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Abstract - In this paper we present the basic principles
of supervised learning and reinforcement learning as two
complementary frameworks to design control laws or deci-
sion policies within the context of power system control. We
also review recent developments in the realm of automatic
learning methods and discuss their applicability to power
system decision and control problems. Simulation results il-
lustrating the potentials of the recently introduced fitted Q

iteration learning algorithm in controlling a TCSC device
aimed to damp electro-mechanical oscillations in a synthetic
4-machine system, are included in the paper.

Keywords - Optimal control, sequential decision
making, Monte-Carlo methods, supervised learning, re-
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1 INTRODUCTION

Power system control has been evolving recently and
it continues to do so driven by the changing conditions
and the progress in control theory and computer science.
Developments in these fields that have not yet been seri-
ously exploited in the context of power system control are
for example the theory of hybrid systems combining au-
tomata theory and systems theory in a single framework,
and new results in automatic learning theory and stochas-
tic optimization algorithms. In computer science, a switch
of paradigm is observed from deterministic algorithms try-
ing to find the exact solution of a (typically rather idealisti-
cally posed) problem towards stochastic algorithms which
aim rather to furnish with a certain probability a good ap-
proximation to the solution of a (typically much more re-
alistically posed) problem. It turns out that in the latter
class one finds many interesting and scalable anytime1 al-
gorithms. One can conceptualize automatic learning as a
particular case of this latter framework.

Given the increase in uncertainties and speed of
change in the environment the power system engineer has
to cope with in present days, we believe and argue that it
is time to try to exploit this new family of algorithms more
systematically. The main objective of this paper is to pro-
vide a tutorial introduction to some of these new devel-
opments, and to explain their relevance in power system
control applications.

We first review classical results from (stochastic) dy-
namic programming and (stochastic) optimal control the-
ory and analyze the suitability of this framework to model

in a rather generic way many interesting power system
decision and control problems. We also revisit the basic
principles of supervised and reinforcement learning as two
complementary frameworks to design control laws or de-
cision policies.

We then present recent developments in the realm of
automatic learning methods and discuss their applicabil-
ity to a panel of power system control problems. We also
explain the recently introduced “FittedQ iteration” algo-
rithm and the novel “Extra-Trees” method involving en-
sembles of randomized decision or regression trees.

Simulation results of power system slow and fast dy-
namics real-time control are included to illustrate the
framework. A 4-machine test system, with a Thyristor
Controlled Series Capacitor (TCSC), is used for this pur-
pose. Two measurement schemes to design a local and a
wide-area controller are considered with realistic off-line
training and validation scenarios.

The rest of the paper is organized as follows. Sec-
tion 2 provides the necessary background from stochastic
optimal control theory. Section 3 describes two basic pro-
tocols of automatic learning, namely supervised and rein-
forcement learning and some novel developments and on-
going research work that are of significant importance to
the practical applicability of these methods to real control
problems. Section 4 presents our application example and
Section 5 a concluding discussion.

2 OPTIMAL CONTROL AND SEQUENTIAL
DECISION MAKING

We present well-known results from (stochastic) dy-
namic programming and (stochastic) optimal control the-
ories. Our objective is mainly to set the framework under
which the remainder of the paper is shaped while stress-
ing the similarities of the problems of designing a human
agent’s decision making strategy and an automatic control
device’s control law. A much more detailed description,
including the mathematical assumptions, can be found in
[1], from which we also borrow the notation.

2.1 General stochastic system model

Let us consider a discrete time state description of a
stochastic dynamic system

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , h − 1 (1)

where

1Roughly, an ”anytime” algorithm is an algorithm which if interrupted at anytime can furnish an approximate solution; these algorithms provide
solutions whose quality gradually increases with the amount of CPU time they are allowed to use.
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k indexes the discrete time,

xk is called the system state at timek,

uk is the control or decision variable applied at timek,

wk is a random process (also called disturbance),
h denotes temporal horizon of the problem.

Furthermore, we denote byXk the state space at time
k, i.e. the mathematical structure2 describing a set of pos-
sible states of our system model at timek, by Uk(xk)
the set of possible control decisions at timek (possibly
a function of the statexk). The random disturbance model
is given in the form of a conditional probability distribu-
tionPk(·|xk, uk) that may depend explicitly on the current
state and control decision, but not on past values ofw.

Supposing the system is initially (at stepk = 0) in a
given statex, its trajectory is then defined by the following
random process:

1. setk = 0 andxk = x;

2. the control agent selects a controluk ∈ Uk(xk), and
a random experiment selects a value ofwk distributed
according toPk(·|xk, uk);

3. at time k + 1 the system moves to statexk+1 =
fk(xk, uk, wk) ∈ Xk according to its dynamics,

4. the process repeats itselfh− 1 further times, by replac-
ing the indexk by k +1 at stage 2, yielding anh-stages
trajectory.

Notice that the notion of state used here is an extension
of the classical notion of state used in deterministic sys-
tem theory. More specifically, oncexk anduk are given,
the subsequent states are independent of previous states
and controls, although they are not necessarily perfectly
predictable. This is also called theMarkov property, be-
cause ifuk depends only onxk the sequence of states
x0, . . . , xh−1 forms aMarkov chain.

The system is said to betime-invariantif the function
fk (and the setsXk andUk) and the probability distribu-
tion Pk do not depend explicitly on time, in which case we
will drop the subscriptk in our notation.

2.2 Performance criterion and candidate strategies

We consider anadditive over timereturn-criterion.
Namely, we define the return over anh-stages “trajectory”
(x0, u0, w0, . . . , xh−1, uh−1, wh−1, xh) by

Jh(x0, u0, . . . , xh) = gh(xh) +

h−1
∑

k=0

rk(xk, uk, wk). (2)

Notice that this performance criterion takes into account a
terminal rewardgh(xh) and at each time step an instanta-
neous rewardrk(xk, uk, wk). The latter one is potentially
stochastic (dependence on the r.v.wk) and in general time-
dependent.

The objective is to define control signals in such a way
that the return is maximized. Furthermore, the control pol-
icy has to be causal which means that the control applied

at timek is not allowed to depend on information which
has not yet been gathered at timek. Assuming that the
controller has the possibility to observe the state at timek

and to store this value for future usage, the most general
class of control policies that makes sense (we call these the
admissiblepolicies) is defined by anh-vectorπ of condi-
tional probability distributions

πk(uk|xk, uk−1, . . . , u0, x0), k = 0, 1, . . . , h − 1. (3)

The controller can use such a policy to make a random
draw of the controluk at timek depending in some way
on its current knowledge.

Once such a control strategy has been selected, the dis-
tribution ofN -stages trajectories starting from a given ini-
tial statex0 = x is well defined. Thus, the so-called ex-
pected return overh-stages

Jπ
h (x) = E{gh(xh) +

h−1
∑

k=0

rk(xk, uk, wk)}, (4)

where the expectation is taken according to the distribu-
tion of trajectories starting fromx0 = x and induced by
the system dynamicsfk, noise distributionPk, and choice
of control policyπ.

The solution of the optimal control problem consists
of exploiting the knowledge of the system dynamics and
return function so as to define an optimal policyπ∗, i.e.
an admissible policy such that for any initial statex0 = x

and any admissible policyπ, Jπ∗

h (x) ≥ Jπ
h (x).

We call this very broad class of controllers thenon-
anticipating controllers, to distinguish them fromopen-
loop ones which only use the information aboutx0 and
closed-loopones which only use information aboutxk to
selectuk.

2.3 Main results from the dynamic programming theory

2.3.1 Optimality of deterministic Markov policies

Under the assumptions given, one can show that the
class of policies can be restricted to so-called determinis-
tic Markov policies without sacrificing optimality. These
are policies such thatπk(uk|xk, uk−1, xk−1, . . . , x0) can
be written as a function (a Dirac probability distribution)
of xk only, which we will denote byµk(xk).

Hence, the search for an optimal policyπ∗ can be re-
duced to the simpler problem of searching for a sequence
of h functionsµ∗

k(·). We will call this optimal sequence
the optimal closed-loop time-variant control policy.

2.3.2 Sub-optimality of open-loop policies

One can easily show that if the system is determinis-
tic, the optimal closed-loop time-variant policy may also
be expressed as a function of only the initial statex0, i.e.
as an open-loop policy.

However, in the general case of a non-deterministic
system, closed-loop policies can yield better performances
than open-loop ones.

2We would like to stress the fact that in this framework the state space can be discrete, Euclidean, or a mixture of both. In power system problems the
state space could be modeled as a finite union of finite dimensional Euclidean spaces corresponding to the configurations of the discrete state variables.
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2.3.3 Time invariance and infinite horizon

Under the assumption of a time-invariant system and
of a return defined over an infinite horizon byγ ∈ (0; 1)
and

Jπ
∞

(x0) = lim
h→∞

E{

h−1
∑

k=0

γkr(xk, uk, wk)}, (5)

one can show that optimality can be reached inside the
even simpler set oftime-invariantclosed-loop policies.

Assuming moreover thatU does not depend onx, the
optimal policy can be obtained by determining the solu-
tion Q(x, u) of the so-called Bellman equation

Q(x, u) = E
w

{

r(x, u, w) + γmax
u′∈U

Q (f(x, u, w), u′)

}

,

(6)
and by posing

µ∗(x) = arg max
u∈U

Q(x, u). (7)

Notice that the function defined by

V (x) = max
u∈U

Q(x, u), (8)

is the expected return obtained if we start at statex0 = x

and use the optimal closed-loop policyµ∗ for a sufficiently
large (in principle infinite) number of times. This function
is called the value function in the dynamic programming
literature and satisfies the following Bellman equation

V (x) = max
u∈U

[

E
w
{r(x, u, w) + γV (f(x, u, w))}

]

. (9)

The value iterationalgorithms consist in solving itera-
tively this latter equation and deriving therefrom theQ-
function by using (8) together with (6) and the system
model, and deriving from it the optimal control policy by
equation (7).

The exact solution is possible in practice only if the
state-space is finite, and of sufficiently small size. In the
case of continuous state-spaces, an approximate solution
can be obtained by discretizing the state-space into a large
enough number of bins. However, if the dimensionality
of the continuous state-space increases then the number
of bins would grow exponentially with the number of di-
mensions and very quickly make this approach infeasible.
This difficulty has been called by Bellman thecurse of
dimensionality[2]. One possible solution is then to use
so-called approximation architectures in order to reduce
the problem dimensionality and Monte-Carlo techniques
to estimate solutions to the Bellman equation in the most
interesting regions of the state-space. This is actually one
of the tasks of automatic learning based control discussed
in the Section 3.

Variations of the Bellman equations exist for the time-
variant and/or finite horizon problems. Their solution
yields a sequence ofQh-functions and therefrom the time-
variant closed-loop control laws. Actually, in the case of a
time invariant system the infinite horizon control law can
be obtained as the limit of a sequence of policies of prob-
lems of growing time-horizon [3].

2.4 Discussion

2.4.1 Closed-loop vs open-loop

We saw that in the case of a deterministic system, both
open and closed-loop approaches can solve the problem
without sacrificing optimality. Using the Bellman equa-
tion to find the optimal control in closed-loop form may
be cumbersome, but furnishes in a single step the control
law valid for any initial condition.

On the other hand, the search for a single optimal
sequence of control actions for a given initial condition
x0 amounts, in the case of a finite horizon of length
h, to the determination of a single control sequence
(u0(x0), . . . , uh−1(x0)). This can often be done using ef-
ficient convex programming techniques, and so does not
necessarily suffer from the curse of dimensionality. In the
context of an infinite horizon, this approach can also be
applied by refreshing at each time-step the open-loop pol-
icy computed for a sufficiently large but finite horizon; this
is actually the so-called Model-Predictive-Control (MPC)
approach, which has a better robustness than purely open-
loop control and is often more tractable than solving the
Bellman equation [4].

As concerns the deterministic vs non-deterministic
modeling, we believe that in many power system prob-
lems the Markov assumption is more reasonable than as-
suming that the system is deterministic. For example, in
cases where rather than observing the system state one ob-
serves only some measurements (e.g. in local control) or
in longer term problems, where external disturbances re-
lated to weather and market conditions come into consid-
eration, closed-loop control policies can be much more ef-
fective than open-loop ones.

2.4.2 Multi-step vs single step optimization

Let us briefly discuss the practical implications of
formulating optimization problems over a certain time-
horizon rather than using a purely static approach which
optimizes at timek only with respect to instantaneous
constraints and instantaneous performance criteria, such
as the optimal power flow approach for instance. First of
all, the static approach is obviously a particular case of the
dynamic one. But in the dynamic programming approach
it is possible to take into account in addition to static
constraints also dynamic constraints in terms of possible
transitions from timek to k + 1 (the system dynamics).
These constraints are handled in a static approach only af-
ter the fact, leading to suboptimal results. More impor-
tantly, in the dynamic approach it is possible to formulate
optimization criteria whichintegrateover time, i.e. which
are physically meaningful, contrary to instantaneous val-
ues which are not very meaningful in many cases. We
hence believe that many power system problems, such as
congestion management for instance, which are typically
handled in a single step approach, could take advantage of
a dynamic (multi-step) approach [5].
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3 REVISITING AUTOMATIC LEARNING

For the sake of simplicity of our discussion, we now
consider the determination of a time-invariant closed-loop
control law (or a reactive decision strategy) maximizing
the long term discounted return of a time-invariant system
which state is perfectly observed. According to what pre-
cedes we denote this function byµ∗(x).

We can make several assumptions about our knowl-
edge of this problem. For example, in the weakest setting
we would assume that we can only observe the behavior of
the system under control by some agent, and possibly that
we can make some limited experimentations with the sys-
tem by trying out some particular control actions in some
particular states. In some more favorable occasions we
will also assume that we have a so-calledgenerativesys-
tem model, which allows us to compute for any given ini-
tial state the probability of any successor state given any
value of the control at timek = 0, as well as the expected
value of the functionr(x, u, w). Notice that sequential
sampling from such a distribution also allows us to gener-
ate sample trajectories.

We will consider that the problem is complex
“enough”, in the sense that we have no direct analytical
means to solve the problem (i.e. determine the function
µ∗(x)) from whatever knowledge we have. We believe
that this is the generic situation in the context of power
system control applications.

We will try to identify an approximation toµ∗(x), that
we will denote byµ̂∗(x). The data that we will use is a ta-
ble (or database) of system transitions, i.e.four-tuplesof
the form (xk, xk+1, uk, rk), obtained from observations
of the real system or from simulations. Our objective is
to define methods which under some circumstances will
provide a good approximation ofµ∗(x) from a reasonable
amount of data and which quality further improves when
the amount of data grows and, if possible, converges to the
optimal control policy in asymptotic conditions.

3.1 Supervised learning protocol

3.1.1 Principle

Supervised learning is usually defined as follows [6]:

Given a training set of input/output pairs, determine
a function (or model, or algorithm) to compute the
outputs given the inputs which not only is accurate
on the training set, but also generalizes well to un-
seen cases.

If the output variable is discrete, one talks about
classification, if it is numerical one talks about re-
gression.

In the context of supervised learning, it is thus assumed
that there is a teacher which provides the learning agent
with examples of correct decisions (outputs) for a repre-
sentative set of states (inputs). The learning agent has then
to generalize this information to unseen situations and, in
some problems, to cope with randomness that appears be-
cause the inputs are not providing complete information

about the outputs. This would be the case, for example,
when the teacher uses complete information about the sys-
tem state to determine its control actions while the learn-
ing agent has only access to partial information in the form
of local measurements.

3.1.2 Application to power system control

In our context, this protocol could be used if we dis-
pose of a database whereuk = µ∗(xk) or at least a good
enough approximation of it. Depending upon whether the
control space is discrete or continuous we would then use
a classification or a regression technique in order to gen-
erate a generalized version of the(xk, uk) pairs given in
the database, in the form for example of a decision tree or
a neural network.

This could allow us to understand how a human op-
erator controls a system, to compare different operators
of different systems, to replace a controller using central-
ized information by a controller (as close as possible in
terms of decisions taken) using only a subset of informa-
tion available in a local data acquisition system. In par-
ticular, such a framework could possibly be used in power
systems in order to replace a single centralized controller
taking a set of coordinated actions, by a set of distributed
and independent local controllers trying to imitate the cen-
tral controller. We could also use this approach in order to
build from a database obtained by an off-line optimization
algorithm a much faster control algorithm which uses re-
stricted inputs and can be used in real-time.

In other words, supervised learning will allow us to
imitate an already existing (human or algorithmic) con-
troller, and to generalize it in different fashions by assum-
ing and exploiting a panel of different input representa-
tions to the controlling agent.

3.2 Reinforcement learning protocol

Supervised learning alone is unable to learn a good
control policy from a set of system transitions (four-
tuples) strongly corrupted by erroneous (i.e. suboptimal)
control actions. Thus, it is not sufficient when addressing
a new control problem for which there is no experience
yet about the optimal way of solving it or when there is
no alternative way to determine what is an optimal control
action in a given context.

In such situations, we need to call for a more sophisti-
cated approach, which is called reinforcement learning in
the computer science literature. Reinforcement learning
has been designed to work also when the sole feedback
information about system performance is given in terms
of instantaneous rewardsrk and successor statesxk+1 as-
sociated with a state-action pair(xk, uk). Actually, while
supervised learning only exploits thexk anduk parts of
the four-tuples given in the database to determine an ap-
proximation ofµ∗(x) and assumes thatuk ≈ µ∗(xk), re-
inforcement learning exploits also the partsxk+1 andrk,
and does not make any assumption about the quality ofuk.
Provided that the database is rich enough, reinforcement
learning is then able to determine (explicitly or implic-
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itly) information about the system dynamicsf(·, ·, ·) and
reward functionr(·, ·, ·) and from this latter an approxima-
tion of the optimal control policy, even if the policy used to
generate the system transitions of the database is far from
optimal. Since reinforcement learning is less well known
in the power system community, we will briefly describe
the main principles of this approach and then discuss its
possible application modes.

3.2.1 Principle

Reinforcement learning approaches can be of differ-
ent kinds. One the one hand, themodel basedapproaches
work in two successive steps : (i) they use the database to
create a model of the system (in the form of a Markov De-
cision Process) and of the reward function, (ii) they use
these models together with standard dynamic program-
ming procedures to determine aQ-function and corre-
sponding policy. On the other extreme, we have the so-
called policy searchmethods, which aim at directly ap-
proximating the optimal policy. In between these to ex-
tremes, one has theQ-learning framework [7] which es-
sentially uses the database to determine an approximation
of the Q-function and therefrom the control policy. We
will explain below one particular approach toQ-learning
which we have developed recently [3, 8]. We refer the in-
terested reader to [9] and [10] for a general introduction
and discussion of other reinforcement learning methods
and the ongoing research in the field.

3.2.2 Supervised learning basedQ-learning

The idea developed in [3, 8] aims at allowing the use of
any supervised learning method (for regression) to provide
the approximation (and generalization) of theQ-function
in an iterative fashion. It works as follows:

• Initialization: Seti = 0 andQ̂0(x, u) ≡ 0.
• Basic iteration:

– Seti = i + 1
– Create a table of input/output pairs from the dataset:

ink = xk and outk = rk + γmax
u′∈U

Q̂i−1(xk+1, u
′)

– Apply a supervised learning algorithm to build
Q̂i(x, u) from the table of input/output pairs:
Q̂i(x, u) = Sup.Learn{(in1, out1), (in2, out2), . . .}

• Finalization: if stopping conditions are satisfied return
Q̂i(x, u), otherwise go back to the basic iteration.

In essence, this algorithm (calledFitted Q Iteration) con-
sists of solving the Bellman equation (6) iteratively by ap-
proximating the expectation operator through the use of
a supervised learning algorithm on the set of four-tuples.
In practice, the method converges after a number of iter-
ations which strongly depends on the problem under con-
cern. Its CPU time is thus several times larger than that
of a single call to a supervised learning algorithm on the
same database. The main advantage of this approach with
respect to other reinforcement learning approaches is that
it can be applied to any kind of database and that it can
take advantage of any batch-mode supervised learning al-
gorithm (see§3.3.1).

3.2.3 Application to power system control

The basic assumption in the reinforcement learning
framework is that the database is representative in the
sense that the(xk)-parts are representative of the interest-
ing regions of the state-space, that the(uk)-parts are suf-
ficiently diverse to allow the identification of optimal con-
trol actions from the corresponding instantaneous rewards
and successor statesrk andxk+1. If the system is non-
deterministic, then these latter should also be condition-
ally representative of the distribution of successor states
and rewards for a given state-action pair. In practice this
implies that the database size (number of system transi-
tions) needed in this protocol is significantly larger than in
the case of the supervised learning protocol (where, how-
ever, we need to be sure that the(uk)-parts are the optimal
actions for the corresponding statexk).

In the context of power system modeling and control
problems, reinforcement learning can be used to exploit
information obtained from different contexts:

• Learning from a power system simulator:it is often in-
teresting, although not strictly necessary, to couple the
learning agent with the simulator so as to exploit the
result of learning in order to influence the way the sub-
sequent four-tuples are generated. Thus the learning
from simulations can be totally autonomous (see e.g.
[11, 12] for some examples) or it can take advantage
of some “teaching” mechanism which chooses in some
way the most interesting simulation scenarios, so as to
speed up learning as much as possible.

• Learning from an actual controlling agent:it is also
possible to exploit in reinforcement learning the infor-
mation gathered from a real system monitoring. For
example, one could collect information about the con-
trol decisions taken by a human operator or by an exist-
ing automatic control device (together with rewards and
successor states) and then use a reinforcement learning
agent to learn a control policy from this information.
The resulting policy may in principle outperform the
original controlling agent. In this way it is also possi-
ble to collect information from several suboptimal con-
trollers of a system and inject it into the learning agent.

• On-line learning: finally, it is possible even to cou-
ple the reinforcement learning agent directly with a real
system, provided that safeguards are imposed in order
to avoid that the agent (initially far from an optimal
controller) creates catastrophic situations.

Of course, data can also be collected from any combina-
tion of these contexts. Even, in the context of uncertain
system dynamics one can generate simulated data under
different modeling hypotheses and inject them into a batch
mode reinforcement learning agent to infer a robust con-
troller.

We refer the interested reader to some of our recent
publications concerning the applications of reinforcement
learning to power system control [12, 13, 14, 15].
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3.2.4 Adaptive and distributed control

In the context of on-line learning, a reinforcement
learning agent continuously collects four-tuples at each
time step and can infer from the associated rewards and
successor states information about the real system perfor-
mance and adapt its control policy to it. Furthermore, if
there are several control agents using reinforcement learn-
ing connected to a single system, they can learn all in par-
allel and each one of them can adapt its performance pro-
gressively, hopefully leading to some kind of coordinated
distributed control. If possible, it is of course advised to
pre-train such multi-agent systems using an off-line simu-
lator before plugging them on a real system.

3.3 New developments in automatic learning algorithms

3.3.1 Supervised learning

From a practical viewpoint, a very significant progress
in the recent years concerns the design of new super-
vised learning algorithms which are able to cope with
extremely high-dimensional input-spaces. In particu-
lar support-vector machines [16] are a kind of kernel-
based model developed and extensively studied in the
neural network community, whereas ensembles of deci-
sion/regression trees have been developed in the machine
learning and statistics communities [17, 18]. The main
motivation for the development of such algorithms was to
cope with time-series, text and image classification prob-
lems where the number of ground variables (attributes) is
typically very high (e.g. a 100×100 color image is basi-
cally represented by 100×100×3=30000 input variables)
which makes the use of classical supervised neural net-
work or decision tree algorithms fruitless.

Within the context of this paper we advocate the use
of the novel algorithms based on ensembles of extremely
randomized trees [19, 20]. Indeed, these are rather effi-
cient and very flexible and have been coupled success-
fully with reinforcement learning according to the itera-
tive Q-function fitting approach described above. They
have yielded state of the art performances both in the con-
text of reinforcement learning benchmarks [8] and in the
context of supervised classification and regression bench-
marks [21]. The principle of these methods consists of
building a set of randomized decision or regression trees
from a training set and then to construct a synthetic model
which aggregates the predictions of these trees, as an av-
erage over the ensemble of trees of the output variable.

3.3.2 Reinforcement learning

Reinforcement learning is presently a rather active
research field and a lot of progress has to be expected
from the ongoing work. A significant progress in the
recent years stems from the possibility to apply these
methods now to problems with large and continuous state
spaces, because they have been able to exploit modern
non-parametric supervised learning algorithms [3]. Con-
vergence proofs are being provided in more general situ-

ations than the classical finite state space assumption [22]
and also non-asymptotic reinforcement learning theory is
being developed [23]. Another hot research topic concerns
the theoretical analysis of these methods in the context of
multi-agent systems [24].

4 AN APPLICATION EXAMPLE

It not possible to demonstrate here all capabilities of
the algorithms discussed in the previous section. To illus-
trate our discussions we apply the fittedQ iteration algo-
rithm to control a TCSC device aimed to damp inter-area
oscillations in the 4-machine test system [25] shown in
Fig. 1. The TCSC block diagram is given in Fig. 2.

Figure 1: Four-machine test system

Figure 2: Block diagram of the TCSC

The system exhibits one inter-area mode of approxi-
mately 0.72 Hz. Observability analysis [25] reveals that
the mode is most observable in current magnitude in the
line connecting nodes 6 and 7 (Fig. 1) and among local
variables (local to the TCSC controller) in active power
flow through the TCSC. We consider two control schemes:
one relying on local inputs only and another relying on lo-
cal and remote inputs [26, 27].

4.1 Four-tuples generation, state and reward definition

To collect four-tuples we have considered 1000 sce-
narios for both control schemes. Each scenario starts with
the power system being at rest and is such that at 1 s a
self-clearing short circuit at bus 7 occurs. The fault du-
ration is chosen at random in the interval [0,200] ms. A
scenario stops either when instability is reached or when
t is greater than 60 s. The period between two samplings
is chosen equal to 50 ms which means that we generated
roughly 1,100,000 four-tuples for each control scheme.3

In the control scheme that relies on local measure-
ments we define the pseudo-state that will be used inside
the algorithm by the following expression

xk = (Pek, Pek−1, Pek−2, uk−1, uk−2). (10)

The aim of the control is to maximize damping of the elec-
trical power oscillations in the line. Thus, we define the
reward by

rk =

{

−|Pek − Pe| if |Pek| ≤ 250MW

−1000 if |Pek| > 250MW
(11)

3We do not collect four-tuples during the fault period because the TCSC is not supposed to control the faulted system.
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wherePe represents the steady-state value of the electric
power transmitted through the line, and the condition is
used to detect instability.

In the control scheme that relies on a synthetic input
signal (local: active power flow in the line, and remote:
current magnitude in the line 6-7) the pseudo-state is de-
fined by expression

xk = (Pek, Pek−1, I(6,7)k, I(6,7)k−1, uk−1). (12)

and the reward by

rk =

{

−|I(6,7)k − I(6,7)| if |I(6,7)k| ≤ 2.3kA

−1000 if |I(6,7)k| > 2.3kA
. (13)

In either case, the control set is discretized in four val-
ues equal toU = {−61.57, 41.05, 20.03, 0.0}. The train-
ing scenarios are generated by applying a randomly cho-
sen control signal at each time step in the simulator.

4.2 The value of training parameters

For computational reasons, we have discretized the
electrical power and current in 100 values within their in-
terval of variation, although this is not necessarily opti-
mal. The discount parameterγ was chosen equal to 0.95.
Within the fittedQ iteration framework we have used as
supervised learning method the Extra-Trees method of
[21]. It has three parametersM (the number of trees that
are built),K (the number of random cut-directions consid-
ered at each tree node), andnmin (the minimum number
of elements to split a node) that have been chosen here
respectively equal to 50, the dimensionality of the input
space, and 2.

4.3 Simulation results

Fig. 3 represents the evolution of generator 1 internal
angle relative to generator 3 when the system is subjected
to a 100 ms self-clearing short-circuit for three cases: un-
controlled (dashed), when the TCSC is controlled by a
“classical” controller (solid-thin), and when the TCSC is
controlled by means of fittedQ iteration algorithm (local
measurements) after 1000 learning scenarios (solid-thick).

To design the “classical” controller we used the proce-
dure of [26], yielding the following transfer function

K(s) =
100s(1 + 0.12s)2

(1 + s)(1 + 0.6s)2(1 + 0.06s)
. (14)

This transfer function is between the input (active power
flow in the line) and the TCSC reference reactance.

To assess the robustness of the proposed control, the
learned control law is used to control the system when
subjected to a different fault scenario (100 ms short-circuit
followed by tripping the line 7-10). The system response
is illustrated in Fig. 4 (solid-thick) together with uncon-
trolled system response (solid-thin). In spite of the change
in system configuration, the controller succeeds to control
efficiently the system being subjected to the “unseen” sce-
nario.

Figure 5 represents the controlled system response to
the self-clearing short-circuit when a local and a remote

signal are used together as input to the fittedQ iteration al-
gorithm (solid-thick), together with the learned controller
using local measurements only (dashed). It illustrates also
the system response (solid-thin) when a communication
delay of 50 ms (modeled by first-order Padé approxima-
tion [27]) is imposed on the remotely acquired signal. We
notice that this (reasonable) delay does not have signifi-
cant detrimental effect to the designed controller.
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Figure 3: The system responses to 100 ms, self-clearing, short circuit
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Figure 4: The system responses to 100 ms short circuit followed by trip-
ping the line
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5 CONCLUSIONS

In this paper we reviewed recently developed auto-
matic learning methods from the viewpoint of optimal
control. In particular, supervised learning based on en-
sembles of randomized trees as well as the fittedQ itera-
tion method provide a class ofanytimealgorithms, which
gracefully improve the quality of their output as a function
of increased computing power and data. Their combina-
tion leads to a very powerful framework for approaching
optimal control and sequential decision problems. As an
alternative to analytical optimization methods, they have
several significant advantages. First of all, they make only
weak assumptions about the properties of the system and
control agents, and are therefore applicable to a very broad
class of practical problems. Secondly, they can be applied
off-line or on-line and may exploit data provided by sys-
tem simulators or collected by measurements on the actual
system. Contrary to many analytical optimization tech-
niques, they are able to handle uncertainties and partial
observability. Finally, while the amount of training data
needed to obtain good performances obviously depends
on the problem specifics, the computational complexity
of these methods increases only slowly (roughly linearly)
with problem dimensionality and training data size.

We have discussed the application of the framework
to power system problems, and provided simulation re-
sults obtained on an academic but non-trivial power sys-
tem control problem. We thus hope that this paper will
help to better understand the potentials of automatic learn-
ing in power system decision and control and to foster fur-
ther research and applications in this context, so as to take
advantage of the ongoing progress in computer science.
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[21] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely random-
ized trees,”Submitted for publication, 2004, 35 pages.

[22] D. Ormoneit and S. Sen, “Kernel-Based Reinforcement
Learning,” Machine Learning, vol. 49, no. 2-3, pp. 161–
178, 2002.

[23] E. Even-Dar and Y. Mansour, “Learning rates for Q-
learning,” Journal of Machine Learning Research, vol. 5,
pp. 1–25, 2003.

[24] J. Hu and M. P.Wellman, “Nash Q-learning for general-sum
stochastic games,”Journal of Machine Learning Research,
no. 4, pp. 1039–1069, 2003.

[25] P. Kundur,Power System Stability and Control. McGraw
Hill, 2000.

[26] G. Rogers,Power System Oscillations. Kluwer Academic,
2000.

[27] J. H. Chow, J. J. Sanchez-Gasca, H. Ren, and S. Wang,
“Power system damping controller design using multiple
input signals,”IEEE Control Systems Magazine, pp. 82–
90, August 2000.

8


