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1 Introduction

The issue of stick-slip oscillations in the rotary drilling systems used to drill deep boreholes for
hydrocarbon exploration and production has been explored by Richard et al. [1]. Their analysis
of the dynamics of the drill bit is based on a discrete model of
the drillstring (Fig. 1), and rate-independent bit-rock interaction
laws. The latter accounting for the regenerative cutting effect tak-
ing place at the bit level ( Fig. 2) the equations of motion yield a
system of discontinuous state-dependent delayed differential equa-
tions. Numerical simulations with this model produce self-excited
stick-slip oscillations and show the existence of an anti-resonance
drilling regime, during which large amplitude axial vibrations of
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the bit stabilize its angular motion. Further work carried out by Q
Germay et al. [2] has formalized the model using the concept of = 7
Filippov differential inclusion and brought to light the existence of us ML
quasi-periodic solutions for particular parametric configurations of x—b

the model. Here, we investigate the slow dynamical behavior that
is inherent to particular parametric configurations of this model,
and provide, using linear stability analysis, an explanation to the
quasi-periodic solutions observed in numerical simulations [1, 2].

Figure 1: Discrete model.

2 Governing equations

Using the time scale ¢, = 1/I/C and the length scale L, = 2C/ca?, with ¢ being the intrinsic
specific energy of the rock, a the bit radius, C' and I the torsional stiffness and polar mass
moment of inertia of the drillstring, Richard et al. [1] derived the dimensionless equations of
motion for an idealized bit, consisting of n identical radial blades regularly spaced by 27 /n
radians, drilling a homogeneous rock
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where u and ¢ are the bit axial displacement and angular position perturbations to the steady-
state solution, the prime denotes differentiation with respect to the dimensionless time ¢ = ¢/t.,
W and 7 are the dimensionless weight- and torque-on-bit, 1 is the system number and the
subscript ¢ refers to a steady-state quantity. Both W and 7 are functions of the history of u
and ¢, denoted by {u and }p, respectively.

In drilling conditions, the scaled efforts W and 7 are given by the bit-rock interaction laws
and have experimentally been shown to depend on two distinct processes, respectively, a cutting
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Figure 2: Regenerative cutting.

and a frictional contact ones, i.e. W = W¢ + W/ and T = 7¢ + 77. While the cutting forces
are proportional to the bit penetration per revolution, d, the contact forces are characterized
by a threshold following a transition that is function of both § and the direction of the relative
velocity of the cutters with respect to the rock [3]
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where 6, (hu, o) is the dimensionless depth of cut per blade, which introduces a delay in the
equations of motion as the height of rock ahead of a blade depends on the motion history of the
bit, see Figure 2. Also, 3 is the bit geometry number, A, reflects the wear state of the bit, and
«a and © characterize the direction of the relative velocity of the bit with respect to the rock and
the inclination of the blade wear flat. As a changes along the radius of the bit, the above law is
strictly valid for core barrels only. The sat function denotes the saturation operator, while the
parameters a, and J, are rock-dependent parameters that delimit the upper saturation level
of the contact force. Whenever the bit sticks and stands still, i.e., v’ +vg = ¢’ +wp = 0, vg
and wg being the stationary axial and angular velocities of the bit, the boundary condition is
given by the equilibrium of the bit, until the torque built up by twisting of the drillstring is
large enough to overcome the resistant torque and trigger motion. By further developing the
equations, the model reads,
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where @ = u(t — t,,) is the delayed axial perturbation and %, is the state-dependent delay,
defined by the threshold condition
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3 Slow dynamics

Previous works [1, 2| have shown that for the stick-slip or anti-resonance regimes to occur, the
steady-state motion of the bit should be unstable. To assess the local stability of the stationary
solution of the model, the poles of the linearized system around that solution are to be located in
the complex plane. If any of them has a strictly positive real part, the steady-state is unstable.
In case all the poles are located in the left half of the complex plane, the trivial solution is



stable. The poles are the roots of the characteristic equation, computed from the linearized
system,
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with the parameters k, v and x depending on the steady-state drilling conditions and the

bluntness of the bit.

Numerical investigations of the solutions of (1) have shown that for particular parametric
configurations, the linearized system has two unstable poles close to +i, the poles of the torsional
pendulum. Although they have a positive real part and thus the stationary solution is unstable,
the divergence of the system following any perturbation is very slow due to the smallness of
their real part. Accordingly, depending on the external perturbations the system is subject
to, the response of the system appears to converge to different periodic solutions and there is
apparent coexistence of drilling regimes. Figure 3 exemplifies this feature. The unperturbed
system stays at the stationary solution while a small perturbation generates a slow transient
regime of quasi-periodic oscillations that will eventually converge to the attractive stick-slip
limit cycle. However, this limit cycle is immediately reached after a large perturbation.
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Figure 3: Response of the system to an angular perturbation.

4 Conclusion

A physically consistent model, that recovers stick-slip oscillations of deep drilling systems and
captures the coexistence of multiple drilling regimes observed in the fields and in lab experi-
ments, has been developed. By performing a linear stability analysis of the delayed differential
model, we provide a justification to the coexistence of drilling regimes as we brought to light
the slow dynamical nature of such self-excited vibrations.

References

[1] Richard T., Germay C. and Detournay E.: A simplified model to explore the root cause of stick-slip
vibrations in drilling systems with drag bits. Journal of Sound and Vibration 307:432-456, 2007.

[2] Germay C., van de Wouw N., Nijmeijer H. and Sepulchre R.: Nonlinear drillstring dynamics anal-
ysis. SIAM Journal on Applied Dynamical System. In press. 2009.

[3] Besselink B.: Analysis and validation of self-excited drill string oscillations. MSc Thesis, Technical
University Eindhoven. 2008.



