Mixture of ensemble of bagged Markov trees

F. Schnitzler P. Geurts L. Wehenkel

fschnitzler@ulg.ac.be

University of Liège

20 September 2012
The goal of this research is to improve probabilistic reasoning in high-dimensional problems.

High-dimensional:
- high number of variables
- low number of samples

Great potential in many applications:
- Bioinformatics (tens of thousands of genes, hundreds of thousands of proteins)
- Power networks (tens of thousands transmission nodes in Europe)

Two main problems:
1. Few samples \rightarrow high variance
2. Algorithmic complexity
 \rightarrow Simple models must be used, e.g. Markov trees.

We try to use mixtures of Markov trees to improve a single Chow-Liu tree.
Mixtures or ensembles of trees build on the good properties of Markov trees.

A forest is a tree missing edges:

\[
\begin{align*}
B & \quad C \\
\downarrow & \quad \downarrow \\
A & \quad D
\end{align*}
\]

A mixture of trees is an ensemble method:

\[
\tilde{P}(X) = \sum_{i=1}^{m} \mu_i P_{T_i}(X)
\]
Mixtures or ensembles of trees build on the good properties of Markov trees.

Using several trees can improve the modelling accuracy while maintaining low complexity.

- inference is linear,
- learning : most algorithms are quadratic.
Some mixtures reduce the **variance** with respect to a single Chow-Liu tree.

Perturb and combine ensemble

- This approach can be viewed as an approximation of Bayesian learning in the space of Markov tree structures.
- The more trees, the better the reduction in variance of the ensemble.
- Can be constructed by a randomized [bagging, edge subsampling...] Chow-Liu algorithm applied several times.

Example: 200 variables and 200 samples

\[
\hat{D}_{KL}(P \parallel P^T) = \text{Chow-Liu tree}
\]

- Ensemble of bagged Chow-Liu trees
- (best) regularized Chow-Liu tree
Some mixtures reduce the **bias** with respect to a single Chow-Liu tree.

Expectation-Maximization mixture

- Learning the mixture is viewed as a global optimization problem aiming at maximizing the data likelihood.
- There is a bias-variance trade-off associated to the number of terms.
- Partition of the learning set: each tree models a subset of observations.

Example: 200 variables and 2000 samples

![Graph showing the decrease in $D_{KL}(P \parallel \hat{P})$ with increasing number of trees (m)]
We try to combine those two methods.

1. Build an EM mixture and associated soft partition \(\{ \mathbf{D}_k \}_{k=1}^{m_1} \).

2. Replace each tree \(T_k \) by an ensemble of bagged Chow-Liu trees based on \(\mathbf{D}_k \).

The EM algorithm iteratively:

- defines a soft partition of the data set into \(m_1 \) weighted learning samples \(\mathbf{D}_k \), based on \(\mathcal{T} \) and \(\mu \),
- optimizes \(\mu \) based on the soft partition,
- optimizes each \(T_k \in \mathcal{T} \) on \(\mathbf{D}_k \) by the Chow-Liu algorithm, until convergence.
We try to combine those two methods.

1. Build an EM mixture and associated soft partition $\{D_k\}_{k=1}^{m_1}$.
2. Replace each tree T_k by an ensemble of bagged Chow-Liu trees based on D_k.

Two variants are tested for the second level ensemble. Each tree of the EM mixture is replaced by:

1. m_2 bagged Chow-Liu trees,
2. one Chow-Liu tree and $m_2 - 1$ bagged Chow-Liu trees.
We developed 3 experimental settings.

Accuracy is estimated by the Kullback-Leibler divergence $\hat{D}_{KL}(\mathbb{P} \mid\mid \mathbb{P}_{\hat{\cdot}})$ of the mixtures learned, averaged over several learning sets.

\mathbb{P} can be either:

1. a synthetic mixture of three trees
2. synthetic Bayesian networks over binary variables
3. more realistic Bayesian networks (from the literature)
The combined methods achieves a higher accuracy than an EM mixture for learning a mixture of 3 Markov trees.

Averaged results on 1 uniformly weighted mixture of 3 randomly generated Markov trees (200 binary variables) × 1 learning set × many initializations of the EM algorithm.
Setting 1: The accuracy of the EM mixture is always improved by replacing each tree by an ensemble.

Relative number of runs where each method is the best, displayed by number of samples. MT-EM is always at 0.
Setting 2: The mixture of ensembles of CL trees can lead to a better accuracy than both the EM mixture or an ensemble of bagged Chow-Liu trees.

Averaged results on 5 randomly generated Bayesian networks (200 binary variables) \times 5 learning sets.
Setting 2: The mixture of ensembles of CL trees is better than the EM mixture, no matter what the optimal m_1 is.

Averaged results on 5 randomly generated Bayesian networks (200 binary variables) \times 5 learning sets.
Setting 3: Larger 2nd level ensembles might be necessary when estimating more complex probability distributions.

<table>
<thead>
<tr>
<th>Data set</th>
<th>$N = 200$</th>
<th>$N = 500$</th>
<th>$N = 2500$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MT-EM</td>
<td>+bag, bagCl</td>
<td>MT-EM</td>
</tr>
<tr>
<td>Child10</td>
<td>-</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>Pigs</td>
<td>21</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Alarm10</td>
<td>3</td>
<td>22</td>
<td>-</td>
</tr>
<tr>
<td>Gene</td>
<td>25</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lung Cancer</td>
<td>25</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Link</td>
<td>3</td>
<td>22</td>
<td>-</td>
</tr>
<tr>
<td>Insurance10</td>
<td>2</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>Munin</td>
<td>1</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>Hailfinder10</td>
<td>25</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>ALL</td>
<td>105</td>
<td>120</td>
<td>40</td>
</tr>
</tbody>
</table>

Table: Best methods on realistic data sets (by increasing complexity) for 5 learning sets × several initializations of the EM mixture, with $m_1 = 2$ and $m_2 = 10$. N is the number of learning samples.
Final words

We replaced each tree of a bias reducing mixture of Markov trees by an ensemble reducing the variance of a single tree.

Conclusions :

- This method
 - does not require the selection of a regularization parameter
 - avoids the use of MCMC exploration schemes.

- The resulting models are able to improve the accuracy of the base EM mixture.

Further work :

- Evaluate the accuracy against other variance reducing schemes for EM mixture (e.g. MCMC exploration).
- Apply it to high-dimensional problems... along with other methods?
More realistic data sets (by C. Aliferis, A. Statnikov, I. Tsamardinos & al).

| Name | p | $|\mathcal{X}_i|$ | $|E(G)|$ | $|\theta|$ |
|----------------|-----|-----------------|--------|---------|
| Alarm10 | 370 | 2-4 | 570 | 5468 |
| Child10 | 200 | 2-6 | 257 | 2323 |
| Gene | 801 | 3-5 | 977 | 8348 |
| Hailfinder10 | 560 | 2-11 | 1017 | 97448 |
| Insurance10 | 270 | 2-5 | 556 | 14613 |
| Link | 724 | 2-4 | 1125 | 14211 |
| Lung Cancer | 800 | 2-3 | 1476 | 8452 |
| Munin | 189 | 1-21 | 282 | 15622 |
| Pigs | 441 | 3-3 | 592 | 3675 |

Table: Distributions from the literature and their characteristics. p corresponds to the number of variables, $|\mathcal{X}_i|$ to the range of cardinalities of single variables, $|E(G)|$ to the number of edges and $|\theta|$ to the number of independent parameters in the original model.
Setting 3

Best methods on realistic data sets on 5 runs times 5 sets (resp. 10 runs times 1 set) of 200 or 500 (resp. 2500) samples, with $m_1 = 2$ and $m_2 = 10$.

| Data set | p | $|X_i|$ | $N = 200$ | $N = 500$ | $N = 2500$ |
|--------------|------|--------|-----------|-----------|------------|
| | | | MT-EM -Bag | MT-EM -Bag | MT-EM -Bag |
| | | | BagCl | BagCl | BagCl |
| ALARM10 | 370 | 2-4 | 3 | 17 | 19 |
| CHILD10 | 200 | 2-6 | - | 24 | - |
| Gene | 801 | 3-5 | 25 | - | 9 |
| HAILFINDER10 | 560 | 2-11 | 25 | 25 | - |
| INSURANCE10 | 270 | 2-5 | 2 | 22 | 15 |
| Link | 724 | 2-4 | 3 | 7 | 12 |
| LUNG CANCER | 800 | 2-3 | 25 | 8 | 17 |
| Munin | 189 | 1-21 | 1 | 9 | 14 |
| Pigs | 441 | 3-3 | 21 | 3 | 16 |
| ALL | 105 | 30 | 90 | 40 | 123 |

All results are averages over 5 runs (resp. 10 runs) for 5 sets (resp. 1 set) of 200 or 500 (resp. 2500) samples.