
Selecting concise sets of samples for a reinforcement

learning agent

Damien Ernst

ernst@montefiore.ulg.ac.be

Department of Electrical Engineering and Computer Science

Institut Montefiore - University of Liège

July 25, 2005

Abstract

We derive an algorithm for selecting from the set of samples gath-
ered by a reinforcement learning agent interacting with a deterministic
environment, a concise set from which the agent can extract a good
policy.

The reinforcement learning agent is assumed to extract policies
from sets of samples by solving a sequence of standard supervised
learning regression problems. To identify concise sets, we adopt a cri-
terion based on an error function defined from the sequence of models
produced by the supervised learning algorithm.

We evaluate our approach on two-dimensional maze problems and
show its good performances when problems are continuous.

1 Introduction

Generalization of the information in reinforcement learning (RL) has been
an open problem for years. Recently, several authors have advocated ad-
dressing this problem by solving a sequence of standard supervised learning
problems [2, 8]. They have shown that by using non-parametric super-
vised learning methods and in particular ensembles of regression trees, this
framework could lead to excellent generalization performances while avoid-
ing convergence problems of the sequence.

The training sets for the different supervised learning problems contain
a number of elements equal to the number of samples the reinforcement
learning agent has acquired from interaction with the system. After a cer-
tain time of interaction, these samples may become so numerous that this

1

framework may become computationally impractical. To reduce the com-
putational burdens, we propose to select a concise set of sufficiently rich
representatives of the samples.

We propose in this paper an algorithm that identifies such concise sets.
The algorithm works iteratively by associating to the solution computed
from the already selected samples an error function and by selecting the
sample for which this error function takes its largest value.

Our algorithm is inspired by work in the classical supervised learning
framework. The closest one is probably the certainty-based algorithm from
[5] which is applied to classification problems and grows a concise training set
by selecting elements with the lowest annotation certainty, while in [9] the
selection is rather based on the decrement of the error. Our approach is also
related to some techniques in dynamic programming (DP) that iteratively
discretize the state space (see e.g. [4, 7]). Our problem is however different
since it does not focus on where to generate some new information but
well on which information among a given set should be selected. Another
fundamental difference is that these DP techniques mainly associate to every
discretization a finite Markov Decision Problem from which they deduce
an approximate solution to the optimal control problem, whereas here we
compute from a given set of samples an approximate solution by solving a
sequence of supervised learning problems.

Section 2 formalizes the problem of learning from a set of samples, re-
views some classical results of the dynamic programming theory and presents
the fitted Q iteration algorithm that solves this problem by reformulating
it as a sequence of standard supervised learning problems. The material
of this section is largely borrowed from [2] and is valid both for stochastic
and deterministic environments. In Section 3 we present our approach to
select concise sets of samples when a deterministic environment is assumed.
Section 4 gathers simulation results and, finally, Section 5 concludes.

2 Learning from a set of samples

2.1 Problem formulation

Let us consider a system having a discrete-time dynamics described by:

xt+1 = f(xt, ut, wt) t = 0, 1, · · · (1)

2

where for all t, the state xt is an element of the state space X, the action
ut is an element of the action space U and the random disturbance wt an
element of the disturbance space W . The disturbance wt is generated by
the time-invariant conditional probability distribution Pw(w|x, u).

To the transition from t to t + 1 is associated an instantaneous reward

signal rt = r(xt, ut, wt) where r(x, u, w) is the reward function bounded by
some constant Br.

Let µ(·) : X → U denote a stationary control policy and J µ denote the
expected return obtained over an infinite time horizon when the system is
controlled using this policy (i.e. when ut = µ(xt),∀t). For a given initial
condition x0 = x, Jµ is defined as follows:

Jµ(x)= lim
N→∞

E
wt

t=0,1,··· ,N−1

[

N−1∑

t=0

γtr(xt, µ(xt), wt)|x0 = x] (2)

where γ is a discount factor (0 ≤ γ < 1) that weighs short-term rewards more
than long-term ones, and where the conditional expectation is taken over all
trajectories starting with the initial condition x0 = x. Our objective is to
find an optimal stationary policy µ∗, i.e. a stationary policy that maximizes
Jµ for all x. The only information that we assume available to solve this
problem is the one obtained from the observation of a certain number of one-
step system transitions (from t to t + 1). Each system transition provides
the knowledge of a new sample (xt, ut, rt, xt+1) that we name four-tuple.
Since it is usually not possible to determine an optimal policy from a finite
number of four-tuples, we aim at computing an approximation of µ∗ from a
set F = {(xl

t, u
l
t, r

l
t, x

l
t+1), l = 1, · · · ,#F} of such four-tuples.

2.2 Dynamic programming results

Let H denote the mapping that transforms any bounded function K : X ×
U → R into

(HK)(x, u) = E
w

[r(x, u, w) + γmax
u′∈U

K(f(x, u, w), u′)] (3)

where the expectation is computed by using P (w) = Pw(w|x, u).
The sequence of QN -functions defined on X × U

QN (x, u) = (HQN−1)(x, u) ∀N > 0 (4)

3

with Q0(x, u) ≡ 0 converges, in infinity norm, to the Q-function, defined as
the (unique) solution of the Bellman equation:

Q(x, u) = E
w

[r(x, u, w) + γmax
u′∈U

Q(f(x, u, w), u′)] (5)

= (HQ)(x, u). (6)

A policy µ∗ that satisfies

µ∗(x) = argmax
u∈U

Q(x, u) (7)

is an optimal stationary policy.
Let us denote by µ∗

N the stationary policy

µ∗
N (x) = arg max

u∈U

QN (x, u). (8)

The expected return of µ∗
N converges in infinity norm to Jµ∗

and the
following bound on the suboptimality of µ∗

N holds:

‖Jµ∗

− Jµ∗

N ‖∞ ≤
2γNBr

(1− γ)2
. (9)

2.3 Fitted Q iteration

The fitted Q iteration algorithm computes from the set of four-tuples F the
functions Q̂1, Q̂2, · · · , Q̂N , approximations of the functions Q1, Q2 · · · , QN

defined by Eqn (5), by solving a sequence of standard supervised learning
regression problems. The policy

µ̂∗
N (x) = argmax

u∈U

Q̂N(x, u) (10)

is then taken as approximation of the optimal stationary policy. The training
set for the kth problem (k ≥ 1) of the sequence is

4

((xl
t, u

l
t), r

l
t + γmax

u∈U
Q̂k−1(x

l
t+1, u)), l = 1, · · · , #F (11)

with Q̂0(x, u) = 0 everywhere. The supervised learning regression algorithm
produces from this training set the function Q̂k that is used to determine
the next training set and from there, the next function of the sequence.

We prove in Appendix A the following upper bound on the suboptimality
of µ̂∗

N :

‖Jµ∗

− J µ̂∗

N ‖∞ ≤
2γNBr + ‖ε‖∞(2− 2γN)

(1− γ)2
(12)

where the error function ε : X × U → R is:

ε(x, u) = max
k∈{1,2,··· ,N}

|Q̂k(x, u)− (HQ̂k−1)(x, u)|. (13)

3 Concise set of samples selection

The algorithm. The algorithm we propose to select from F the n most
informative four-tuples works iteratively. At each iteration, it computes
from the already selected four-tuples the functions Q̂1, Q̂2, · · · , Q̂N and then
selects as new four-tuple (xl

t, u
l
t, r

l
t, x

l
t+1) the one that maximizes ε(xl

t, u
l
t).

Our algorithm is limited to deterministic environments since we cannot from
the sole knowledge of F compute the value of ε(xl

t, u
l
t) when the environment

is stochastic. The tabular version of the algorithm is given in Fig. 1 where
the symbol f j denotes a concise set containing j four-tuples.
Will such an algorithm identify concise sets of samples ? The mo-
tivation for the algorithm lies in the expectation that by growing iteratively
the concise set and by selecting at each iteration the four-tuple associated
with the largest error, the resulting value of ‖ε‖∞ will be small. This in turn
would lead to a tight bound (12) and, therefore, to a low suboptimality on
the policy computed.

There are of course no guarantees that even if there exist concise sets
leading to small values of ‖ε‖∞, our algorithm will be able to identify them.
However, simulation results reported in the next section are rather encour-
aging.

5

(i) Set j = 1 and f j = { arg max
(xl

t,u
l
t,r

l
t,x

l
t+1)∈F

|rl
t|}

(ii) Compute Q̂1, Q̂2, · · · , Q̂N from f j by using the fitted Q iteration
algorithm

(iii) f j+1 ← f j ∪ { arg max
(xl

t,u
l
t,r

l
t,x

l
t+1)∈F\fj

(max
k∈{1,2,··· ,N}

|Q̂k(x
l
t, u

l
t) − rl

t −

γmax
u∈U

Q̂k−1(x
l
t+1, u)|)}

(iv) If j + 1 = n return f j+1 else j ← j + 1 and go back to step (ii).

Figure 1: Concise set selection algorithm. The algorithm takes F as input
and outputs a n element concise set.

We may also question whether it is a good strategy to identify concise
sets that lead to a minimization of ‖ε‖∞. Indeed, we are interested in concise
sets leading to policies with high expected returns and by identifying them
through a criterion in which the expected return does not directly intervene,
our algorithm may fall into several pitfalls. For example, we will show in the
next section that when the environment is non-smooth, there may not exist
sets of four-tuples for which ‖ε‖∞ drops below a certain value which leads
the algorithm to select too many samples alongside the discontinuities.
Computational burdens. Our main motivation for selecting concise sets
is to lighten the computational burdens of running the fitted Q iteration
algorithm on the whole set of four-tuples. To analyze the potential compu-
tational benefits of our approach, two aspects need to be considered: the
computation time and the memory requirements. Obviously, these two as-
pects strongly depend on the supervised learning method considered in the
inner loop of the fitted Q iteration algorithm.

Concerning the computation time, we should notice that the concise
set selection approach requires to run the fitted Q iteration algorithm n

times with sets of four-tuples ranging from 1 till n elements and that after
each run, except the last one, the four-tuple that maximizes ε(xl

t, u
l
l) has to

be identified. Generally speaking, we can say that the computation time

6

x(1)

1 x(0)0

0

xt

xt + (0,−0.25)

with ut = (0, 0.25)

1

0.2

xt + (−0.25, 0) xt + (0.25, 0)

xt+1 = xt + ut

positive

rewards

zero
rewardslarge

rewards

positive

0.2

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) System dynamics (b) Cont. r(x, u) (c) Discont. r(x, u)

Figure 2: The 2-dimensional maze problem.

associated with such an approach grows rapidly with n and will only be
lower than the one required to run fitted Q iteration on F if n is small
compared to #F .

The memory gain realized by the concise set selection approach comes
from the lower amount of memory required to use the supervised learning
algorithm with n element training set rather than a #F element training
set. For some supervised learning methods like ensemble of regression trees
which output a model whose size grows with the training set, the gain may
be significant.

4 Simulations results

In this section, we evaluate the performances, in terms of capability to iden-
tify concise sets of samples, of the algorithm discussed in Section 3.
Test problems. Experiments are carried out on the deterministic 2-dimensional
maze problem. Description of the system dynamics is done in Fig. 2a.1 An
object whose coordinates are (x(1), x(2)) travels in a square and can go ei-
ther up, down, left or right. Zero rewards are always observed, except in the
upper right corner of the square and in the bottom left corner. The decay
factor γ is equal to 0.5.

Two different reward functions are considered in our experiments. One
is continuous and the other discontinuous (see Figs 2b and 2c, respectively).

1The exact system dynamics is given by the following equation:

xt+1(i) =

8

>

<

>

:

xt(i) + ut(i) if 0 ≤ xt(i) + ut(i) ≤ 1

1 if xt(i) + ut(i) > 1

0 if xt(i) + ut(i) < 0

∀i = {1, 2}.

7

x(1)

1 x(0)0

1

0

u = (0.25, 0)
u = (0, 0.25)
u = (−0.25, 0)
u = (0,−0.25)

Figure 3: Representation of the optimal control stationary policy µ∗ for
2-dimensional maze problem when the continuous reward function is con-
sidered.

It can be shown that with the continuous (discontinuous) reward function,
the corresponding QN -functions are continuous (discontinuous). Figure 3
sketches the optimal stationary policy corresponding to the control problem
with continuous reward function. To each point of the set {x ∈ X|∃i, j ∈
N|x = (0.1 ∗ i, 0.1 ∗ j)}, the figure draws control actions which are optimal
ones.
Supervised learning method. In all our experiments, the supervised
learning algorithm used inside fitted Q iteration is an ensemble of regres-
sion trees method named Extra-Trees.2 This algorithm produces piecewise
constant models. Each piece of the model is a hyperrectangle with each face
parallel to all but one axes of the input space.
Value of N in fitted Q iteration. We have chosen to carry out ten
iterations with the fitted Q iteration algorithm, i.e. N = 10. The policy
chosen to approximate the optimal stationary policy is therefore µ̂∗

10. A
larger value of N could at best lead to an upper bound (12) whose value is
2γN Br

(1−γ)2
' 0.008 tighter.

Generation of the four-tuples. We consider in our experiments different
sets F . The mechanism that generates these different sets is the same. It
considers one-step episodes with the initial state of each episode chosen at
random in X and adopts as control policy a totally random policy.
Estimation of ‖ε‖∞ and ‖Jµ∗

− J µ̂∗

N ‖∞. To estimate ‖ε‖∞ we compute

2Description of the Extra-Trees algorithm may be found in [3]. Three parameters are
associated to this algorithm: the number M of trees to build, the number K of candidate
tests at each node and the minimum number of elements to split a leaf nmin. These
parameters values are: M = 50, K is chosen equal to dimension of the input space which
is equal to 4 (X is a 2-dimensional space and u is described by a pair of values), nmin = 2
(the trees are fully developed).

8

max
Xtest×U

ε(x, u) where Xtest = {x ∈ X|∃i, j ∈ N|x = (0.02 ∗ i, 0.02 ∗ j)}. Simi-

larly the estimation of ‖Jµ∗

− J µ̂∗

N ‖∞ is done by computing max
Xtest

(Jµ∗

(x) −

J µ̂∗

N (x)).
Random sets. To assess performances of the concise sets f n, we compare
them with those of sets which are randomly and uniformly chosen from F .
These sets are referred to as random sets.
About the figures drawn. We explain how to interpret some of the figures
drawn hereafter:
- set of four-tuples: several figures (Fig. 4a, Fig 7a and Fig 7d) draw sets
of four-tuples. A four-tuple (xl

t, u
l
t, r

l
t, x

l
t+1) is represented by a triangle on

the (x(1), x(2)) plane with the center of the triangle being located at xl
t and

the orientation of the triangle giving information about ul
t with the same

convention as the one adopted in Fig. 3. Since the optimal control problem
is deterministic, rl

t and xl
t+1 can be deduced from xl

t and ul
t. A white triangle

represents an element of the concise set f n while a black triangle represents
an element of F \ fn.
- policy µ̂∗

10: Figures 4b, 7b and 7e represent policies µ̂∗
10 computed in various

conditions. Orientation of the triangles gives information about µ̂∗
N (x) with

the same convention as the one adopted in Fig. 3. If for a state x, the color
of the triangle is white, µ̂∗

10(x) 6= µ∗(x). If it is black, µ̂∗
10(x) = µ∗(x).

- function max
u∈U

ε(x, u): Figures 6, 7c and 7f represent the function max
u∈U

ε(x, u).

These figures give information about areas of the state space where the error
function ε is the highest.

4.1 Continuous QN-functions

We consider here the case where the reward function is described by Fig.2b.
We first use our algorithm to select a 100 element concise set from a 10, 000
element set. The set f 100 together with the set F \ f 100 are represented on
Fig. 4a. As we observe, many of the four-tuples are selected in areas of
the state space where the reward function is different from zero. If fitted Q

iteration takes f 100 as input, it produces the policy µ̂∗
10 represented on Fig.

4b. To assess performances of this concise set, we have compared them with
those obtained by 100 element random sets. For the concise set, the values
of ‖ε‖∞ and ‖Jµ∗

− J µ̂∗
10‖∞ estimated are respectively equal to 0.490 and

0.399 while they are equal in average to 1.871 and 1.823 for the random sets.
It is clear that our concise set was indeed able to lead to a better solution
than random sets. It should however be noticed that if fitted Q iteration had
been combined with F , it would have lead to better values: 0.409 for‖ε‖∞

9

x(1)

1 x(0)0

1

0

x(1)

1 x(0)0

1

0

(a) (b)

Figure 4: Figure a draws f 100 and F \ f 100. Figure b draws µ̂∗
10 when f100

is used with fitted Q iteration.

and 0.199 for ‖Jµ∗

− J µ̂∗

10‖∞.
Table 1 further assesses performances of our algorithm. In the upper

part of the table, we report performances of fitted Q iteration when com-
bined with some concise sets of various sizes while in the lower part, average
performances of several random sets as well as performances of F are given.
The third column of the table estimates the value of ‖ε‖∞ and the fourth col-
umn the value of ‖Jµ∗

−J µ̂∗
10‖∞. By analyzing the content of these columns,

we observe that concise sets lead to much better performances than random
sets. In particular, performances of a 100 element concise set are better
than average performances achieved by 2000 element random sets. These
two columns also show that the upper bound (12) on the suboptimality of
µ̂∗

N is particularly loose. For example, if we suppose that estimates of ‖ε‖∞
and ‖Jµ∗

− J µ̂∗
10‖∞ are correct, the upper bound on the suboptimality of

the policy is equal to 2(0.5)102+0.409(2−2(0.5)10)
(1−0.5)2

' 1.6 when 10, 000 four-tuples

are considered as input of fitted Q iteration while the actual suboptimality
of the policy is 0.199. Table 1 reports also the maximum value reached by
the error functions over the different elements (xl

t, u
l
t). Contrary to the val-

ues reported in columns three and four, these values can be computed from
the sole knowledge of F . They give to the reinforcement learning agent a
lower bound on ‖ε‖∞. Remark that when the 10, 000 four-tuples are taken
to compute Q̂1, Q̂2, · · · , Q̂10, this value drops to zero, which is due to the
fact that since the regression trees built are fully developed, they perfectly
represent every training set of the sequence.

On Figs 6a-d we have drawn the function max
u∈U

ε(x, u) for increasing sizes

of fn. We observe that our algorithm tends to produce an error function

10

#F

max
Xtest×U

ε(x, u)

F
f100

2.

1.75

1.5

1.25

1.

0.5

0.75

1000 3000 5000 7000

Figure 5: maxXtest×U ε(x, u) as a function of #F

size
set

max
F

ε(xl
t, u

l
t)

max
Xtest×U

ε(x, u)

max
Xtest

(Jµ∗

−J µ̂∗
10)

Concise sets

50 0.510 0.617 0.599
100 0.348 0.490 0.399
200 0.245 0.438 0.399
500 0.117 0.439 0.199
1000 0.073 0.450 0.199

Random sets (average values)

50 1.791 1.977 1.939
100 1.652 1.871 1.823
200 1.489 1.707 1.625
500 1.062 1.259 1.330
1000 0.766 1.015 0.903
2000 0.629 0.818 0.679

F

10000 0. 0.409 0.199

Table 1: Performances of concise sets, random sets and F .

11

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

(a) 25 4-tuples, conc. set (b) 50 4-tuples, conc. set (c) 100 4-tuples, conc. set

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

(d) 500 4-tuples, conc. set (e) 500 4-tuples, rand. set (f) 10,000 4-tuples = F

Figure 6: Function maxu∈U ε(x, u).

constant over the state space and that by increasing the size of the concise
set, the error function tends to decrease uniformly everywhere. It is obvious
that this uniform decrease of the error would not have happened if the dif-
ferent (xl

t, u
l
t) were not covering every area of the state-action space. These

four figures should be put in comparison with Fig. 6e that draws max
u∈U

ε(x, u)

when a 500 element random set is considered. By not selecting four-tuples in
areas where the error is the highest, the error function reaches large values
in the lower left and upper right corner. These values are even larger than
those obtained by considering a 25 element concise set.

Till now we have reported results for various sizes of concise or random
sets for F chosen constant. The solid line of Fig. 5 assesses the influence of
F on ‖ε‖∞ when f100 is used to compute Q̂1, Q̂2, · · · , Q̂10. We observe that
the larger F the better performances the concise set has. The dashed line on
the same figure reports the estimated value of ‖ε‖∞ obtained by considering
the whole set F with fitted Q iteration. We can observe that for small sets
F , performances of F and f 100 are equivalent. However, they turn to the
advantage of F when its size increases. Indeed, as F increases in size, it
becomes more and more difficult to find 100 of its elements that catch the
whole information it contains.

12

4.2 Discontinuous QN-functions

We consider here the case where the reward function is described by Fig.2c
which leads to some discontinuous QN -functions. First, we consider a set
F composed of 500 elements and select from this 500 four-tuple set, a 100
element concise set. Figures 7a-c represent the results obtained. One should
note that the error function reaches large values especially in the state space
areas close to (0, 0) where the reward function is discontinuous. The circular
aspect of the discontinuities together with the fact that the supervised learn-
ing algorithm produces piecewise constant models with each piece being an
hyperrectangle, will always lead to a high value of ‖ε‖∞, whatever the finite
set of four-tuples considered inside the fitted Q iteration algorithm is. In
particular, since ‖ε‖∞ ≥ ‖Q̂1−r(x, u)‖∞ and since the height of largest dis-
continuity for the reward function is 2, ‖ε‖∞ will always at least be greater
than 1.

Our algorithm selects four-tuples in areas of the state space where the
error function is the highest. If when #F = 500, the concise set still contains
four-tuples located in the upper right part of the square while the error
function is greater in the lower left part, it is because F contains less than
100 four-tuples located in this lower left part.

Figures 7d-f gather simulation results when #F = 100, 000. We observe
now that almost all the four-tuples of the concise set are located alongside
the largest discontinuity of the reward function and that the quality of the
resulting policy is poor. In particular, since none of the elements of f 100

gives information about the positive rewards that may be obtained in the
upper right part of the state space, the policy computed tries mainly to
drive the point to the lower left part of the state space.

5 Conclusions and future work

In this paper, we have proposed an algorithm to identify concise sets of
samples for a reinforcement learning agent interacting with a determin-
istic environment. This algorithm grows the concise sets iteratively. At
each iteration, it computes a sequence of Q̂N -functions from the already se-
lected samples by using the fitted Q iteration algorithm, associates an error
function to these Q̂N -functions and selects the sample for which this error
function takes its largest value. We showed through simulations that this
algorithm has indeed the potential to identify good concise sets when the
environment is smooth. However, we also found out that it may run into
difficulties when non-smooth environments are considered. Indeed, in such

13

x(1)

1 x(0)0

1

0

x(1)

1 x(0)0

1

0
0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) (b) (c)
x(1)

1 x(0)0

1

0

x(1)

1 x(0)0

1

0
0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(d) (e) (f)

Figure 7: Figures a, b and c gather simulation results when #F = 500.
Figure a sketches f 100 and F \ f 100, figure b the policy µ̂∗

10 and figure c
maxu∈Uε(x, u). Figures d, e and f reproduce similar results when #F =
100, 000.

cases the algorithm may select too many samples alongside the discontinu-
ities. This problem could potentially be circumvented by using other criteria
to select the concise sets rather than one seeking to minimize a bound on
the suboptimality on the policy induced based on the infinite norm of the
error function. We could for example seek inspiration from [6] where some
other bounds, given as a function of weighted L1 or L2-norms of the ap-
proximation errors done while developing the sequence of Q̂N -functions, are
proposed.

Our primary motivation for selecting concise sets of samples was to
lighten the computational burdens of running fitted Q iteration on the whole
set of samples. However, we found out that the computation time associated
with our proposed algorithm grows rapidly with the size of the concise set
and may become larger than the time needed to run fitted Q iteration on
the whole set of samples. We therefore suggest as future research direction
to design faster versions of our algorithm. One way to proceed would be
to look at strategies to update incrementally the sequence of Q̂N -functions

14

rather than to recompute these functions from scratch at every iteration of
our algorithm.

A Upper bound on ‖Jµ∗

− J µ̂∗
N‖∞

Theorem A.1. If Q̂0, Q̂1, · · · , Q̂N are bounded functions defined on X×U

with Q̂0 = 0 everywhere then, following notations of Section 2, we have:

‖Jµ∗

− J µ̂∗

N ‖∞ ≤
2γNBr + ‖ε‖∞(2− 2γN)

(1− γ)2
(14)

where ε(x, u) = max
k∈{1,2,··· ,N}

|Q̂k(x, u) −HQ̂k−1(x, u)|.

Proof. Let µ be a stationary policy and T µ be the mapping that transforms
K : X → R into

(T µK)(x) = E
w

[r(x, µ(x), w) + γmax
u′∈U

K(f(x, µ(x), w), u′)]

and M the mapping that transforms K : X × U → R into

(MK)(x) = max
u∈U

K(x, u) .

First let us compute an upper bound on ‖Q− Q̂N‖∞:3

‖Q− Q̂N‖∞ ≤ ‖HQ−HQ̂N−1‖∞ + ‖ε‖∞

≤ γ‖Q− Q̂N−1‖∞ + ‖ε‖∞

≤
γN

1− γ
Br + ‖ε‖∞

1− γN

1− γ
. (15)

From inequality (15) we have:

‖Jµ∗

−MQ̂N‖∞ = ‖MQ−MQ̂N‖∞

≤ ‖Q− Q̂N‖∞

≤
γN

1− γ
Br + ‖ε‖∞

1− γN

1− γ
. (16)

We have also:

(T µ∗

MQ̂N−1)(x)− (T µ̂∗

N MQ̂N−1)(x) =

(HQ̂N−1)(x, µ∗(x)) − Q̂N (x, µ∗(x)) + Q̂N (x, µ∗(x))−

(HQ̂N−1)(x, µ̂∗
N (x)) + Q̂N (x, µ̂∗

N (x))− Q̂N (x, µ̂∗
N (x)) ≤

2‖ε‖∞ + Q̂N(x, µ∗(x)) − Q̂N (x, µ̂∗
N (x)) ≤ 2‖ε‖∞ . (17)

3This upper bound is a classical result that can be found for example in [1].

15

By using Eqn (17) we can write:

Jµ∗

− J µ̂∗

N ≤

Jµ∗

− T µ∗

MQ̂N−1 + 2‖ε‖∞ + T µ̂∗

N MQ̂N−1 − J µ̂∗

N .

Thus, in norm:

‖Jµ∗

− J µ̂∗

N ‖∞ ≤

γ‖Jµ∗

−MQ̂N−1‖∞ + 2‖ε‖∞ + γ‖MQ̂N−1 − J µ̂∗

N ‖∞ ≤

2γ‖Jµ∗

−MQ̂N−1‖∞ + γ‖Jµ∗

− J µ̂∗

N ‖∞ + 2‖ε‖∞ ≤

2γ

1− γ
‖Jµ∗

−MQ̂N−1‖∞ +
2‖ε‖∞
1− γ

. (18)

By combining inequalities (16) and (18), we find the upper bound (14) on
the suboptimality of µ̂∗

N .

References

[1] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, Belmont, MA, 1996.

[2] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforce-
ment learning. Journal of Machine Learning Research, 6:503–556, April
2005.

[3] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees.
Submitted.

[4] L. Grüne and W. Semmler. Using dynamic programming with adap-
tive grid scheme for optimal control problems in economics. Journal of

Economics Dynamics and Control, 28:2427–2456, 2004.

[5] D.D. Lewis and J. Catlett. Heterogeonous uncertainty sampling for su-
pervised learning. In Proceedings of the Eleventh International Confer-

ence on Machine Learning, pages 148–156, San Francisco, CA, 1994.
Morgan Kaufman.

[6] R. Munos. Error bounds for approximate value iteration. Technical
Report CMAP-527, Ecole Polytechnique, 2004.

[7] R. Munos and A. Moore. Variable resolution discretization in optimal
control. Machine Learning, 49:291–323, 2002.

16

[8] D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Machine

Learning, 49(2-3):161–178, 2002.

[9] M. Plutowski and H. White. Selecting concise training sets from clean
data. IEEE Transactions on Neural Networks, 4(2):305–318, March
1993.

17

