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ABSTRACT 

 

Many practitioners question the advantages of activity-based models over conventional four-step 

models in terms of replication of traffic counts. Therefore, in this paper, a framework is 

highlighted that actively links travel demand models in general, and activity-based models in 

particular, with traffic counts. Two approaches are presented that calibrate activity-based models 

with traffic counts, namely an indirect and a direct approach. The indirect approach tries to 

incorporate findings, based on the analysis of traffic counts, into the model components of the 

activity-based models. The direct approach calibrates the parameters of the travel demand model 

in such a way that the model replicates the observed traffic counts (quasi-)perfectly. A practical 

example is provided to illustrate the direct approach. The study area for this practical example is 

Hasselt, a Belgian city of about 70,000 residents, and its surrounding municipalities. The 

practical examples revealed that there is not a single roadway to success in calibrating activity-

based models, but that different options exist in fine-tuning the activity-based model. 

Notwithstanding, it is important to recognize some open issues and avenues for further research. 

First, it is not always appropriate to assume that traffic counts are completely correct. Setting up 

some belief-structure might increase the responsiveness of the activity-based model. In addition, 

the OD-matrix calibration that optimizes the correspondence between estimated and observed 

screen-line counts could negatively impact the correspondence to other measures such as vehicle 

miles traveled. To conclude, formulation of a multi-objective calibration method is a key 

challenge for further research.  
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1 BACKGROUND 

 

Due to an increased environmental awareness, current travel demand models pursue higher 

levels of behavioral realism. Four periods can be distinguished in this evolution of travel demand 

modeling approaches. The first period, the late 1950’s, is typified by a steep increase in car use. 

During this period, trip-based models were developed to make long term projections of travel 

demand in order to assess major investments in road infrastructure. These first generation 

models assumed that travel is the result from four consecutive steps, namely trip generation, trip 

distribution, mode choice and route choice (1). From the mid 1970’s until the 1990’s, the focus 

shifted towards the travel needs of a single person. The original four-step models were replaced 

by theories about utility maximizing behavior and individual choice behavior. Discrete choice 

models such as multinomial logit models and more advanced statistical techniques formed the 

core of so-called tour-based systems (2).  From the mid 1990’s and early 2000’s activity-based 

travel demand models became a rising modeling paradigm. The basic premise of these third 

generation models is the fact that travel behavior is a derivative from the activities that an 

individual performs (1). Current dynamic activity-based models, such as Aurora and Feathers 

(3), taking into account different forms of learning could be seen as a fourth generation of travel 

demand models. 

Although modern activity-based travel demand models have clear theoretical advantages 

over conventional four-step models – the most important ones are the fact that all basic travel 

decisions can be applied in a disaggregate fashion, the explicit linkages between the travel 

decisions of members of a single household, the consistent choices for a single person across all 

travel decisions and the disaggregate way of handling the time-of-day of travel decisions – 

conventional models still dominate the travel demand modeling paradigm (4,5). Davidson et al. 

(6) highlighted several reasons that explain the acceptance of and resistance to more 

sophisticated model frameworks. They can be broadly categorized as the degree of resistance to 

new modeling technology and the size of encouragement forces. The reasons include the size of 

the public agency, the size of the jurisdiction, the level of institutional history and the level of 

state support for travel demand forecasting. Davidson et al. (6) also stressed that in order to 

reinforce the transition from conventional models towards activity-based models, it is imperative 

that the objective theoretical advantages of activity-based models are better explained to 

practitioners and communicated more actively.  

 This paper focuses on a concern that stems from misunderstanding and mistrust by 

practitioners. Although researchers have acknowledged the advantages of an exhibited 

behavioral realism to policy analysis, many practitioners question the advantages of activity-

based models over conventional four-step models in terms of replication of traffic counts, as it is 

in many respects easier to adjust a conventional travel demand model to fit base level traffic 

counts exactly than an activity-based micro-simulation model (6). In this regard, it is important 

to stress the distinction between static model accuracy in terms of the replication of the base-

year observed data, and the responsive properties of the model that are related to the quality of 

the travel forecasts for future and changed conditions, as these two model properties do not 

necessarily coincide. Therefore, in this paper, different techniques are highlighted that actively 

link activity-based models in particular, and travel demand models in general, with traffic counts 

in order to achieve the desired responsive properties – the model being sensitive to demographic 

changes and policy measures – of the travel demand models as well as the replication of traffic 

counts. Note that proper calibration is a crucial step in simulation models as findings based on 
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inappropriately calibrated models could be misleading and even erroneous (7). An overview of 

new calibration and validation standards, as well as best practice examples for travel demand 

modeling, is provided by Schiffer and Rossi (8). Bear in mind that the calibration of an activity-

based model is not unlike calibrating a conventional four-step model (5). A thorough example of 

the calibration of a conventional four-step model with traffic counts is provided by Cascetta and 

Russo (9). For an excellent example concerning the calibration of an activity-based travel 

demand model (i.e. the Sacramento activity-based travel demand model) the reader is referred to 

Bowman et al. (10). 

 The remainder of the text is organized as follows. Section 2 provides an outline of the 

suggested techniques that are implemented in a practical example, which are thoroughly 

discussed in Section 3. Finally, some general conclusions and avenues for further research are 

indicated. 

 

2 LINKAGES BETWEEN ACTIVITY-BASED MODELS AND TRAFFIC COUNTS 

 

There are two possible approaches to link activity-based models in particular, and travel demand 

models in general, with traffic counts, namely an indirect and a direct approach. The first 

approach tries to incorporate findings, based on the analysis of traffic counts, into the model 

components of the activity-based models. The second approach calibrates the model parameters 

of the activity-based model in such way that the model replicates the observed traffic counts 

(quasi-)perfectly (less than 5% error on average).  The following subsections will elaborate and 

further clarify the two methods of linking activity-based models with traffic counts. 

 

2.1 Indirect Linkage 

 

The ‘indirect linkage’-approach tries to identify events that affect travel behavior and resulting 

traffic patterns. Analysis of traffic counts for instance can be used to identify effects of holidays 

and weather events (11). These traffic swaying events can then be used to alter the impedance 

functions used in route choice modules. When events such as holidays and weather conditions 

are identified, their impact on travel behavior can even be further elucidated by analyzing 

activity diary data. Utility functions that express the propensity of performing certain activities – 

note that basically the utility functions of all elements of the activity-pattern generation can be 

modified in this way – can then explicitly incorporate explanatory variables to account for the 

events that were analyzed. In this regard, activity-diary collection tools that integrate 

geographical information logging, such as the PARROTS-tool (12), provide the required data to 

perform detailed analysis, for instance on route choice. It can be expected that the explicit 

incorporation of events that account for the variability in revealed traffic patterns and their 

underlying reasons, will result in both an improved responsiveness of the activity-based model 

and a better replication of traffic counts. 

 

2.2 Direct Linkage 

 

The ‘direct linkage’-approach tries to fine-tune the model parameters of the activity-based (AB) 

model in such a way that the model-based traffic counts correspond maximally to the observed 

ones on the network. Calibration opportunities exist at four levels (Figure 1): the data level, the 

model level, the OD-matrix level and the assignment level. 
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Two approaches can be followed when considering calibration at the data level: a ‘crude’ 

approach, where data (personal/household information, zonal information) is altered in order to 

achieve a better correspondence to the benchmark measures, and a ‘fine’ approach where agents 

(individuals or households) are weighted. The first approach immediately raises questions 

concerning the validity and the credibility: adjusting fields or adding or deleting records 

undermines the validity of the model and should be avoided. The latter approach attributes 

weights to the different agents. For the practical example discussed in Section 3, the weights are 

chosen to be natural numbers (including zero) such that these weights correspond to exact 

counterparts in the real population. Fractional weights like 0.8 or 1.2 would also have been 

feasible, but the interpretation of these weights would be a probability of this agent to have an 

exact counterpart in the real population (0.8 would correspond to a change of 80% of having an 

exact counterpart in the real population, and 1.2 would be interpreted as 80% chance of having 

one counterpart in the real population, 20% of having two counterparts in the real population). 

The use of weights can be justified by the fact that there exist groups of individuals with similar 

travel behavior that can be captured in representative activity patterns (RAPs). By using these 

RAPs, the complete activity-generation can be performed in a hands-on manner (13). McNally 

(14) and Wang (15) have even further advocated the use of RAP’s by showing that RAP’s are 

relatively stable over conventional planning horizons (up to 10 years). Weighting agents thus 

seems to be a worthwhile path to follow. Notwithstanding, the weighting procedure can become 

computationally very intensive as the number of possible weights increases with the number of 

simulated agents. 

 A second calibration possibility arises at the model level. The activity schedule 

generation could be altered in such a way that the obtained OD-matrix optimally reproduces the 

observed traffic counts. One solution to achieve this optimal state is an ‘updating’-process which 

alters the scheduling rules that are derived from the available travel survey data. In addition, 

zone-specific rules can be introduced: for instance increasing the probability of certain 

destination choices, or increasing the probability of performing a certain activity. In that way, 

the production and attraction of these zones can be fine-tuned. When different forecasting 

scenarios are desired, it is necessary to keep the updated rules that were defined by the updating-

process in the baseline year. In that manner the AB-model is constructed in a consistent way. 

Hence, linking activity-based models with traffic counts by making behavioral adjustments 

(altering rules) might prove to be a valid way of overcoming practitioners’ mistrust. 

 The OD-matrix level is the third level at which calibration opportunities arise. The OD-

matrix is obtained by the simultaneous activity schedule execution of all agents. This OD-matrix 

can then be benchmarked in function of the screen-line counts. Different techniques exist to 

estimate OD-matrices from traffic counts. In practice, most models assume or require that a 

target OD-matrix is available. This target OD-matrix (the OD-matrix resulting from the activity-

based model) is a crucial part of prior information. In statistical approaches, the target OD-

matrix is typically assumed to stem from a sample survey and is regarded as an observation of 

the “true” OD-matrix. The observed set of traffic count data may also be assumed to be an 

observation of the “true” traffic count data, and therefore (small) deviations between estimated 

counts and observed counts may be accepted. Thus, the purpose of the calibration process is to 

find an OD-matrix which produces “small” differences between the estimated link flows and the 

observed flows. Three modeling philosophies are postulated in the transportation literature (16): 

traffic modeling based approaches, statistical inference approaches and gradient based solution 

techniques.  
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 The traffic assignment module is the last level where calibration is possible. Obviously 

the way of attributing origin-destination flows to the network plays a crucial role in how well the 

model-based traffic counts correspond to the benchmark measures. Ortúzar and Willumsen (17) 

classify traffic assignment methods according to their treatment of congestion (inclusion of 

capacity restraints) and their treatment of differences in objectives and perceptions by agents 

(inclusion of stochastic effects). 

 

3 PRACTICAL EXAMPLE  

 

In this section, a numerical example is provided to further illuminate the ‘direct linkage’-

approach. The study area for this numerical example is Hasselt, a Belgian city of about 70,000 

residents, and its surrounding municipalities. Activity-travel information derived from census 

data, from the Flemish travel survey and from the origin-destination (OD) matrix assigned in the 

multimodal travel demand model Flanders, is combined to generate a simulated “true” 

population and its corresponding travel behavior. The data from this true population is assumed 

to be unbiased and precise. For generating the “true” representative activity patterns (RAPs) at 

population level, people are supposed to perform activities in a predefined order: first, people 

perform a work or school activity, then they go shopping, afterwards they perform a leisure trip, 

and finally, they perform other type of activities. In addition to this predefined order, it is 

presumed that people perform a specific type of activity at most once (the exact chances to 

perform a specific activity are given in the upper part of Table 1).  Furthermore, it is assumed 

that residents return home after their last activity.  

To focus on the general ideas behind the different calibration techniques presented, and 

to reduce model complexity, route choice modeling (traffic assignment) and mode choice 

modeling were not taken into account. Thus, the practical example focuses on the first three 

levels of calibration. Assuming perfect knowledge about these aspects procures the property that 

the quality of the output of the (activity-based) travel demand model is completely related to the 

aggregated OD-matrix resulting from the individual activity patterns. In addition, owing to the 

perfect knowledge of these aspects, traffic counts on the different roads form an identity match 

to the origin-destination flows. Note that the assumption of perfect knowledge about origin-

destination relationships nowadays become a more viable option. When privacy issues are 

explicitly addressed, data from a mobile phone network can be used to derive origin-destination 

patterns (18). Results from Caceres et al. (19) and González et al. (20) indicate that extracting 

OD-information from mobile phone records has great potential and is much more cost-efficient 

that those generated with traditional techniques. 

As complete information about all activity-patterns seldom is available, the starting point 

for the calibration exercises is a 2.5% stratified random sample of the “true” population 

(municipality is taken as the stratification variable). The lower part of Table 1 provides more 

information about the 2.5% sample: the number of residents in each municipality, as well as the 

municipality specific propensities to perform different activities, are displayed.  

Table 2 presents the OD-matrix obtained from aggregating the individual activity persons 

from all people in the population (upper part of the Table 2) and the sample (lower part of the 

Table 2). The OD-information from the sample is scaled up to the population level for 

comparison purposes. A side-note has to be made concerning the “true” population origin- 

destination matrix. When the origin-destination flows of this matrix are compared to flows really 

observed in practice, the population OD-matrix overestimates the flows observed in practice. 
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This is due to the fact that all residents from the municipalities in this practical example are 

assumed to perform their activities within the entire study area. 

The absolute percentage difference (APE) between the true population and the sample is 

displayed in the lower part of Table 2. Many of these APEs are larger than 5% indicating that 

some extra calibration is needed to improve the correspondence with the “true” observed values. 

The absolute percentage is defined as: 

 0

0  0

 0, 0

pop sa

ij ij pop

ijpop

ij

pop sa

ij ij

pop sa

ij ij

abs T T
if T

T

APE if T T

infinity value if T T

 

where ijT  represents the number of trips from municipality i to municipality j, pop indicates that 

the flow corresponds to the population, and sa that the flow corresponds to the sample. A 

possible infinity value could be one, indicating that you are of the target by 100%. Such an 

infinity value has to be defined, as many calculations are infeasible when values are divided by 

zero (and thus mathematically are equal to infinity). Since the “true” population OD-matrix 

contains no zero cells, no infinity value had to be defined in the practical example. 

 

3.1 Calibration at the Data Level 

 

The goal of weighting agents is to procure the highest possible resemblance between the 

observed traffic counts on the network and the predicted traffic counts by the activity-based 

model. In the non-calibrated model all agents are equally weighted (weights equal to the inverse 

of the sample size). By iteratively altering the weights, an optimal correspondence can be found 

using meta-heuristics (a meta-heuristic is a general algorithmic framework that can be used to 

guide heuristic methods to search for feasible solutions to different optimization problems). Two 

different approaches can be distinguished when agents have to be weighted. The first approach 

weights the agents before their activity pattern is generated. Since agents are duplicated before 

the activity patterns are generated, the activity patterns of the replicated agents - created by the 

weights – can differ from the ones of the “true” agents. Thus, the convergence of the iterative 

process of weighting persons and calculating the activity patterns of the “agents” and their 

replicates is not necessarily guaranteed. The second approach solves this convergence problem 

by weighting the activity patterns instead of the agents themselves. Take for example a resident 

in Hasselt, who only performs a work activity in Diepenbeek. From Table 2 one can see that if 

this persons weight would be decreased, both the estimated OD-flows from Hasselt to 

Diepenbeek and Diepenbeek to Hasselt would be reduced, and thus be closer to the “true” OD-

flows for the population.  

To illustrate the calibration of OD-matrices at the data levels, the second approach, the 

weighting of activity patterns, is followed. The RAPs of the residents in the sample are weighted 

using the algorithm displayed in Figure 2. Note that the algorithm that is implemented includes 

an element originating from tabu search meta-heuristics, namely the concept of a tabu list. A 

tabu list is a short-term memory where, in this case, the persons whose weights have been 

altered, are stored (21). The tabu list ensures that these weights are not altered multiple times 

within the same iteration, thus preventing situations like for instance the repetitive increasing 
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and decreasing of the weight of a specific person. Two versions of the algorithm were 

implemented. The first one changed the weights by adding or subtracting one. The second one 

altered the weights by increasing or reducing the weights by a random number between one and 

ten, reducing the risk of converging towards the same saddle point (i.e. the same (sub)-

optimum). A safeguard was included, procuring non-negative weights. 

The estimated OD-matrices are provided in Table 3. The mean absolute percentage error 

(MAPE) of the estimated matrix using the first algorithm equals 2.12%, whereas the second 

matrix has a MAPE of 2.02%. From Table 4 one could notice that for two cells in both matrices 

the APE is higher than 0.5. This is due to the fact that the very few people are traveling between 

these two locations (Kortessem and Nieuwerkerken), and in line with this, that the persons in the 

sample travelling between these locations, also travel between other uncommon OD-pairs 

(Kortessem – Herk-De-Stad and Kortessem – Lummen). This underlines the importance of 

including a stop criterion in the algorithms to avoid an endless computation. 

 

3.2 Calibration at the Model Level 

 

The basic model that will be calibrated, first predicts activity chains for all persons (the 

proportions of the different activity chains have been fixed to the population proportions), and 

then predicts the locations where the different activities will be performed. Note that the 

proportions of the different activity chains have been fixed to the population proportions. This 

ensures that discrepancies between the “true population” OD-matrix, and the calibrated OD-

matrix are only due to differences in destination choices (location probabilities). Thus, at the 

model-level, the activity schedule generation could be altered by iteratively updating the 

probabilities of certain destination choices (related to their respective activity purposes). The 

adjustment of the model parameters is straightforward in this case as only one dimension is 

considered at a time (i.e. the location probabilities). After all, the other parameters (such as the 

chances of performing certain activities) are kept constant. For real activity-based models in 

practice, a chain of interlinked choices with feedbacks are modeled, and thus multiple 

parameters have to be changed simultaneously. This would seriously augment the complexity of 

the model, but the basic framework elucidated in this paper, still could be used. 

 The updating process will attain a quasi-perfect match when the updated sample 

probabilities of the destination choices are equal to the unknown population probabilities. 

Nonetheless, a full search of the solution space (investigating all possible combinations of 

location probabilities for the different activities) is not a feasible option, as the number of 

possible combinations approaches infinity. The number of possible combinations can be 

computed as follows: 

 
number of activities  number of municipalities²

1/ 1-precision of location probability , 

which for the practical example discussed in this paper (applying a precision of 1%) would yield 

a total number of possible combinations of 
50010  (approximating infinity). Therefore, an 

algorithm that explores the solution space for a ‘good’ solution instead of the optimal solution 

should be implemented. 

 In order to calibrate the activity-based travel demand model, and to ensure convergence 

of optimization algorithms, it is essential that the variability caused by the activity-generation 

process is reduced as much as possible. Stability of the activity-generation can be ensured by 

taking averages over multiple (activity-generation) runs, so that differences between the 

estimated OD-matrix and the true population OD-matrix are not the result of random variations, 



Cools, Moons and Wets  9 

 

but of the altered location probabilities. However, guaranteeing the stability of the activity 

generation diminishes the performances, as computation times are significantly increased. The 

algorithm that is used is shown in Figure 3. 

Table 5 presents the OD-matrix and corresponding APEs for the model-based calibration 

results. From these results, one could see that here is a decrease in the mean absolute percentage 

error from 20,27% in the up-scaled sample OD-matrix to 6,29% in the model-calibrated OD-

matrix (after 100 iterations). Nevertheless, as multiple activity-generations are required in each 

step of the algorithm, model-based calibration is the most computer-intensive calibration option, 

favoring other calibration techniques. 

 

3.3 Calibration at the Matrix Level 

 

The third level of calibration tackled in this study is the matrix level. Recall that perfect 

knowledge about route choice and mode choice is assumed, and that an identity match is 

presumed between traffic counts and origin-destination flows. Therefore the calibration at the 

matrix level, like the two previous calibration levels discussed, is illustrated using OD-pair 

information. The reader is referred to Abrahamsson (16) for a thorough literature review 

concerning the calibration of OD-matrices using traffic counts. Three situations are explored in 

order to calibrate the survey OD-matrix. 

 

3.3.1 Perfect Knowledge about Inter-Zonal Traffic 

 

In the first situation, it is assumed that “perfect” knowledge is available about all inter-zonal 

traffic flows, but that information about intra-zonal traffic is only available at survey level. Let 

i ij

j

P T  be the number of trips originating from municipality i (production), j ij

i

A T  the 

number of trips arriving in municipality j (attraction), and ijT  the number of trips from zone i to 

zone j. Then the intra-zonal traffic flows ( ,ij i jT ) could be approached by the following formula: 

 , ,

, 1est pop est pop

ij i j i i j jT P P A A ,  

where 0,1  expresses the relative importance that is given to the number of trips originating 

in a municipality, compared to the number of trips arriving in a municipality, where est indicates 

that the quantity is derived from the estimated (survey) OD-matrix, and pop indicates that the 

quantity is derived from the population “true” OD-matrix. The asterisk underlines that the fact 

that the intra-zonal traffic flows are not included in the population row ( ,

,

pop pop

i ij

j j i

P T ) and 

column totals ( ,

,

pop pop

j ij

i i j

A T ). As it is often assumed that production is estimated more 

accurately than attraction (17), in this practical example three times more confidence is placed in 

the estimation of productions than in the estimation of attractions. Thus, the intra-zonal origin-

destination flows are calculated as follows: 

 , ,

, 0.75 0.25est pop est pop

ij i j i i j jT P P A A . 

The resulting OD-matrix is given in the upper part of Table 6. Note that when it is assumed that 

the activity-travel pattern of people begin and end in the home location (like it is the case for the 

practical applications described in this paper), the number of trips originating from a 
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municipality equals the number of trips arriving in that municipality. In this case the choice of  

is irrelevant. From Table 7 it is clear that only the intra-zonal trips are altered (APEs for inter-

zonal trips equal zero). 

 

3.3.2 Growth Factor Modeling (Furness Iteration) 

 

The second situation considers the case in which two OD-matrices (one on population level and 

one derived from the sample) are available. Information from these OD-matrices can be 

combined using growth factor modeling. One option is to take the cell information from the 

population (e.g. retrieved from GPS tracks) and the trip totals (column and row totals of the OD-

matrix) from the survey. A second option is the reverse, namely taking the cell information from 

the survey, and the trip totals from the population. To illustrate the technique, the first option is 

implemented. This option is the more realistic one, as in practice precise OD-pair information 

can be derived using cell phone information at fairly low costs, while surveys capture well the 

total travel demand. The doubly constrained growth factor model is estimated using Furness 

iterations. Formally, the number of trips from municipality i to j ( ijT ) is calculated as follows: 

 
ij ij i jT t a b , 

where ijt  is the number of trips (in the population OD-matrix), and where ia  and jb  are 

balancing factors. These balancing factors are a set of correction coefficients which are 

appropriately applied to the cell entries in each row or column. The iterative procedure starts 

with setting all jb  equal to one. In the second step, the ia  are solved for jb  to satisfy the trip 

production constraint (row totals of the cell entries of the population OD matrix have to equal 

the productions derived from the survey). Subsequently, in the third step, the jb  are solved for 

the ia , calculated in the previous step, to satisfy the trip attraction constraint (column totals of 

the cell entries of the population OD matrix have to equal the attractions derived from the 

survey). Then, the OD matrix is updated. This consecutive calculation of ia  and jb  is repeated 

until convergence is achieved (both the production and attraction constraints are satisfied). The 

procedure yields the matrix presented in the middle of Table 6, the corresponding APEs in Table 

7. 
  

3.3.3 “Perceived Precision” Updating 

 

The third and final situation that is explored to illustrate potential calibration options at the data 

level, describes the case in which an outdated population-based OD-matrix, as well as a recent 

matrix derived from the sample are available. The procedure is an adaptation of the Bayesian 

updating procedure discussed by Atherton and Ben-Akiva (22). This procedure updates 

information using the following formulae: 

2 2

2 2

1 1

prior updating

prior updating

updated

prior updating

 and 2

2 2

1

1 1updated

prior updating

, 
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where  is the mean of the investigated quantity and 
2
 the variance of the mean of that 

quantity. As the OD-cells in an OD-matrix are fixed numbers, of which the variance is seldom 

reported, one could replace the mean of the quantity by the OD-flow and reformulate the 

formulae in terms of perceived precision ( ) instead of variance of the mean (since the 

precision increases as the variance decreases). This perceived precision can for instance be 

obtained via expert knowledge. The formulae then take the form of the following equations: 

1 1

1 1

1 1

pop sa

ij ij

pop sa

new

ij

pop sa

T T

T and 
1

1
1 1

1 1

new

pop sa

. 

 

For the practical example discussed in this paper the perceived precision of the population OD-

matrix is set equal to 99% and the one of the sample OD-matrix equal to 95%. Note that the 

updated OD-matrix then has a precision of 99,17%. The updated OD-matrix is shown in the 

lower part of Table 6. For reasons of completeness and comparability with other calibration 

techniques, the APEs for this method are also presented (Table 7), even though interpretation of 

these specific APEs is meaningless, as the premise of this example was outdated population data. 

 

3.4 Discussion of Proposed Techniques 

 

An interesting issue of calibration to traffic counts is the fact that traffic counts themselves are 

uncertain. Uncertainty can be tackled in the data-level and model-level based calibration by 

adjusting the converge criterion, i.e. absolute percentage errors (denoted as fitness values by 

Park and Qi (7)). When choosing between the different techniques suggested in this paper, three 

key issues have to be taken into account: computational complexity, data availability and 

sensitivity to policy issues.  

The most computer-intensive method was the model-based calibration, requiring 14 days 

of computation on a computer with a Core 2 Duo 2.10 GHz CPU and 4GB RAM. This large 

computation time was due to the fact that the calibration at this level involves running the full 

simulation model (23, 24). In comparison, the iterative procedure for calibration at the data-level 

took about 1 day, and the matrix-level techniques only required a few seconds of computation 

(the latter techniques did not include iterative optimization techniques). Note that the 

computation times of the iterative procedures could be decreased by using more efficient 

optimization algorithms, such as genetic algorithms (7) and golden section search (25). 

 Next to the computational complexity, the available target data will definitely will 

influence the suitability of the different techniques. The largest amount of target data is required 

for the model-based calibration, since for each subpart of the model, target information is 

necessary.  

Finally, the influence of the calibration techniques on the sensitivity of the model to 

policy measures is of high importance. This sensitivity depends on how the base year calibration 

manipulations (i.e. calibrations weights) are transferred towards future predictions. Further 

research on the policy sensitivity of the different approaches should be a key priority for further 

research. 
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4 CONCLUSIONS AND FURTHER RESEARCH 

 

In this paper, different possibilities for linking travel demand models in general, and activity-

based models in particular, with traffic counts and precise OD-matrix information are 

highlighted and illustrated by means of an example. The discussed techniques provide the 

framework to overcome one of the main concerns by practitioners, namely the disadvantage of 

activity-based models over conventional four-step models in terms of the replication of traffic 

counts. The practical examples revealed that there is not a single roadway to success in 

calibrating activity-based models, but that different options exist in fine-tuning the activity-based 

model. Therefore, a careful assessment of the available options is needed to determine which 

choices have to be made. A step-wise procedure, combining elements of the different proposed 

solutions, can be recommended. 

 Notwithstanding, it is important to recognize some open issues and avenues for further 

research. First, it is not always appropriate to assume that traffic counts are completely correct. 

In reality, differences may relate to sampling bias, variability in travel, imperfect counts, 

assumptions about non-passenger cars (e.g. freight traffic) and external traffic, and unreliability 

in model facets. Setting up some belief-structure might increase the responsiveness of the 

activity-based model. Secondly, the OD-matrix calibration that optimizes the correspondence 

between estimated and observed screen-line counts could negatively impact the correspondence 

to other measures such as vehicle miles traveled. Thus, formulation of a multi-objective 

calibration method is a key challenge. Third, in most cases in practice, travel demand models are 

validated and tested against hour-specific counts. The same methodology can be applied in this 

case: modeled trip tables must be compared to counts for each time-of-day period. The challenge 

herein, exists in consolidating the time-of-day specific adjustments into a set of activity-

generation, location and schedule adjustments. Finally, further testing the calibration 

possibilities within a real activity-based travel demand modeling environment would further 

provide empirical evidence of the proposed frameworks. In particular, the investigation of how 

the policy sensitivity of an activity-based model is affected by the different approaches should be 

a key priority for further research.  
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TABLE 1  Number of Residents and Propensities of Activity Participation 
 

 “True” population 

Municipality No. of residents % Work % School % Shopping % Leisure % Other 

1: Hasselt 70 584 29.59% 14.22% 33.28% 27.94% 25.92% 

2: Diepenbeek 17 874 34.30% 30.49% 30.47% 25.30% 23.47% 

3: Kortessem 8 153 33.83% 16.39% 33.88% 19.66% 21.59% 

4: Alken 11 090 27.92% 17.60% 37.76% 25.35% 24.82% 

5: Nieuwerkerken 6 685 28.02% 17.71% 41.74% 22.03% 22.11% 

6: Herk-De-Stad 11 874 32.52% 21.32% 35.20% 21.10% 23.61% 

7: Lummen 13 874 31.38% 16.38% 37.03% 21.19% 21.77% 

8: Heusden-Zolder 31 017 24.54% 17.95% 32.19% 24.18% 23.63% 

9: Zonhoven 20 060 30.06% 17.57% 31.42% 24.32% 24.79% 

10: Genk 64 095 25.35% 18.32% 28.77% 25.85% 23.79% 

 Sample 

Municipality No. of residents % Work % School % Shopping % Leisure % Other 

1: Hasselt 1 765 28.90% 13.88% 32.52% 30.71% 25.89% 

2: Diepenbeek 447 35.35% 27.07% 30.43% 23.27% 23.94% 

3: Kortessem 204 35.78% 14.22% 31.37% 25.98% 21.57% 

4: Alken 277 29.96% 18.41% 36.82% 24.55% 23.83% 

5: Nieuwerkerken 167 23.95% 20.36% 40.72% 23.35% 20.96% 

6: Herk-De-Stad 297 32.32% 18.86% 36.03% 21.55% 22.56% 

7: Lummen 347 28.82% 20.46% 35.73% 24.50% 20.46% 

8: Heusden-Zolder 775 24.13% 16.52% 33.29% 25.81% 21.16% 

9: Zonhoven 502 30.88% 22.71% 34.06% 26.89% 26.10% 

10: Genk 1 602 27.47% 17.04% 28.34% 25.22% 23.78% 
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TABLE 2  OD-Matrices Retrieved from the “True” Population and the Sample 

 “True” population 

From\to 1 2 3 4 5 6 7 8 9 10 

1 130 888 8 142 2 692 8 239 2 620 4 580 2 899 5 270 7 108 8 928 

2 8 299 22 167 1 292 744 163 283 306 825 1 281 7 682 

3 2 715 1 310 8 704 522 111 106 88 137  227 1 125 

4 8 278 731 518 11 780 723 656 273 322 515 673 

5 2 591 151 117 721 7 052 1 683 305 219 184 335 

6 4 637 318 109 648 1 614 14 892 1 852 732 316 555 

7 2 891 304 95 260 308 1 907 19 398 3 272 652 783 

8 5 220 837 149 314 232 721 3 281 46 967 2 953 1 960 

9 7 224 1 290 241 530 175 311 673 2 915 22 160 5 621 

10 8 623 7 792 1 128 711 360 534 795 1 975 5 744 112 725 

 Sample 

From\to 1 2 3 4 5 6 7 8 9 10 

1 132 800 8 440 3 120 7 600 2 440 4 960 3 120 5 440 7 440 8 240 

2 8 520 21 680 800 840 160 440 320 1 160 1 160 7 160 

3 3 040 880 9 480 640 40 200 120 280 320 1 160 

4 7 920 840 600 11 240 600 600 240 200 400 640 

5 2 560 160 40 680 7 000 1 520 240 280 320 280 

6 4 800 440 200 600 1 600 14 280 1 720 600 240 680 

7 3 200 360 160 240 320 1 760 19 560 2 720 480 1 160 

8 5 240 1 160 240 120 240 600 2 880 46 200 3 760 2 000 

9 7 560 1 200 400 640 320 240 520 3 400 23 400 6 040 

10 7 960 7 080 1 120 680 360 560 1 240 2 160 6 200 112 920 

 Absolute Percentage Difference 

From\to 1 2 3 4 5 6 7 8 9 10 

1 1.5% 3.7% 15.9% 7.8% 6.9% 8.3% 7.6% 3.2% 4.7% 7.7% 

2 2.7% 2.2% 38.1% 12.9% 1.8% 55.5% 4.6% 40.6% 9.5% 6.8% 

3 12.0% 32.8% 8.9% 22.6% 64.0% 88.7% 36.4% 104.4% 41.0% 3.1% 

4 4.3% 14.9% 15.8% 4.6% 17.0% 8.5% 12.1% 37.9% 22.3% 4.9% 

5 1.2% 6.0% 65.8% 5.7% 0.7% 9.7% 21.3% 27.9% 73.9% 16.4% 

6 3.5% 38.4% 83.5% 7.4% 0.9% 4.1% 7.1% 18.0% 24.1% 22.5% 

7 10.7% 18.4% 68.4% 7.7% 3.9% 7.7% 0.8% 16.9% 26.4% 48.2% 

8 0.4% 38.6% 61.1% 61.8% 3.5% 16.8% 12.2% 1.6% 27.3% 2.0% 

9 4.7% 7.0% 66.0% 20.8% 82.9% 22.8% 22.7% 16.6% 5.6% 7.5% 

10 7.7% 9.1% 0.7% 4.4% 0.0% 4.9% 56.0% 9.4% 7.9% 0.2% 
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TABLE 3  OD-Matrices Calibrated Using Weighted RAPs 

 Algorithm 1 

From\To 1 2 3 4 5 6 7 8 9 10 

1 132 196 8 181 2 702 8 194 2 594 4 608 2 871 5 298 7 044 8 855 

2 8 291 21 972 1 282 738 160 285 304 817 1 269 7 751 

3 2 688 1 319 8 781 526 32 107 88 138 225 1 130 

4 8 241 738 513 11 715 716 650 271 325 517 670 

5 2 567 160 46 727 7 038 1 667 302 217 185 338 

6 4 611 315 107 654 1 630 14 762 1 842 739 314 559 

7 2 915 307 95 262 311 1 896 19 585 3 240 648 777 

8 5 179 845 148 311 234 714 3 309 46 563 2 959 1 955 

9 7 263 1 302 242 525 174 314 676 2 887 22 286 5 565 

10 8 592 7 730 1 118 704 358 530 788 1 993 5 787 113 222 

 Algorithm 2 

From\to 1 2 3 4 5 6 7 8 9 10 

1 132 173 8 223 2 712 8 160 2 610 4 584 2 874 5 306 7 038 8 873 

2 8 332 21 987 1 282 744 160 285 304 818 1 284 7 720 

3 2 695 1 323 8 728 526 40 111 88 138 226 1 120 

4 8 227 724 514 11 814 718 650 271 324 519 667 

5 2 601 160 40 718 6 985 1 670 303 219 185 337 

6 4 610 315 111 654 1 630 14 906 1 859 729 313 557 

7 2 905 304 95 262 311 1 920 19 570 3 240 657 779 

8 5 182 844 148 314 232 714 3 307 46 870 2 966 1 942 

9 7 273 1 302 239 527 175 313 667 2 896 22 292 5 565 

10 8 555 7 734 1 126 709 357 531 800 1 979 5 769 113 457 
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TABLE 4  Absolute Percentage Errors (Calibration Using Weighted RAPs) 

 Algorithm 1 

From\to 1 2 3 4 5 6 7 8 9 10 

1 1.00% 0.48% 0.37% 0.55% 0.99% 0.61% 0.97% 0.53% 0.90% 0.82% 

2 0.10% 0.88% 0.77% 0.81% 1.84% 0.71% 0.65% 0.97% 0.94% 0.90% 

3 0.99% 0.69% 0.88% 0.77% 71.17% 0.94% 0.00% 0.73% 0.88% 0.44% 

4 0.45% 0.96% 0.97% 0.55% 0.97% 0.91% 0.73% 0.93% 0.39% 0.45% 

5 0.93% 5.96% 60.68% 0.83% 0.20% 0.95% 0.98% 0.91% 0.54% 0.90% 

6 0.56% 0.94% 1.83% 0.93% 0.99% 0.87% 0.54% 0.96% 0.63% 0.72% 

7 0.83% 0.99% 0.00% 0.77% 0.97% 0.58% 0.96% 0.98% 0.61% 0.77% 

8 0.79% 0.96% 0.67% 0.96% 0.86% 0.97% 0.85% 0.86% 0.20% 0.26% 

9 0.54% 0.93% 0.41% 0.94% 0.57% 0.96% 0.45% 0.96% 0.57% 1.00% 

10 0.36% 0.80% 0.89% 0.98% 0.56% 0.75% 0.88% 0.91% 0.75% 0.44% 

 Algorithm 2 

From\to 1 2 3 4 5 6 7 8 9 10 

1 0.98% 0.99% 0.74% 0.96% 0.38% 0.09% 0.86% 0.68% 0.98% 0.62% 

2 0.40% 0.81% 0.77% 0.00% 1.84% 0.71% 0.65% 0.85% 0.23% 0.49% 

3 0.74% 0.99% 0.28% 0.77% 63.96% 4.72% 0.00% 0.73% 0.44% 0.44% 

4 0.62% 0.96% 0.77% 0.29% 0.69% 0.91% 0.73% 0.62% 0.78% 0.89% 

5 0.39% 5.96% 65.81% 0.42% 0.95% 0.77% 0.66% 0.00% 0.54% 0.60% 

6 0.58% 0.94% 1.83% 0.93% 0.99% 0.09% 0.38% 0.41% 0.95% 0.36% 

7 0.48% 0.00% 0.00% 0.77% 0.97% 0.68% 0.89% 0.98% 0.77% 0.51% 

8 0.73% 0.84% 0.67% 0.00% 0.00% 0.97% 0.79% 0.21% 0.44% 0.92% 

9 0.68% 0.93% 0.83% 0.57% 0.00% 0.64% 0.89% 0.65% 0.60% 1.00% 

10 0.79% 0.74% 0.18% 0.28% 0.83% 0.56% 0.63% 0.20% 0.44% 0.65% 
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TABLE 5  Model-Based Calibrated OD-Matrix and Corresponding APEs 

 Model-Based Calibrated OD-Matrix 

From\to 1 2 3 4 5 6 7 8 9 10 

1 131 667 8 088 2 822 8 140 2 553 4 634 2 970 5 391 7 071 8 617 

2 8 307 21 901 1 153 783 178 319 331 909 1 211 7 554 

3 2 830 1 188 8 814 554 98 126 107 183 258 1 174 

4 8 159 759 543 11 487 690 623 234 265 544 711 

5 2 506 172 101 689 7 063 1 665 303 236 220 355 

6 4 692 341 124 628 1 591 14 879 1 815 682 324 615 

7 2 972 333 107 228 312 1 843 19 266 3 149 635 857 

8 5 306 918 190 263 235 685 3 188 46 990 3 064 2 044 

9 7 154 1 241 269 545 224 321 631 3 014 21 894 5 772 

10 8 359 7 706 1 208 699 367 597 856 2 063 5 844 112 689 

 Model-Based Calibrated APEs 

From\to 1 2 3 4 5 6 7 8 9 10 

1 0.60% 0.66% 4.84% 1.21% 2.54% 1.17% 2.44% 2.30% 0.52% 3.48% 

2 0.10% 1.20% 10.78% 5.24% 9.20% 12.84% 8.28% 10.18% 5.44% 1.66% 

3 4.24% 9.34% 1.27% 6.19% 11.41% 18.55% 21.97% 33.58% 13.51% 4.33% 

4 1.43% 3.88% 4.83% 2.49% 4.56% 5.08% 14.29% 17.70% 5.63% 5.65% 

5 3.27% 14.13% 13.68% 4.48% 0.16% 1.05% 0.77% 7.76% 19.38% 5.97% 

6 1.19% 7.34% 14.07% 3.09% 1.45% 0.09% 2.00% 6.83% 2.64% 10.81% 

7 2.79% 9.43% 12.28% 12.44% 1.19% 3.36% 0.68% 3.75% 2.66% 9.45% 

8 1.65% 9.64% 27.74% 16.14% 1.15% 5.04% 2.84% 0.05% 3.76% 4.27% 

9 0.96% 3.80% 11.62% 2.77% 27.81% 3.22% 6.29% 3.38% 1.20% 2.69% 

10 3.06% 1.11% 7.12% 1.69% 1.85% 11.86% 7.67% 4.46% 1.74% 0.03% 
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TABLE 6  OD-Matrices Calibrated Using Matrix Level Possibilities 

 Situation  1: Perfect Knowledge about Inter-Zonal Traffic 

From\To 1 2 3 4 5 6 7 8 9 10 

1 133 122 8 142 2 692 8 239 2 620 4 580 2 899 5 270 7 108 8 928 

2 8 299 21 365 1 292 744 163 283 306 825 1 281 7 682 

3 2 715 1 310 9 819 522 111 106 88 137 227 1 125 

4 8 278 731 518 10 591 723 656 273 322 515 673 

5 2 591 151 117 721 6 774 1 683 305 219 184 335 

6 4 637 318 109 648 1 614 14 379 1 852 732 316 555 

7 2 891 304 95 260 308 1 907 19 488 3 272 652 783 

8 5 220 837 149 314 232 721 3 281 46 773 2 953 1 960 

9 7 224 1 290 241 530 175 311 673 2 915 24 740 5 621 

10 8 623 7 792 1 128 711 360 534 795 1 975 5 744 112 618 

 Situation 2: Growth Factor Modeling (Furness Iteration) 

From\To 1 2 3 4 5 6 7 8 9 10 

1 132 854 8 085 2 839 8 008 2 606 4 556 2 925 5 294 7 449 8 984 

2 8 241 21 536 1 333 707 159 275 302 811 1 313 7 563 

3 2 863 1 352 9 535 527 115 110 92 143 247 1 176 

4 8 046 695 523 10 964 688 625 264 310 517 648 

5 2 577 147 121 687 6 871 1 640 302 216 189 330 

6 4 611 309 113 617 1 573 14 513 1 831 720 325 548 

7 2 919 301 100 251 305 1 886 19 468 3 268 679 783 

8 5 243 822 155 302 228 710 3 278 46 688 3 062 1 952 

9 7 569 1 322 262 532 180 319 702 3 023 23 972 5 839 

10 8 677 7 671 1 179 685 355 526 796 1 967 5 967 112 457 

 Situation 3: “Perceived Precision” Updating 

From\To 1 2 3 4 5 6 7 8 9 10 

1 131 207 8 192 2 763 8 132 2 590 4 643 2 936 5 298 7 163 8 813 

2 8 336 22 086 1 210 760 162 309 308 881 1 261 7 595 

3 2 769 1 238 8 833 542 99 122 93 161 242 1 131 

4 8 218 749 532 11 690 702 647 267 302 496 667 

5 2 586 152 104 714 7 043 1 656 294 229 207 326 

6 4 664 338 124 640 1 612 14 790 1 830 710 303 576 

7 2 942 313 106 257 310 1 882 19 425 3 180 623 846 

8 5 223 891 164 282 233 701 3 214 46 839 3 087 1 967 

9 7 280 1 275 267 548 199 299 647 2 996 22 367 5 691 

10 8 512 7 673 1 127 706 360 538 869 2 006 5 820 112 758 

 

 



Cools, Moons and Wets  23 

 

TABLE 7  Absolute Percentage Errors (Calibration Using Matrix Level Possibilities) 

 Situation  1: Perfect Knowledge about Inter-Zonal Traffic 

From\To 1 2 3 4 5 6 7 8 9 10 

1 1.71% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

2 0.00% 3.62% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

3 0.00% 0.00% 12.81% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

4 0.00% 0.00% 0.00% 10.09% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

5 0.00% 0.00% 0.00% 0.00% 3.94% 0.00% 0.00% 0.00% 0.00% 0.00% 

6 0.00% 0.00% 0.00% 0.00% 0.00% 3.44% 0.00% 0.00% 0.00% 0.00% 

7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.46% 0.00% 0.00% 0.00% 

8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.41% 0.00% 0.00% 

9 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 11.64% 0.00% 

10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.09% 

 Situation 2: Growth Factor Modeling (Furness Iteration) 

From\To 1 2 3 4 5 6 7 8 9 10 

1 1.50% 0.70% 5.46% 2.80% 0.53% 0.52% 0.90% 0.46% 4.80% 0.63% 

2 0.70% 2.85% 3.17% 4.97% 2.45% 2.83% 1.31% 1.70% 2.50% 1.55% 

3 5.45% 3.21% 9.55% 0.96% 3.60% 3.77% 4.55% 4.38% 8.81% 4.53% 

4 2.80% 4.92% 0.97% 6.93% 4.84% 4.73% 3.30% 3.73% 0.39% 3.71% 

5 0.54% 2.65% 3.42% 4.72% 2.57% 2.55% 0.98% 1.37% 2.72% 1.49% 

6 0.56% 2.83% 3.67% 4.78% 2.54% 2.54% 1.13% 1.64% 2.85% 1.26% 

7 0.97% 0.99% 5.26% 3.46% 0.97% 1.10% 0.36% 0.12% 4.14% 0.00% 

8 0.44% 1.79% 4.03% 3.82% 1.72% 1.53% 0.09% 0.59% 3.69% 0.41% 

9 4.78% 2.48% 8.71% 0.38% 2.86% 2.57% 4.31% 3.70% 8.18% 3.88% 

10 0.63% 1.55% 4.52% 3.66% 1.39% 1.50% 0.13% 0.41% 3.88% 0.24% 

 Situation 3: “Perceived Precision” Updating 

From\To 1 2 3 4 5 6 7 8 9 10 

1 0.24% 0.61% 2.65% 1.29% 1.15% 1.38% 1.27% 0.54% 0.78% 1.28% 

2 0.44% 0.37% 6.35% 2.15% 0.31% 9.25% 0.76% 6.77% 1.57% 1.13% 

3 2.00% 5.47% 1.49% 3.77% 10.66% 14.78% 6.06% 17.40% 6.83% 0.52% 

4 0.72% 2.49% 2.64% 0.76% 2.84% 1.42% 2.01% 6.31% 3.72% 0.82% 

5 0.20% 0.99% 10.97% 0.95% 0.12% 1.61% 3.55% 4.64% 12.32% 2.74% 

6 0.59% 6.39% 13.91% 1.23% 0.14% 0.68% 1.19% 3.01% 4.01% 3.75% 

7 1.78% 3.07% 11.40% 1.28% 0.65% 1.28% 0.14% 2.81% 4.40% 8.02% 

8 0.06% 6.43% 10.18% 10.30% 0.57% 2.80% 2.04% 0.27% 4.55% 0.34% 

9 0.78% 1.16% 11.00% 3.46% 13.81% 3.80% 3.79% 2.77% 0.93% 1.24% 

10 1.28% 1.52% 0.12% 0.73% 0.00% 0.81% 9.33% 1.56% 1.32% 0.03% 

 

 

 

 



Cools, Moons and Wets  24 

 

Data:

- Synthetic household data

- Land use data

AB-model

(e.g. rule-based

model Feathers)

Aggregated

OD-matrix

Assignment

on the network

Activity schedule execution

(all agents simultaneously)

 
 

FIGURE 1  Four levels of calibration opportunities. 
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outerloop = 0

solution

 - random selection of person

 - increase or decrease of weight

 - add selected person on tabu list

 - innerloop + 1

outerloop < 500

for each OD pair

innerloop < 500

No

maxdif > 5%Yes

 - check whether weights have to be 

   increased or decreased

 - create a list of persons that travel 

   over this specific OD-pair

 - remove the persons that are on 

   tabu list from the above list

 - innerloop = 0

recalculate total fitted OD

 - clear tabu list

 - random sort OD pairs

No

Yes

no next OD pair

celldif > 1%

feasible solution?

celldif > 1%

next OD pair No

Yes

Yes

Yes

Yes

No

No

No

start

outerloop + 1

end

Abbreviations

maxdif = maximum absolute percentage error 

               between fitted and true OD-matrix

celldif = absolute percentage error between 

fitted and true OD-pair

 
FIGURE 2  Calibration algorithm to weight representative activity patterns. 
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solution

loop < 100

No

best maxdif 

> 5%
Yes

No

start

end

Abbreviations

maxdif = maximum absolute percentage error 

               between fitted and true OD-matrix

mape = mean absolute percentage error 

between fitted and true OD-matrix

locprob = activity location probabilities

- loop = 0

- calculate locprob sample

- calculate maxdif sample

- calculate mape sample

- best mape = 

mape sample

- best maxdif =

maxdif sample

- best OD-matrix = 

OD-matrix sample

- best locprob =

locprob sample

random sort

activity types

best mape 

> 2%
Yes

No

- random select OD-pair

- load best locprob

- increase locprob of 

selected OD-pair

- equalize sum locprob to 1

- actvity regeneration

- calculate mape

- calculate maxdif

Yes

for each 

activity type

next activity type

mape < best mapeyes

no next activity type

- best mape = mape

- best maxdif = maxdif

- best locprob = locprob

- best OD-matrix = 

OD-matrix

- load best locprob

- decrease locprob of 

selected OD-pair with 

opposite of increase

- locprob minimum 1

- equalize sum locprob to 1

- activity regeneration 

- calculate mape

- calculate maxdif

no

mape < best mape

yes

no

loop + 1

 
FIGURE 3  Calibration algorithm to adjust activity location probabilities. 


