Vocal Impact of a Prolonged Reading Task in Dysphonic versus Normophonic Female Teachers

Angélique REMACLE, Dominique MORSOMME, Elise BERRUE, Camille FINCK

Unité de Logopédie de la voix
Faculté de Psychologie et des Sciences de l’Education
Université de Liège
Belgium
Background

- PhD about vocal loading
- Previous study\(^1\): vocal impact of a 2-hour reading task in normophonic females without professional voice use
- This study\(^2\): vocal impact of a 2-hour reading task in normophonic and dysphonic female teachers

(2) Remacle A, Morsomme D, Berrué E, Finck C. Vocal Impact of a Prolonged Reading Task in Dysphonic versus Normophonic Female Teachers. *J. Voice. In Press*
Methods: participants

16 normophonic female teachers (34.1 years)

16 dysphonic female teachers (33.8 years)
Methods: loading task

Reading a novel in French for imaginary students during 2 hours at 70-75dB(A)
Methods: evaluation protocol

Before the task and every 30 minutes

• Acoustic analysis (MDVP)
 F0, Jitter%, Shimmer%
• Voice range measurements (VRP)
 Frequency and intensity
• Aerodynamic measurements (Aerophone II)
 Maximum Phonation Time
 Subglottic Pressure, SPL
The questions are:

• What are the effects of a two-hour reading task on teachers’ voice?

• Does the vocal load affect differently the dysphonic teachers than the healthy teachers?

Statistical analysis: repeated measures ANOVA

* p<.05
Results: acoustic measurements

![Graph showing F0 over time]

- **F0**: Frequency of fundamental vibration
- **Hz**: Hertz
- **T0, T1, T2, T3, T4**: Time points
Results: acoustic measurements

![Graph showing Shimmer and Jitter measurements over time T0 to T4. The Shimmer line is marked with an asterisk (*) and the Jitter line is marked (NS).]
Results: voice range measurements

Lowest frequency: no significant effect of duration

Highest frequency: no significant effect of duration

Frequency range: no significant effect of duration
Results: voice range measurements

Intensity range significantly increases during the reading
Results: aerodynamic measurements

Maximum Phonation Time

<table>
<thead>
<tr>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Sec
Results: aerodynamic measurements

Subglottic Pressure

\[\text{cmH}_2\text{O} \]

SPL

\[\text{dB} \]
Results: aerodynamic measurements

Subglottic Pressure

![Graph showing changes in subglottic pressure over time.](image)

- cmH₂O
- Data points marked with asterisks indicate significant differences.

SPL

![Graph showing changes in sound pressure level over time.](image)

- dB
- Data points marked with asterisks indicate significant differences.
Results: few differences between normophonic and dysphonic groups

Highest frequency*

- **Hz**
- **T0**
- **T1**
- **T2**
- **T3**
- **T4**

Normophonics

Dysphonics

Frequency range*

- **Hz**
- **T0**
- **T1**
- **T2**
- **T3**
- **T4**

Normophonics

Dysphonics
Results: few differences between normophonic and dysphonic groups

Subglottic Pressure*

Dysphonics
Normophonics

T0 T1 T2 T3 T4

Subglottic Pressure*

cmH\textsubscript{2}O

15
Results: interaction between the duration and the group only for

Lowest Frequency*

Hz

Dysphonics

Normophonics

T0 T1 T2 T3 T4
Conclusions: effects of a 2-hour reading task

• Acoustic analysis and voice range measurements suggest an increased laryngeal tension

• Aerodynamic measurements suggest
 1) lower voice efficiency – increased viscosity and stiffness of the vocal folds
 2) adaptation to vocal loading
Conclusions:
normophonic versus dysphonic groups

• Few differences between both groups

• Voice evolution through the reading task similar for the normophonic and the dysphonic groups
Unité de Logopédie de la voix
Faculté de Psychologie et des Sciences de l’Éducation
Université de Liège
Belgium
Angelique.Remacle@ulg.ac.be

Thank You!