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A Reinforcement Learning Based Discrete 
Supplementary Control for Power System 

Transient Stability Enhancement 
Mevludin Glavic1, Damien Ernst1,2, and Louis Wehenkel1   

Abstract-- This paper proposes an application of a Reinforcement 
Learning (RL) method to the control of a dynamic brake aimed 
to enhance power system transient stability. The control law of 
the resistive brake is in the form of switching strategies. In 
particular, the paper focuses on the application of a model based 
RL method, known as prioritized sweeping, a method proven to 
be suitable in applications in which computation is considered to 
be cheap. The curse of dimensionality problem is resolved by the 
system state dimensionality reduction based on the One Machine 
Infinite Bus (OMIB) transformation. Results obtained by using a 
synthetic four-machine power system are given to illustrate the 
performances of the proposed methodology.  
 
Index Terms--Reinforcement learning, transient stability, discrete 
supplementary control, dynamic braking, optimal policy. 

I.  INTRODUCTION 

DISCRETE supplementary controls in a power system are 
designed to enhance some desirable property when 

required [1,2]. These controls are characterized by the fact that 
they are not designed for continuous use and are meant only to 
be supplementary rather than primary. Available discrete 
supplementary controls usually include: generator tripping [3], 
direct or indirect load shedding [4], dynamic braking [1,2], 
steam turbine fast valving [1], FACTS devices [5], mechanical 
power modulation [5], and energy storage [5]. 

In this paper, the use of resistive braking is considered. The 
essence of the control is the insertion of a resistance, usually at 
a generation bus, upon the clearing of a system disturbance. 
This action corrects an imbalance between the mechanical 
power input and the electrical power output at each generator. 
To date, braking resistors have been applied mainly to 
hydraulic generating stations remote from load centers, 
because these units can withstand the sudden shock from the 
switching in of resistors, while for thermal units the effect on 
shaft fatigue life must be carefully examined [1]. The use of 
braking resistors to improve transient stability, implemented in 
many power systems around the world, is reported in [6]. The 
main issue in implementing a resistive brake is so called  
“switching times control”. A variety of approaches were 
considered and implemented, to decide when to switch on or 
off the resistor; all of them are strictly heuristic. The prevailing 
approach is to apply only one switch of the brake for a pre-

specified insertion time (Bonneville Power Administration, 
Chubu E.P. Co. Japan, several power systems in China, and 
Queensland-Australia). A control scheme with maximum of 
two consecutive brake insertions, is implemented in the 500 
kV Northeast part of the Brazilian power system. For all of 
these control schemes the control initiation is based on the 
recognition of pre-specified system variable changes [6].  
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Nevertheless, the switching times control as presently used 
seems rather coarse and could be improved by the use of 
advanced control algorithms capable to realize multiple 
switching operations. The appropriate approach to solve this 
problem is to formulate it as multistage decision problem. 
Dynamic programming (DP) provides a formal framework to 
solve this problem and has already been applied [2] to 
determine optimal switching strategies of a resistive brake, but 
the control law obtained was an open-loop control law. 
Robustness of the open-loop control rules are not good due to 
the fact that they act on a case-based way and do not take into 
consideration the real state of the system that is reached after 
the fault and a sequence of control actions. We propose in this 
paper to use DP to compute a closed-loop control law, the 
solution of the DP problem being computed by using a 
Reinforcement Learning (RL) algorithm. The application of 
RL algorithms to power system control is still in its infancy. 
Only a few research results were reported [7-11].  

The dynamic brake is aimed to damp large 
electromechanical oscillations as well as to avoid the system 
loss of synchronism (loss   of synchronism and   damping   of 
large   electromechanical oscillations are closely linked 
phenomena). Improving overall system dynamic performances 
rather than an individual power plant, by determining the 
optimal closed-loop control rule of a dynamic brake is the 
primary topic of this paper. The closed-loop control law of the 
braking resistor is in the form of the switching strategies. The 
switching strategy is a function of present state measurements 
and constraints placed upon the operation of the control. To 
determine the switching strategy a model based RL algorithm, 
known as prioritized sweeping [12], is used.   

Basically, the RL approach proposed in this paper to 
control a dynamic brake consists of an adaptive closed-loop 
control that tends to maximize a function, image of the quality 
of the system performances. 

II.  REINFORCEMENT LEARNING 
RL will be presented here in the framework of discrete 

optimal   control of a deterministic non-linear system with 
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constant sampling period. If  represents the sampled state 
vector of the system at instant 

tx
t , u  the control action taken at t

t , then the state vector of the system at instant t+1 (the instant 
corresponding to the next sampling) is given by, 
 

),( tt1t uxfx =+ .                                   (1) 
 

The RL method we use in this paper belongs to the 
temporal-difference type of methods that suppose the 
existence of a reward  associated to the transition from  
to  while taking action u  [13]. We define the discounted 
return  which depends on the initial data 

 and on the control u , where U  represents a 
finite set of possible values for , 
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where  , is a parameter, called  the discount rate. 
The aim of RL methods in the framework of infinite-time 
horizon with discounted reward is to find the optimal control 
sequence  that maximizes the discounted 
return. 
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We define the   value function V  the maximum value of 
expression (2) as a function of the initial state at t
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Using    the   DP    principle   (introduced    in [14]), one can 
prove that the value function satisfies the condition, 
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where   and  are respectively the  reward 
observed and the next state reached when taking action u  
while being in state 

),( uxr ),( uxf

x . DP computes the value function in 
order to find the optimal control with a feedback control 
policy. Indeed, from the value function we deduce the 
following optimal feed-back  control policy, 
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We define the  function, function of Q x  and u , as, 
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Then V  can be expressed as a function of , )(x ),( uxQ
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Equation (5) can be rewritten as, 
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Equation  (8) provides a straightforward  way  to determine 
the optimal  control law from the knowledge  of the Q. 

RL algorithms estimate  the  Q  function  by interacting 
with the  system. From the knowledge of the Q function, they 
can decide by using equation (8) which value of the control  to 
associate  to a  state in order  to maximize  the discounted 
return (2). Unfortunately, RL in a continuous state-space  
implies that  the Q function has  to be approximated [13].  We 
have used a discretization technique to approximate it because 
it is easy to implement,  numerically stable and  allows the  use 
of  model learning algorithms. 

A discretization technique consists in dividing the state 
space into a finite number of regions and then considering that 
on each region the Q function  depends only  on u.  Then, in 
the RL  algorithms, the notion of  state used is  not the real  
state of the system  x but rather the region of the state space to 
which x belongs. We will use the letter s rather than x to 
denote the state of  the system in order to stress that we refer 
now not to x itself but to a region of the  state  space.   
Moreover, the finite set containing all the discretized states of 
the system is  denoted   by  S.   The discretization of the state 
space introduces some stochastic aspects.  While being in one 
region of the state space and taking an action, the region of the 
state space reached at the next sampling instant is not fully 
determined. The stochastic aspects introduced by the 
discretisation lead to suppose that  does not obey 
anymore to the deterministic equation (6) but rather to, 
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where  ),'( ussp  represents  the probability  to reach  at  the 
next sampling  instant the state   when  being in  the state  's s  
while taking action u. 

Rewards  and probabilities ),( usr ),'( ussp  describe the 
model of the discretized system.  They associate to each 
discretized state and to each  value of  the command u  
transition probabilities  to other states  and the  value of  a 
reward.   Assuming that they  describe a Markov Decision 
Process (MDP),  can be easily estimated using a  
classical  DP  algorithm like  the  value iteration  or  the   
policy  iteration  [14,15].   The optimal control to associate to 
a state is the one that maximizes Q for this state. 

),( usQ

RL methods either estimate the transition probabilities and 
the associated rewards  (model based learning methods) and 
then compute the Q function, or compute directly the Q 
function without learning any model (non-model based 
learning methods). For the purpose of this paper we use a 
model based algorithm because these algorithms offer some 
important advantages in comparison to non-model based, and 
those are: more efficient use of data gathered, they find better 
policies, and handle changes in the environment more 
efficiently [16]. A generic algorithm for model based learning 
method is given in Appendix. 
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III.  RESOLVING THE CURSE OF DIMENSIONALITY PROBLEM 

A.  General procedure 
The discretization strategy used to be able to apply RL 

algorithms to a continuous state-space control problem makes 
sense if the finite MDP learned by interacting with the power 
system is able to approximate well the initial control problem. 
One can assume that this is indeed satisfied if the 
discretization is sufficiently fine. But the number of states that 
compose the finite MDP can be too high to expect to match 
computer capabilities. If we use for example a  state 
variables system and discretize each state variable into 10  
steps, it would imply to learn the structure of a MDP 
composed of 10  states. Rather than using coarse  
discretization steps  to decrease  the MDP size, another  
approach consists to "preprocess"  the high dimensional 
system state  vector in order to  extract from it  a lower 
dimensional input signal  and to use  it as input  of the RL 
algorithms.   Such an approach makes sense if the input signal 
is able to catch the system state main features. 

100

100

B.  Input signal chosen 
The state variables that capture the best the 

electromechanical oscillations phenomena are the machines 
angle and speed. One can reasonably suppose that if we limit 
the input signal of the RL algorithm to these angle and speed 
state variables, the information the algorithm has are 
sufficient. 
Unfortunately, the use of all the angles and speeds requires in 
a  machines power system to handle a  dimensional input 
signal which is too high to expect convergence in a reasonable 
learning time (except of course if you are dealing with a small 
size power system). 

n n2

The procedure we use to reduce the dimensionality of the 
input signal assumes that the oscillation phenomena are such 
that one group of machines swings against the other and that 
the machines swing coherently inside the same group. 
OMIB  [17] can then be applied to reduce the  dimensional 
signal to a  dimensional signal.  If denote by GM1 and GM2 
the two groups of machines then the transformation proceeds 
as follows: 

n2
2

• Transform the two groups into two equivalent machines, 
using their corresponding partial center of angle. For 
cluster GM1 this results in, 
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where kδ   and kω denote the machines angle and speed, 
and  represent the machines inertia. Similar 
expressions hold for group GM2. 

kM

• Reduce the two-machine system into an equivalent 
OMIB system whose machine angle and speed are defined 
by, 

 

)()()( ttt 2GM1GM δδδ −=  ; )()()( ttt 2GM1GM ωωω −= . (12) 
 

The angle and the speed of this OMIB are used as input of the 
RL algorithm. Of course the amount of information in these  
variables is less than in the  variables but will be sufficient 
according to our simulations   to obtain, after the learning, a 
good quality closed-loop control law. Note that the 
transformation is commonly used to analyze transient stability 
phenomena except that the identification of the two groups 
GM1 and GM2 is done on-line and not predefined like we 
proceed here [3]. 

2
n2

IV.  DESCRIPTION OF THE POWER SYSTEM UNDER STUDY 
To illustrate capabilities of the proposed control this paper 

makes use of the four-machine power system, described in 
Fig. 1. Its characteristics are mainly inspired from [1]. For the 
simulations purpose all the generators are modeled as follows: 
detailed machine model with slow direct current exciter, 
automatic voltage regulator, and speed regulator. Other 
controls were not considered. The loads are modeled as 
constant current (active part) and constant impedance (reactive 
part). 
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Fig. 1 A four-machine power system 
 

While the system operates in steady-state conditions, the 
generators G1, G2 (hydro) and G3, G4 (thermal) produce 
approximately the same active powers (700 MW) and the two 
loads L7, L10 consume respectively 990 and 1790 MW. The 
resistive brake (RB) is located at bus 6 and sized as 05g .=  
p.u. mhos on a 100 MVA base (500 MW). This is a reasonable 
value in view of the fact that a 1400 MW braking resistor is 
presently in use [1,2].  

A.  State definition 
We assume that the angle and speed of each generator are 

available (they can be either measured directly or estimated). 
The OMIB parameters are inferred using (10,11,12). GM1 is 
composed of machines G1 and G2 while GM2 is composed of 
machines G3 and G4. The state at time t  is represented as, 
 

),( ttts ωδ= .                                  (13) 

B.  Reward definition 
It is critical that the rewards truly indicate what is wanted to 

be accomplished, not how it is wanted to be achieved [13]. For 
the particular problem considered in this paper the aim of the 
RL controller is twofold: to improve damping of rotor angle 
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oscillations of all generating units in the system and to enlarge 
the stability domain. These oscillations are observable in the 
magnitudes of OMIB angle and speed, and the aim of the 
controller is to limit their magnitudes. The resistive brake 
should be switched on only when large oscillations occur. All 
this can be accomplished by defining the reward as, 
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where  is the OMIB post-fault equilibrium angle, u  is the 

cost associated with the brake being on. The purpose of 
weighting factors c  and  is to bias the control efforts 
toward damping of the OMIB angle or the OMIB speed. The 
higher the cost , the less the controller will act on small 
perturbations. In order to deal with the loss of stability, a 
terminal state ( ) is introduced. This state is reached when 
the system has lost stability and a very bad value for the 
reward (-1000) is then obtained. We consider that the system 
has gone outside of the stability domain when . 

eqδ

1 2c

u

terms

o
t 180≥δ

C.  The values of parameters 
The measured (directly or indirectly) quantities are 

individual machines angle and speed. The period between two 
samplings is chosen equal to 50ms which means that the value 
of the control {0,1} could change every 50ms. A large value of 
γ implies the algorithm will take long-term benefit control 
actions. However, a too large value (a value close to 1) can 
lead to convergence problems. Simulations carried out have 
shown that γ=0.98 represents a reasonable tradeoff. The 
values of parameters in (14) are chosen as c1=0.0, c2=1.0, and 

. These values indicate that the control efforts are fully 
biased toward control of the OMIB speed (to avoid difficulties 
associated with the estimation of post-fault equilibrium OMIB 
angle). ε-greedy factor is set to 0.1 which means that a random 
action will be taken at each 10-th sampling on average. The 
factor 

02u .=

ε is set to rather high value to encourage the RL 
algorithm exploration. The OMIB angle and speed are 
uniformly discretized in 100 values   within the interval  [-
3.15,3.15]  rad  and [-10,10] rad/s, respectively. 

D.  Control law learned 
The RL algorithm is used to learn the optimal closed-loop 

control law (strictly speaking, the closed-loop control law 
learned will be different from the optimal one due to the facts 
that the input signal of the RL algorithm is discretized and 
represents something else than the system real state). But to 
each power system configuration corresponds an optimal 
control law. The strategy proposed here is to realize the 
learning by using always the same configuration and to assess 
the control law robustness to justify the use of the control law 
in configurations that do not correspond to the one in which 
the learning has been done. 

V.  SIMULATION RESULTS 

A.  Scenario description 
The learning period is partitioned into different scenarios. 

Each scenario starts with the power system being at rest and is 
such that at a short-circuit at bus 10 occurs. The fault 
duration is chosen at random in the interval 

s10
[ ]ms350,0 . The 

scenario stops either when the instability is reached or when 
t is greater than . The only reason for realizing a short-
circuit during a scenario is to drive the system far from the 
equilibrium point.  Otherwise the learning would only happen   
in areas close to the equilibrium point. Because we do not 
want to learn the optimal closed-loop control law that 
corresponds to the fault-on configuration, we do not realize 
any learning     during     the     fault    period     (the     four-
uple is never used as input of the RL 
algorithm if 

s60

)1+,, tt sr,( tt us
t  and/or  correspond to the fault 

configuration time interval). The total number of scenarios 
equals to 1000, out of which 115 were unstable.  

1t +

B.  Performance index 
The learning performance (the quality of the control) is 

measured by introducing the discounted return at time t  
 

∑
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where  is equal either to , when terminal state (loss of 

stability) is not reached, or to the time when terminal state is 
reached. This measure indicates two things. The first one is the 
distance from the system equilibrium point at time 

ft s60

t  (one can 
reasonably suppose that if at time t  we are far from the 
equilibrium point,  will be bad). The second one is the 
control quality. Indeed, if the quality of the control law is 
“good” one can expect while being in state 

tR

s  at time t  better 
return  than if we were using a “bad” control law.  tR

C.  Control law performances 
Evolutions of  at different stages of the learning process 

are represented in Fig. 2. They all correspond to scenarios for 
which the fault duration is equal to . After the first 10 
learning scenarios the value of  is still rather low. The 
control law learned is far from the optimal one due to the 
rather small learning time. As the number of scenarios 
increases the quality of control is improving. As we can 
observe it, the value of  converges to zero for the curves 
labeled “70 scenarios” and “100 scenarios”. It means that the 
system reaches its equilibrium point and that no control 
actions are taken when the system is at rest. Fig. 3 represents 
the evolution of the OMIB angle, speed, and actions taken 
after convergence of the learning process. To highlight the 
control benefit in terms of damping, the OMIB angle of the 
uncontrolled system is given in Fig. 3a, and corresponding 
OMIB speed in Fig. 3b.  

tR

ms215
tR

tR
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The controller successfully learned to control efficiently the 
system using 7 brake switches. These curves have been drawn 
with ε-greedy factor set to 0 what in turn means that the 
controller uses only greedy actions to control the system. 
 

 
Fig. 2 A zoom on learning performance evolution 

 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 3 Evolution of the OMIB angle, speed, and control actions taken (215 

ms duration self-clearing fault) 

D.  Control law robustness 
To assess the robustness of the proposed control, the learned 

control law is used to control the system when subjected to a 
different fault scenario. The system response and actions taken 
are illustrated in Fig. 4 together with the controlled system 
response to the self-clearing short-circuit. In spite of the 
change in system configuration, the controller succeeds to 
control efficiently the system being subjected to the “unseen” 
scenario. This   is   due    to   the   high    robustness of   the 
closed-loop control law learned. Note that the uncontrolled 
system loses stability for this scenario. 
 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 4 Evolution of the OMIB angle, speed, and control actions taken (215 

ms duration fault cleared by opening the line 11-10) 

E.  Enlarging of the stability domain 
For the  duration self-clearing fault, the uncontrolled 

system loses stability  after the fault clearance, but by 
using learned control law the controller stabilizes the system.   

ms350
s751.
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The evolution of the OMIB angle is illustrated in Fig. 5 for 
both controlled and uncontrolled system. 
 

 
Fig. 5 Evolution of the OMIB angle (350 ms duration self-clearing fault) 

F.  Remarks and discussion 
The primary objective of the paper is to highlight the 

potential of RL application in controlling a dynamic brake 
aimed to enhance power system transient stability as well as 
the damping of large oscillations. Some practical limitations 
met when using the dynamic brake, such as the maximum 
insertion time and the maximum number of consecutive 
insertions, were not considered in the simulations.  Maximum 
number of   consecutive   brake insertions can be handled by 
choosing proper switching costs. Further work is needed to 
adopt criteria for choosing proper switching costs to handle 
brake insertion constraints and accommodate different brake 
technological solutions. Proper use of the domain knowledge 
(the knowledge about the physical problem under 
consideration, that is the knowledge about power system 
dynamics) can resolve the curse of dimensionality problem 
and help RL methods to handle complex problems. This is 
particularly stressed in the paper by reducing the state-space 
dimensionality and defining the proper reward. Observe in 
Fig. 3,4, and 5 that the OMIB starts in a backswing 
(decelerating) mode. This is due to the fact that the short-
circuit being located at the right part of the power system, 
group GM2 accelerates during the fault.  

Although the control of particular system mode (inter-area 
oscillations) is considered in the paper the idea is much wider. 
Observe that the reward in (14) is defined in such a way that 
the control efforts can be biased toward slower as well as 
faster oscillations through proper choice of parameters  and 

. These parameters are introduced having in mind further 
extension of the control toward a multi-agent control system 
(e.g., several brakes located at different places of the power 
system, each of the brakes being controlled by an individual 
agent) where a coordination agent is placed upon local ones 
and learns appropriate coordination through the settings of the 
parameters. However, simulations performed revealed that 
one’s good choice is to set parameter c  to 0 and avoid angle 
estimation in the system post-fault equilibrium. This is not 
conclusive and further work is needed to find an appropriate 
estimation algorithm with the aim of strengthening approach 

flexibility.  

1c

2c

1

An issue not considered in this paper is the inclusion of 
communication delays. The work is underway to tackle this 
issue along recent theoretical results on MDP with delays and 
asynchronous cost collection, presented in [21]. 

VI.  RELATED WORK 
A similar approach where a resistive brake has been 

considered to enhance overall dynamic performance of a 
power system rather than individual power plants was 
presented in [2]. A classical DP algorithm was used to 
determine open-loop control laws for a number of anticipated 
fault durations. Time-invariant OMIB was used to resolve 
curse of dimensionality problem. Each obtained solution was 
then stored in a look-up table for use in real-time. The 
approach presented in this paper generalizes over the 
methodology from [2] in several ways: 

- It determines closed-loop control law, 
- The fault durations are not anticipated but rather chosen at 

random within a pre-specified interval, 
- It uses generalized (time-varying and more accurate) 

OMIB to resolve curse of dimensionality problem. 
A variety of approaches were considered and implemented, 

to decide when to switch ON or OFF the resistor [6], [18], 
[19]. All the approaches were implemented with the main aim 
of improving dynamic performances of individual power 
plants (usually hydraulic) and it is hard to compare them with 
the approach advocated in this paper.  

Fortunately, one of the attractions of RL approach is the 
flexibility this approach provides while designing controllers 
for a given problem. Different heuristics as well as domain 
specific knowledge can be easily injected into the RL agent. 
This can be done by proper reward definition (e.g., additional 
penalty can be added into reward if insertion time is longer 
than allowed) or by proper initialization of Q function.  

For illustration a simple heuristic [18] that the brake should 
be ON whenever and as long as the speed is positive is used to 
initialize Q function. To achieve this, we have considered that 
in areas where the speed is positive, the action space is 
reduced to the single element ON. Comparison of the learning 
process improvement is illustrated in Fig. 6 in terms of 
unstable cases met during the learning process in first 120 
scenarios. 
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Fig. 7 Number of unstable cases with and without using heuristic to initialize 
Q function 

 

Observe that initialization of the Q function results in 
considerably smaller amount of the unstable cases and thus 
increases the learning process reliability.  

It is also possible to exploit in RL the information gathered 
by observing how an existing controller (e.g., one presented in 
[20]) acts and then to use RL to learn starting from that policy. 
The resulting policy should, in principle, outperform the 
original controller. 

VII.   CONCLUSIONS 
The use of a resistive brake to enhance overall dynamic 

performance of the power system has been presented. A model 
based RL algorithm, known as prioritized sweeping, has been 
proposed to determine the approximation of the optimal 
switching strategies of the brake. The domain knowledge has 
been used to resolve the curse of dimensionality problem and 
to define the reward. Simulations were carried out on a 
synthetic four-machine power system. The results observed 
qualify the proposed   control    as    effective   to    handle   
the    problem considered. Although some practical limitations 
in the use of the resistive brake were not considered we 
suggest that RL based control, together with a proper use of 
the domain knowledge, offers attractive features for practical 
applications. 

VIII.  APPENDIX 
GENERIC ALGORITHM FOR MODEL BASED LEARNING METHOD 
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Compute Q by solving (9) 
'ss ←  

 
The ε -greedy method used to choose the action suggests that 
there is probability ε  that the action chosen is not necessary 
the one which minimizes , but an action taken at random. 
This provides the algorithm with some exploratory behavior 
such that on average each 

Q

ε/1  time a random action is taken. 
The N function used in this algorithm does not intervene to 

describe the model as such but is necessary for its updating. 
The term  provides the algorithm with some 
adaptive behavior by giving more importance (if 

)( 10 ≤≤ ββ
1<β ) to the 

last data acquired. 
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