)$$

Stationary policy μ^*_N:

$$\mu^*_N(x) \in \arg \min_{u \in U} Q_N(x, u).$$

Bound on the suboptimality of μ^*_N:

$$J^{\mu^*_N} - J^{\mu^*} \leq \frac{2\gamma^N B_c}{(1 - \gamma)^2}.$$
Fitted Q iteration

Trajectories $(x_0, u_0, x_1, \cdots, u_{T-1}, x_T)$ transformed into a set of one-step system transitions $\mathcal{F} = \{(x_t^l, u_t^l, x_{t+1}^l)\}_{l=1}^{\#\mathcal{F}}$.

Fitted Q iteration computes from \mathcal{F} the functions $\hat{Q}_1, \hat{Q}_2, \ldots, \hat{Q}_N$, approximations of Q_1, Q_2, \ldots, Q_N.

Computation done iteratively by solving a sequence of standard supervised learning (SL) problems. Training sample for the k^{th} ($k \geq 2$) problem is

$$\left\{ \left((x_t^l, u_t^l), c(x_t^l, u_t^l) + \gamma \min_{u \in U} \hat{Q}_{k-1}(x_{t+1}^l, u) \right) \right\}_{l=1}^{\#\mathcal{F}}$$

with $\hat{Q}_1(x, u) \equiv c(x, u)$. From the k^{th} training sample, the supervised learning algorithm outputs \hat{Q}_k.

$$\hat{\mu}_N^*(x) \in \arg \min_{u \in U} \hat{Q}_N(x, u)$$

is taken as approximation of $\mu^*(x)$.

In our simulations, SL method used is an ensemble of regression trees method named Extra-Trees.
We present results we have obtained by using the RL-based approach on artificially generated data.

Illustration: Kinds of STI strategies targeted

Bi-therapy treatments combining a fixed RTI and a fixed PI. Revise drug administration every five days based on clinical measurements.

Four possible on-off combinations for the next five days: RTI and PI on, only RTI on, only STI on, RTI and PI off

We seek STI strategies that minimize J^μ.

Instantaneous cost at time t:

$$c(x_t, u_t) = 0.1 V_t + 20000 \epsilon_1^2 + 2000 \epsilon_2^2 - 1000 E_t$$

$\epsilon_1 = 0.7$ (resp. $\epsilon_1 = 0$) if the RTI is cycled on (resp. off) at t

$\epsilon_2 = 0.3$ (resp. $\epsilon_2 = 0$) if the PI is cycled on (resp. off) at time t

V: number of free HI viruses

E: number of cytotoxic T-lymphocytes

Decay factor γ: chosen equal to 0.98.
Illustration: A mathematical model as substitute for real-life patients

\[
\begin{align*}
\dot{T}_1 &= \lambda_1 - d_1 T_1 - (1 - \epsilon_1) k_1 V T_1 \\
\dot{T}_2 &= \lambda_2 - d_2 T_2 - (1 - f \epsilon_1) k_2 V T_2 \\
\dot{T}_1^* &= (1 - \epsilon_1) k_1 V T_1 - \delta T_1^* - m_1 E T_1^* \\
\dot{T}_2^* &= (1 - f \epsilon_1) k_2 V T_2 - \delta T_2^* - m_2 E T_2^* \\
\dot{V} &= (1 - \epsilon_2) N_T \delta (T_1^* + T_2^*) - c V - [(1 - \epsilon_1) \rho_1 k_1 T_1 + (1 - f \epsilon_1) \rho_2 k_2 T_2] V \\
\dot{E} &= \lambda_E + \frac{b_E (T_1^* + T_2^*)}{(T_1^* + T_2^*) + K_b} E - \frac{d_E (T_1^* + T_2^*)}{(T_1^* + T_2^*) + K_d} E - \delta_E E
\end{align*}
\]

\(T_1 (T_1^*)\) = number of non-infected (infected) CD4\(^+\) lymphocytes \\
\(T_2 (T_2^*)\) = non-infected (infected) macrophages \\
\(V\) = number of free HI viruses \\
\(E\) = number of cytotoxic T-lymphocytes.

\(\epsilon_1\) and \(\epsilon_2\) = control actions corresponding to RTI and the PI. Period during which the RTI (resp. the PI) is administrated to the patient: \(\epsilon_1\) (resp. \(\epsilon_2\)) is set equal to 0.7 (resp. 0.3). RTI (resp. the PI) not administrated: \(\epsilon_1 = 0\) (resp. \(\epsilon_2 = 0\)).
Illustration: Some insight into this model

In absence of treatment, three physical equilibrium points:

1. uninfected state:

 \[(T_1, T_2, T_1^*, T_2^*, V, E) = (10^6, 3198, 0, 0, 0, 10)\]

2. “healthy” locally stable equilibrium

 \[(T_1, T_2, T_1^*, T_2^*, V, E) = (967839, 621, 76, 6, 415, 353108)\]

 (small viral load, a high CD4$^+$ T-lymphocytes count, high HIV-specific cytotoxic T-cells count)

3. “non-healthy” locally stable equilibrium point

 \[(T_1, T_2, T_1^*, T_2^*, V, E) = (163573, 5, 11945, 46, 63919, 24)\]

 (T-cells depleted, viral load very high).
Illustration: Protocol for artificially generating the clinical data

Monitoring of patients: every five days during 1000 days.
Medication: can be revised every five days based on the information generated by the monitoring.

Iterative generation of the clinical data (ten iterations):

- **First iteration.** Thirty patients in “non-healthy” steady-state. Physiological data (T_1, T_2, T_1^*, T_2^*, V, E) recorded and a new type of medication randomly selected in U every five days. Monitoring of each patient generates a trajectory $(x_0, u_0, x_1, \ldots, x_{199}, u_{199}, x_{200})$.

- **Second iteration.** Only difference with first iteration: medication determined by the following STI strategy: in 85% of the cases, use strategy $\hat{\mu}_{400}^*$ computed by fitted Q iteration on previously generated trajectories; in the remaining 15% medication randomly selected in U.

- **Third-tenth iteration:** idem as second iteration.
Illustration: Simulation results

Figure: Solid curve (−) corresponds = patient which follows STI strategies; dashed curves (−−) = no interruption in the treatment; dotted curves (−·) = no treatment
Figure: STI treatment for a patient treated from early stage of infection. Clinical data generated by 300 patients.

Figure: Influence of the number of patients on the infinite time horizon cost corresponding to the computed STI strategies.
We expect to face four main difficulties:

- The HIV/immune system dynamics may be different from one patient to the other.
- Difficulty to state properly the optimal control problem
- Partial observability
- Corrupted measurements
Conclusions

- Reinforcement learning algorithms seem to be promising tools to extract from clinical data, good STI strategies.
- Lot of work is however still needed !!!
- But 40 millions of people are living with HIV/AIDS. Isn’t it a good reason to keep working hard ?

Figure: Taken from UNAIDS. AIDS epidemic update: December 2005. “UNAIDS/05.19E”