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Abstract - In this paper we compare Nash equilibria
analysis and agent-based modelling for assessing the market
dynamics of network-constrained pool markets. Power sup-
pliers submit their bids to the market place in order to maxi-
mize their payoffs, where we apply reinforcement learning as
a behavioral agent model. The market clearing mechanism
is based on the locational marginal pricing scheme. Simula-
tions are carried out on a benchmark power system. We show
how the evolution of the agent-based approach relates to the
existence of a unique Nash equilibrium or multiple equilibria
in the system. Additionally, the parameter sensitivity of the
results is discussed.
Keywords - Electricity market modelling, multi-agent

modelling, game theory, matrix games, reinforcement
learning, spot markets.

1 INTRODUCTION

In the early 1990’s the power supply industries world-
wide started to undergo a period of extensive changes.
Electricity markets moved away from vertically integrated
monopolies towards liberalized structures with power de-
livery being a bundle of several services mainly includ-
ing generation, transmission and distribution. The main
reason for restructuring is related to the expectation that
competition could lead to a reduction of electricity prices
and could stimulate the emergence of new technologies.
However, several national markets (e.g. in California, the
United Kingdom and Spain) were suspected to allow for
‘gaming’ and the exercise of market power. Thus, electric-
ity markets have been re-reorganized and will continue to
be subject to structural changes, as observed with the re-
cent introduction of the New Electricity Trading Arrange-
ments (NETA) in the UK and the upcoming inaugura-
tion of a market regulator in Germany. Ideally, the effects
of such market restructuring proposals should be known
prior to their implementation. Hence, there is a need for
appropriate modelling and analysis concepts, where at
least four distinct approaches can be distinguished [1]: a)
ex post analysis of existing markets, b) market concentra-
tion analysis using current market data, c) equilibria anal-
ysis, and d) multi-agent modelling, where either individu-
als are interacting or artificial agents. The above concepts
may be used to study effects concerning market concen-
tration, efficiency, and market power. Nevertheless, in [1]
it is pointed out that the different concepts are significantly
sensitive to the underlying assumptions, the choice of the
behavioral agent-models and the set of parameters used for

the algorithms. Bunn and Oliveira in [2] state “that with
the process of daily experimentation and learning of the
market players multiple transient equilibria are likely to
occur”, where it has to be investigated how the different
concepts ‘cope’ with this constellation.

The contribution of this paper is a comparison of
Nash equilibria analysis and agent-based modelling in
conjunction with reinforcement learning for a network-
constrained pool market. We show the interdependencies
of the two approaches, i.e. we focus on the assessment
of the market dynamics obtained through an agent-based
model with respect to the existence of Nash equilibria in
the system. This paper is a further development of [3].
For sake of consistency and clarity we outline our previ-
ous findings, but then extend our analysis and describe the
parameter-dependencies of the results.

The paper is organized as follows. In section 2 we in-
troduce matrix and repeated games, define the notion of
Nash equilibrium and introduce a behavioral agent model
known as Q-learning. Section 3 describes the implemen-
tation of a pool market and shows how the process of bid-
ding to a spot market may be formalized as a repeatedly
played matrix game. In section 4 we set up a benchmark
electricity market and discuss the simulation results ob-
tained. Eventually, section 5 concludes the paper.

2 MATRIX GAMES, NASH EQUILIBRIUM AND
AGENT-BASED MODELLING

2.1 Matrix Games and Repeated Play

Game theory is a branch of economic science focus-
ing on the behavior related to interactive decision making
problems. There are a vast variety of games that are ana-
lyzed in depth in literature (e.g. [4, 5]) and several types
of games have been used by electricity market researchers
(e.g. [6, 7]). In this paper, we consider non-cooperative
games played repeatedly a finite number of times. First
we outline the basic matrix game in a normal form defined
through:

• a set of n agents {1, · · · , n}

• A1,· · · , An finite sets of pure actions available to
the agents (Ai is the space of actions for agent i)

• pi denotes the mixed strategy used by agent i to se-
lect its actions. pi(ai) represents the probability for
agent i to select action ai ∈ Ai. A pure strategy
is a degenerate case of a mixed strategy for which



∃ai ∈ Ai such that pi(ai) = 1. p = (p1, · · · , pn)
denotes the strategy profile for the matrix game.

• ri : A → R is the reward function of the stage game
for agent i where A = A1 × · · · × An. For mixed
strategy case the expected reward is calculated as:

ri(p1, · · · , pn) =
∑

a∈Ai

p1(a1)∗· · ·∗pn(an)∗ri(a1, · · · , an)

(1)
where a = (a1, · · · , an). In the repeated game rep-

etition means that exactly the same single stage game is
played a certain number of times. [8] The space of actions
and corresponding payoffs is kept invariant. The choice of
strategy might be influenced by the history of the game.

• t ∈ {1, · · · , T } refers to a particular period of the
game.

• at = (at
1, · · · , at

n) is the action profile being played
at t.

• Let ht = (a1, a2, · · · , at−1) denote a specified his-
tory of the game at period t (in other words it is the
collections of actions that have been chosen in all
previous iterations by all the agents).

• si denotes the mixed strategy used by agent i to se-
lect its actions. Si is the set of possible mixed strate-
gies for agent i. This strategy may be such that the
probability to select an action at time t may depend
on the history of the game ht.1 s = (s1, · · · , sn)
denotes the repeated game strategy profile.

• The payoff of each agent is a weighted cumulative
sum of payoffs it obtains in every period:2

ui = r1
i + δr2

i + · · · + (δ)T−1rT
i =

T∑

t=1

(δ)t−1rt
i (2)

where δ is a discount factor (commonly a ”time” factor).
A discount factor close to 0 means that the agent puts
most weight on the payoffs from the first periods (impa-
tient about near-future profits). If this factor is close to 1
than the player is rather indifferent between the outcomes
of any rounds. It does not affect much our discussions be-
cause the analysis of results is mostly based on winning
strategies rather than on cumulative payoff’s comparison.

2.2 Nash equilibrium
The fundamental solution concept in game theory is

a Nash equilibrium (NE) point where each agent’s strat-
egy is a best response to the strategies of the others. A
player has no motivation to deviate from NE strategy since
it would lead to a decrease of its expected payoff. Nash

equilibrium of the stage game is formally defined as fol-
lows: The strategy profile p∗ = (p∗1, · · · , p∗n) is a Nash
equilibrium if for all i ∈ {1, · · · , n} we have

ri(p∗1, · · · , p∗n) ≥ ri(p∗1, · · · , p∗i−1, pi, p
∗
i+1, · · · , p∗n) (3)

Several algorithms have been developed for computing
Nash equilibria. The interested reader may refer to [3, 9].
In the case of finite repeated games the subgame con-
sists of a sequence of single stage-game equilibria. The re-
peated game strategy profile s∗ is a subgame-perfect Nash
equilibrium if for all i ∈ {1, · · · , n} we have

s∗i ∈ arg max
si∈Si

ri(si, s
∗
−i). (4)

If there is a unique stage-game equilibrium then it is re-
peated over whole game.

For the particular problems studied in this paper we
have only observed the presence of pure stage-game Nash
equilibria (see Section 4). Since the action spaces Ai are
finite in our examples, these Nash equilibria at every stage
were computed by enumeration of all n-tuples of A and
selection of those which were satisfying equation (3).

2.3 Agent-Based Modelling and Reinforcement Learn-
ing

Most economies incorporate a large number of market
participants (also referred to as agents) interacting locally
with each other by, e.g. selling or buying goods, where ev-
ery participant may follow a set of individual objectives.
This interaction on the micro-level determines to a large
extent the overall market dynamics, i.e. the evolution of
market characteristics, such as market prices, price volatil-
ity, overall trading volume etc. Hence, we observe a feed-
back between the micro- and the macro-level of markets. 3

One concept to account for this feedback is agent-based
computational economics, where systems are described
through a bottom-up approach by modelling the different
market participants and letting them interact within a de-
fined macro-structure. In section 3 we will describe the
macro-structure of the studied electricity market, whereas
in this section we outline reinforcement learning as one
concept to be applied for the behavioral modelling of the
agents.

Reinforcement learning is the problem faced by an
agent that learns behavior from experience acquired from
interaction with its environment (see [10] for a survey). In
the context of reinforcement learning, we suppose that the
matrix game defined in section 2.1 is played several times,
and that each time the game is played the different agents
observe their rewards and use these observations to ad-
just their strategy in order to maximize their next reward.
We propose to use here for the problem of learning in

1In this work we consider a particular class of repeated-game strategies such us an open-loop strategy. This is a simple class of history-independent
dynamic games.

2(δ)t refers to δ to the power of t while rt
i refers to the reward observed by agent i at time t.

3The feedback is mutual. Changes within the macro-structure, e.g. trading protocols, quotas, etc. will certainly influence the micro-level as the market
players may adopt to the respective changes by modifying their objectives.



matrix games the well-known Q-learning algorithm [11],
which was initially designed for learning through interac-
tion with a Markov Decision Process. There are several
papers that discuss extensions of Q-learning algorithm to
various types of games and study the conditions under
which the behavior of the players converge to a Nash equi-
librium [12], [13].

When an agent i is modelled by a Q-learning algo-
rithm, it keeps in memory a function Q i : Ai → R such
that Qi(ai) represents the expected reward it believes it
will obtain by playing action ai. It then plays with a high
probability the action it believes is going to lead to the
highest reward, observes the reward it obtains and uses this
observation to update its estimate of Qi. Suppose that the
tth time the game is played, the joint action (at

1, · · · , at
n)

represents the actions the different agents have taken. Af-
ter the game is played and the different rewards r i have
been observed, agent i updates its Qi-function according
to the following expression:
Qi(at

i) ← Qi(at
i) + αt

i(ri(at
1, · · · , at

n) − Qi(at
i)) (5)

where αt
i ∈ [0, 1] is the degree of correction. If αt

i = 1, the
agent supposes that the expected reward it will get by tak-
ing action ai = at

i in the next game is equal to the reward
it just observed. If αt

i = 0, it means the agent does not use
its last observation to update the value of its Qi-function.

We will suppose in this paper that the agents select
their actions according to the so-called ε-Greedy policy.
When an agent i uses an ε-Greedy policy to choose its
action, it selects with probability 1 − ε the action which
maximizes its believed expected reward (argmax

ai∈Ai

Qi(ai)),

and chooses with probability ε an action at random in A i.
The main reason for an agent to adopt a policy that selects
from time to time an action that it believes does not lead to
the highest expected reward, is to guarantee that all actions
have been tried a sufficient number of times to be able to
correctly assess their expected reward.

Even if the value of ε is chosen to be constant for
each of the agents, they will constantly update their Q i-
functions and their policies become time-variant. There-
fore, nothing can be firmly said about the convergence
of these reinforcement learning algorithms. However,
as we have observed in our simulations (see section 4),
the learned Qi-functions sometimes remained almost un-
changed after a certain learning time, and their corre-
sponding greedy actions—the actions that maximize their
Qi-functions—corresponded to a pure Nash equilibrium
or said otherwise, after playing several games, the joint
pure strategies (argmax

a1∈A1

Q1(a1), · · · , argmax
an∈An

Qn(an))

corresponded to a pure Nash equilibrium.

Figure 1 shows a tabular version of the algorithm that
simulates reinforcement learning driven agents interacting
with a matrix game. The number of games after which
the simulation should be stopped (step 8 of the algorithm)
depends on the purpose of the study. For example, one
may be interested in studying the dynamics of the system
for a predefined number of games, or to simulate it until

the different agents have learned a rational behavior.

1] Set t = 0.
2] Initialize Qi(ai) = 0 ∀i ∈ {1, · · · , n} and ∀ai ∈ Ai.
3] t ← t + 1.
4] Select for each agent i an action at

i by using an ε-
Greedy policy.
5] Play the game with the joint actions (at

1, · · · , at
n).

6] Observe for each agent i the reward r i(at
1, · · · , at

n) it
has obtained.
7] Update for each agent i its Qi-function according to
Qi(at

i) ← Qi(at
i) + αt

i(ri(at
1, · · · , at

n) − Qi(at
i))

8] If a sufficient number of games has been
played, then stop. Otherwise, return to step 3.

Figure 1: Simulation of reinforcement learning agents interacting with a
matrix game

2.4 Agents Use Subgame-Perfect Nash Equilibria to Se-
lect Actions

Later in this paper, we will suppose that the different
sets Si are composed only of history-independent strate-
gies and that the agents play T times the matrix game and
use the knowledge of the subgame-perfect Nash equilibria
of the corresponding repeated game to select their strate-
gies. If the matrix game has just one single Nash equilib-
rium p∗, there is only one subgame-perfect Nash equilib-
rium. Therefore, by using the knowledge of the subgame-
perfect Nash equilibrium to select at period t its action,
agent i will choose an action according to the mixed strat-
egy p∗i . Now, if the matrix game has nbEq Nash equilib-
ria, it implies that there are T nbEq subgame-perfect Nash
equilibria. We suppose in this case that every agent selects
at random one of these subgame-perfect Nash equilibria
to determine its strategy. By proceeding like this, agents
will not necessarily have strategies which correspond to
the same subgame-perfect Nash equilibrium and do not
seek to select equilibria having some particular proper-
ties (e.g. Pareto optimality). Note that selecting at ran-
dom a subgame-perfect Nash equilibrium or selecting T
times at random a Nash equilibrium of the stage game are
two ”equivalent things”. Therefore, we may consider that,
when using subgame-perfect Nash equilibria to select its
actions, agent i selects at every t a Nash equilibrium p∗ at
random and play an action according to the mixed strategy
p∗i .

3 MARKET STRUCTURE AND
CORRESPONDING MATRIX GAME

3.1 Market Structure

We assume a mandatory spot market, where the sup-
pliers submit bids in the form of linear marginal price
functions. Besides the spot market no other transactions
are allowed (no bilateral agreements etc.). We suppose
dealing with a power system in which we have nbGen
generators (G1, · · · , GnbGen), nbNodes nodes (1, · · · ,



nbNodes) and inelastic and constant loads. Below the de-
cision problem of the power suppliers (generators) is out-
lined, where we assume linear marginal cost for the sup-
pliers.

3.2 Decision Problem of the Power Suppliers
In contrast to perfectly competitive markets where

participants are assumed to be price takers and prices
are equal to the marginal cost of supply we assume in
our model an oligopoly market. Thus, suppliers may bid
strategically above their marginal cost as they realize
their possible influence on market prices. Subsequently,
we consider that generators may deviate their bids from
marginal cost (unknown to the outside world) to increase
their profits where in [1] two ways of deviating are dis-
cussed: a) changing the slope sGi of the submitted func-
tion or b) changing the intercept icGi . In our model the lat-
ter choice is implemented, generators only manipulate the
intercept of their bid function. The line of argument fol-
lows the description in [1]: “Slopes of marginal cost func-
tion for individual generators are usually very shallow, so
the very steep slopes that would result from manipulating
s would not be credible. [...]”. To manipulate the intercept
icGi generators set a certain markup mupGi in order to
maximize their payoffs (see figure 2).

markup
mupGi

icGi

bid curve

true marginal cost
CGi

(PGi
) = icGi

+ sGi
PGi

P max P

$

Figure 2: True Marginal Cost and Markup

3.3 Optimization Problem of the Independent System
Operator

Above it was described that generators will submit a
linear marginal cost or a parallel translated function (deter-
mined by the markup) to show their willingness to supply.
The ISO collects all bids and is then in charge of clearing
the market by minimizing the sum of the production costs
while satisfying network constraints. To realize this objec-
tive, the ISO solves the following quadratic programming
problem4

Determine

(PG1 , · · · , PGnbGen
, θ1, · · · , θnbNodes) ∈ RnbGen+nbNodes

that minimizes

∑

Gi

1
2
PGidiag(sGi)PGi + icGiPGi

subject to the constraints5

Pload(k) =
∑

Gi

PGi(k) +
∑

nbNodes

ykl(θl − θk)

PGi ≤ Pmax
Gi

|ykl(θk − θl)| ≤ Pmax
kl

Here PGi denotes the power injected by generator G i,
θk the voltage angle at node k, P max

kl the maximum flow
allowed in the line connecting node k to node l, ykl the
admittance of the line connection node k to node l, and
Pload(k) the power consumed at node k.

By solving this quadratic programming problem, the
ISO can determine the power each generator G i should
be dispatched (PGi), and through the knowledge of the
Lagrangian multipliers associated with this optimization
problem, the nodal prices at each node k of the system
are given.6 We denote by nGi the nodal price at the node
at which generator Gi is connected. After the market is
cleared, each generator Gi is dispatched PGi and is paid
nGi per MW produced.

3.4 Corresponding matrix game.

In our problem the one-stage matrix game consists of:

• nbGen active agents (G1, G2, · · · , GnbGen) (the
generators)

• their corresponding finite sets of pure actions AGi

• corresponding reward functions rGi that are actu-
ally functions of joint actions of all participants
since the power dispatch and nodal prices depend on
bid submitted by every generator. The reward func-
tion rGi is defined by:

rGi = nGi · PGi − MCGi · PGi (6)

where PGi is a dispatched quantity for generator Gi,
nGi is its nodal price and MCGi marginal cost of
production.

4 CASE STUDIES

4.1 Test Market Description and Simulation Conditions

We have carried out simulations on the power system
shown in figure 3. The market is cleared according to the
procedure detailed in the previous section. This system has
four loads and three generators. The loads are assumed to
be inelastic and constant, and every generator G i is as-
sumed to have a maximum production capacity of P max

Gi
, a

linear marginal cost function CGi(PGi) = icGi +sGi ·PGi

and a finite set of markups mupGi . The values of these
production limits and these marginal cost functions as well
as the description of these sets of markups are given in Ta-
ble 1. Note that the lowest markup of each generator is

4In this paper we consider the spot market to be operated in one hour intervals. Thus, we simplify the notation by writing MW instead of MWh.
5The constraints represent a power flow using the usual DC power flow approximations.
6The nodal price at node k may be seen as the price for extracting one additional MW at this node.



zero, while its highest possible markup is set to not ex-
ceed the price cap of 60$/MW at any possible production
level. The line connecting nodes 2 and 5 can only transfer
100 MW, and as a result may be subjected to congestion.
For the other lines of the system, we suppose that there
exist no power dispatches that may lead to flows greater
than their transfer capacity. The numbers close to the lines
denote the value of their reactance expressed in pu.

~

~ ~

node 1

node 2

node 3 node 4

node 5

G1

G2 G3
50 MW

100 MW 100 MW

250 MW

0.
00

64

0.0281

0.0304

0.0297

0.0180

0.
02

97

Figure 3: Power System Description

P max
Gi

[MW] icGi
[$] sGi

[$/MW] mupGi
[$]

G1 300 10 0.02 {0, 10, 20, 30}
G2 300 10 0.02 {0, 10, 20, 30}
G3 250 20 0.04 {0, 10, 20}

Table 1: Generation Data and Sets of Markups

We consider two different cases in our simulations. In
the first case, we suppose that only generators G1 and
G3 behave as active agents,7 while G2 always bids its
marginal cost function to the ISO. In the second case, all
three generators are considered as being active agents. For
each case we simulate the market dynamics when the ac-
tive agents are modelled through reinforcement learning
algorithms (see Figure 1), and discuss several characteris-
tics of this dynamics at the light of the information derived
from the Nash equilibria analysis, i.e the direct computa-
tion of the different pure Nash equilibria. When using re-
inforcement learning algorithms, the update of the differ-
ent Qi-functions of the agents depends on the value of the
parameters αt

i. We will first carry out our simulations with
these parameters set to 0.1 ∀i, t. Furthermore, the value of
ε, the parameter that determines the degree of randomness
in the action selection process, is initially chosen equal to
0.1 for all agents. This means that each agent selects the
action that maximizes its Qi-function with a probability
of 0.9 and with a probability of 0.1 an action at random.

4.2 Two Generators Behaving as Active Agents

In the following, for assessing our case studies we will
distinguish between the agent-based model and Nash equi-
libria analysis. We will outline both approaches in sep-
arate paragraphs and then compare the results obtained
focussing on the interdependencies between the two con-
cepts. For the present case with two generators being mod-
elled as active agents, we start with the Nash equilibria

analysis.

Nash Equilibria Analysis

For computing the Nash equilibria of the market we
clear the market for all combinations of bids (determined
by the respective markups chosen by each generator).
Thereby, we compute the reward functions for G1 and
G3, and the corresponding results are gathered in Table
II. We then explicitly search for the bids (and thus for the
markups) which satisfy expression (3). Table 2 follows the
layout of a payoff table as generally used in game theory to
describe matrix games. In the present case, G1 is the row
player and G3 the column player. As an example, if G1

chooses a markup of 30$ and G3 sets the markup to 20$
the reward of G1 will be 1430$ and respectively 3050$ of
G3.8

0$ 10$ 20$
0$ 140 0 290 1400 430 2800

10$ 480 0 480 1520 480 3050
20$ 0 0 1000 1520 1000 3050
30$ 0 0 0 2000 1430* 3050*

Table 2: Reward functions when G1 and G3 are the only active agents

Agents use subgame perfect Nash equilibria to select ac-
tions

Now if we consider that the agents select actions from
the knowledge of the subgame perfect Nash equilibria and
this according to the procedure outlined in section 2.4, it
is obvious that agent G1 will always select as action the
markup of 30$ and agent G3 the markup of 20$. Indeed,
there is only one Nash equilibrium for the matrix game
which implies a unique subgame perfect Nash equilibrium
for the repeated game.

Agent-Based Model

Figure 4 shows the evolution of the Q-function for G 3.
Each curve in this figure represents the evolution of the ex-
pected reward for the different markups. Thus, each curve
shows what G3 believes it will obtain by choosing a cer-
tain markup and submitting the resulting supply function
to the ISO.

From figure 4 it can be read that G3 rapidly learns
that it should choose its highest possible markup of 20$.
G3 obviously ‘realizes’ its advantageous position in the
network. Due to the limited transfer capacity of the line
between nodes 2 and 5 and a power consumption of 250
MW at node number 5, there is a high likelihood for G 3 to
be dispatched. Hence, G3 receives market power, which
it exploits by choosing the highest possible markup. G1

learns that its best strategy is to choose a markup of 30$
(see Figure 5). In comparison to G3 the learning is some-
what slower, since only after approximately 100 clearings
of the market 20$ becomes the markup that maximizes its
Q-function.

7By active agent, we mean an agent that selects its actions in order to maximize its rewards.
8The reward of 140$ for G1 with both generators having selected no markup results from congestion on the line connecting node 2 and node 5. Due

to the congestion the nodal price at node 1 is 20.40$/MW resulting into a reward of 140$ for G1.
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Figure 4: Evolution of the Q-function for G3 (2 active agents)
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Figure 5: Evolution of the Q-function for G1 (2 active agents)

The dips observed in the evolution of the different
curves drawn in Figure 5 result from the ε-greedy strate-
gies used by the different agents of the system. In one out
of ten times, on the average, the generators will submit
a bid (markup) totally at random. This may modify the
power dispatches and the nodal prices and “perturb” there-
fore the previous estimates of the different Q-functions,
where the perturbation influences G1 much stronger than
G3. Table 3 gathers the information if indeed G1 and G3

would have submitted their greedy bid functions (deter-
mined by the respective markups). In the same table the
corresponding power dispatches, nodal prices and rewards
are given. Although with such power dispatches the line
connecting nodes 2 and 5 is congested, we observe the
same nodal prices, as the next MW will either be produced
by G1 or G3, both manipulating the intercept of their bid
functions to 50 $ by choosing their highest markup. Al-
though, the cost functions are not constant, the slope is so
small that variations of the production level do not signif-
icantly influence nodal prices.

mupGi
[$] PGi

[MW] nGi
[$/MW] Reward [$]

G1 30 48 50 1430
G2 0 300 50 9000
G3 20 152 50 3050

Table 3: Market input and output when after 1000 of market clearings
the generators select their greedy bids.

4.3 Three Generators Behaving as Active Agents

We now assess the market dynamics with all gener-
ators being modelled as active agents. Thus, G2 is no
longer limited to bid its marginal cost function, but can
now determine a markup mup2 out of the discrete action

set {0$, 10$, 20$, 30$}. We first focus on Nash equilibria
analysis and then use the results obtained to describe the
evolution of the system with respect to the agent-based ap-
proach.

Nash Equilibria Analysis

Consistent with the previous case we clear the market
for all combination of bids and then compute the reward
functions for G1, G2 and G3. So we construct the payoff
matrix for the one-shot game. We will restrain from pre-
senting this table completely as it is a three dimensional
matrix given by r1 × r2 × r3 with ri denoting the gen-
erators’ reward functions. Searching for Nash equilibria
we find the following two pure equilibrium points: (I) G1

bidding its marginal cost function (mupG1 = 0$) and G2

and G3 choosing their highest markups of mupG2 = 30$
and mupG3 = 20$ and (II) G2 bidding its marginal cost
function (mupG2 = 0$) and G1 and G3 choosing their
highest markups of mupG1 = 30$ and mupG3 = 20$.
The computation shows that for this particular case there
exists no equilibrium in mixed strategies. At both equilib-
rium points G3 always chooses its highest markup, thus
we may draw a payoff matrix assuming G3 sets its markup
mupG3 to 20$. Table 4 displays the results. The two equi-
librium points are highlighted by (*).

0$ 10$ 20$ 30$
0$ 430 0 3290 600 6140 1200 9000* 1800*

10$ 480 2690 3290 600 6140 1200 9000 1800
20$ 1000 5850 1000 5850 6140 1200 9000 1800
30$ 1430* 9000* 1430 9000 1430 9000 5400 5230

Table 4: Payoff Table for G1 (row) and G2 (column) with G3 choosing
a markup of 20 $

Other cells containing reward values identical to the
highlighted Nash equilibria are not designated as equilib-
rium points because they do not satisfy the condition of
stability. It means that for example if G2 changes its strat-
egy to mupG2 = 10$ (with equal expected profit 9000$)
than at this point G1 has an incentive to change its strat-
egy to either mupG1 = 0$ or mupG1 = 10$ to increase
its prospective payoff.

Agents use subgame perfect Nash equilibria to select ac-
tions

We consider here that the agents know the different
Nash equilibria and use them to select their actions ac-
cording to the procedure outlined in section 2.4.

By repeating the matrix game, we observe that agents
G1 and G2 are switching between mup = 0$ and mup =
30$ whereas G3 permanently adheres to his dominant
strategy (mupG3 = 20$) (see Fig.6). There are two stable
Nash equilibria in the system and agents unilaterally as-
sess what strategy to play in order to get into one of these
equilibria. Due to the lack of coordination between these
agents, different situation may occur. Either they play the
(0, 30, 20) equilibrium, the (30, 0, 20) equilibrium or no
equilibrium at all (in which case either (30, 30, 20) or
(0, 0, 20) is played).
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Figure 6: Evolution of the payoffs and of the actions when subgame
perfect Nash equilibria are used to model the agents’ strategies.

Agent-Based Model

In the two active agent case we found that for one pure
Nash equilibrium the Q-functions indeed converged to this
equilibrium. We will now assess the development of the
Q-functions with all generators modelled as active agents.
For G3 we observe that the evolution of the Q-function is
similar to the evolution displayed in figure 4.9 G3 learns
that it has market power and that it should choose a
markup of 20$ to maximize its reward. This development
is in accordance with the results obtained by Nash equilib-
ria analysis. At both equilibrium points the greedy action
for G3 is to choose the highest markup. However, the de-
velopment of the Q-functions for G1 and G2 differs sig-
nificantly. If when only G1 and G3 were active agents, we
observed (see figures 4 and 5) that the Q-function learned
by G1 was clearly indicating that a markup of 30$ was the
greedy action, it is no longer the case here. In the present
case the greedy action always changes. Furthermore, the
evolution of the Q-function seems now to respond to a
cyclic process. Figures 7 (G1) and 8 (G2) show the evo-
lution of the Q-functions. We see, that when a markup of
30$ is the greedy action for G1, G2 chooses a markup of
0$ and vice versa. These two combinations of markups in-
deed correspond to the single stage Nash equilibria (see
table 4). We will now assess why the cycling occurs. It
is helpful to keep in mind, that actions of one generator
influence not only its own reward but also the reward of
the others and that the randomness (introduced by the ε-
parameter) plays an important role. For argumentation we
use table 4, figure 7 (displaying time instants t1 to t3) and
figure 9 (displaying time instants t3 to t5). Let us assume
that after an arbitrary number of market clearings we are
at time instant t1, with mupG1 = 0$ and mupG2 = 30$
being the greedy actions (determining the first Nash Equi-
librium point), where for G1 the expected payoffs of the
non-greedy actions are all below 4000 $. We now move
on to time instant t2, where G1 and G2 still keep their

greedy actions of mupG1 = 0$ and mupG2 = 30$, but
in case of G1 the expected rewards for mupG1 = 10$ and
mupG2 = 20$ develop close to the reward of the greedy
action.10 Thus, we are facing a situation where due to ran-
dom actions of G2 the greedy action of G1 might change.
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Figure 7: Evolution of the Q-function for G1 (3 active agents)
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Figure 8: Evolution of the Q-function for G2 (3 active agents)

This indeed happens at time instant t3. Due to a ran-
dom bid of G2, choosing a markup of either 0$, 10$
or 20$, the expected reward of mupG1 = 0$ for G1

falls below the expected reward of mupG1 = 10$. Thus,
mupG1 = 10$ becomes the greedy action of G1. In table
4 we see that given a markup of mupG1 = 10$, G2 can do
better by choosing a markup mupG2 = 0$. This behavior
is indeed learned (time instant t4). The same considera-
tion applies to G1. With mupG2 = 0$ G1 can do better by
bidding at mupG1 = 30$ (time instant t5). Eventually, we
reach the second Nash equilibrium.11 Figure 9 provides a
sample of the cyclic variation of the greedy actions for G 1

and G2. For the other half of the cycle a similar line of
argument applies. As the mechanism follows the consid-
erations above, we do not deliver a detailed explanation.
The path is displayed as dotted line in figure 9.

0 $
0 $
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20 $

20 $

30 $

30 $

t3
t4t5

Figure 9: Variation of Greedy Strategies with Time for G1 and G2

Note, that the paths might deviate slightly as for a
number of bid-tuples we face identical rewards. Thus, the

9Because of the similarity we do not provide an additional figure.
10From table 4 it can be read that the rewards for mup = 0$, mup = 10$ and mup = 20$ are all equal to 9000$, assuming G2 is bidding at 30 $.
11The transits at time instants t4 and t5 are occurring very fast. Thus, they can not be observed in the displayed Q-functions.



generators are indifferent between those bids and the ac-
tion is determined by random influence. Nevertheless, this
does not change the overall cycling mechanism. Further-
more, due to the randomness, cycles may not be fully com-
pleted and the generators may instead revert at any state
back to the previous equilibrium point (see figures 7 and
8).

4.4 Parameter Dependency of Agent-Based Approach
In our previous analysis we kept the experimentation

parameter ε and the learning rate α constant - both at val-
ues of 0.1. However, one may argue that a different choice
of parameters will influence the model outcome. Hence,
we carried out simulations with different discrete sets of
parameters. For α and ε being smaller than 0.1, we ob-
serve less frequently oscillatory behaviors, and, when ob-
served, the periods of oscillation seem to be larger as the
generators act less randomly and the learning is slower.
The frequency of the cycles tends to increase with α and
ε but, with too large values for these parameters, the os-
cillatory behavior disappears and the evolution of the Q-
functions seems to be driven by a totally random process.
To explain this, let us first take ε large. In that case no
learning takes places, as all actions are totally selected at
random. A learning rate of 1 has a similar influence. As
only the last reward received determines the value of the
Q-function (the expected reward) learning can not evolve
over time. Hence, we face an almost arbitrary development
of the Q-functions.

Nevertheless, a cyclic or oscillatory model behavior
occurred for almost every combination of α and ε in the
three active agent case (two Nash equilibria). For one
Nash equilibrium (two active agent case) we found that
with smaller values of α and ε the learning is slower but
the equilibrium is still approached, whereas for values
close to 1 the Q-functions may not evolve to the equilib-
rium point and seem to develop in an almost arbitrary way
as described above.

5 CONCLUSIONS

To compare Nash equilibria analysis and agent-based
modelling we defined a pool market as a repeatedly played
matrix game. Generators may act strategically, i.e. by bid-
ding above their marginal production cost. To assess this
behavior we employed a Q-learning algorithm as a behav-
ioral agent model and carried out simulations on a bench-
mark power system. We analytically computed the Nash
equilibria of the system and then compared the results with
those obtained by the agent-based approach. We showed
that in case of one Nash equilibrium there is high likeli-
hood for the Q-learning algorithm to indeed converge to
this equilibrium, whereas in case of two Nash equilibria
we observe a cyclic behaviors. We have checked that these

phenomena are robust with respect to different parameters.
Therefore, we conclude that in the presence of multiple
equilibria cyclic phenomena are likely to occur.
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