The partial proportional odds model in the analysis of longitudinal ordinal data

Anne-Francoise DONNEAU
Medical Informatics and Biostatistics
School of Public Health
University of Liège
Promotor: Pr. A. Albert

18 May 2010

Content of the presentation

- Introduction
- Motivating example
- Proportional odds model
- Partial proportional odds model
- Application
- Conclusion

Notation

Problem:
 Analysis of ordinal longitudinal data

Notation

Problem: Analysis of ordinal longitudinal data

Units:
Subjects, objects, $(i=1, \cdots, N)$

Notation

Problem: Analysis of ordinal longitudinal data
Units:
Outcome:
Subjects, objects, $(i=1, \cdots, N)$
Ordinal variable Y with K levels

Notation

Problem: Analysis of ordinal longitudinal data
Units:
Subjects, objects, $(i=1, \cdots, N)$
Outcome:
Ordinal variable Y with K levels
Measurement: Measurements at T occasions, $\mathbf{Y}_{\mathbf{i}}=\left(Y_{i 1}, \cdots, Y_{i T}\right)^{\prime}$

Notation

Problem: Analysis of ordinal longitudinal data
Units:
Subjects, objects, $(i=1, \cdots, N)$
Outcome:
Ordinal variable Y with K levels
Measurement: Measurements at T occasions, $\mathbf{Y}_{\mathbf{i}}=\left(Y_{i 1}, \cdots, Y_{i T}\right)^{\prime}$
Covariates: $\quad T \times p$ covariates matrix $\mathbf{X}_{\mathbf{i}}=\left(\mathbf{x}_{\mathbf{i} 1}, \cdots, \mathbf{x}_{\mathbf{i T}}\right)^{\prime}$ Time, gender, age ...

Notation

Problem:	Analysis of ordinal longitudinal data
Units:	Subjects, objects, $(i=1, \cdots, N)$
Outcome:	Ordinal variable Y with K levels
Measurement:	Measurements at T occasions, $\mathbf{Y}_{\mathbf{i}}=\left(Y_{i 1}, \cdots, Y_{i T}\right)^{\prime}$
Covariates:	$T \times p$ covariates matrix $\mathbf{X}_{\mathbf{i}}=\left(\mathrm{x}_{\mathbf{i}}, \cdots, \mathrm{x}_{\mathbf{i T}}\right)^{\prime}$ Time, gender, age \ldots
Domains:	Medicine, psychology, social science, \ldots

Motivating example - Quality of life

Dataset

- 247 patients with malignant brain cancer treated by RT+CT or RT
- Assessment of the quality of life at 8 occasions Baseline, End RT, End RT + (3,6,9)months, End RT + (1, 1.5, 2)years
- EORTC QLQC30 questionnaire - Appetite loss scale Have you lacked appetite? ('Not at all', 'A little', 'Quite a bit', 'Very much')
- Covariates: Time, Treatment (RT+CT vs RT), Tumor cell (pure vs mixed)

Motivating example - Quality of life

Dataset

- 247 patients with malignant brain cancer treated by RT+CT or RT
- Assessment of the quality of life at 8 occasions Baseline, End RT, End RT + (3,6,9)months, End RT + (1, 1.5, 2)years
- EORTC QLQC30 questionnaire - Appetite loss scale Have you lacked appetite? ('Not at all', 'A little', 'Quite a bit', 'Very much')
- Covariates: Time, Treatment (RT+CT vs RT), Tumor cell (pure vs mixed)

Summary of the data
$N=247, T=8, K=4$

Motivating example - Quality of life

Dataset

- 247 patients with malignant brain cancer treated by RT+CT or RT
- Assessment of the quality of life at 8 occasions Baseline, End RT, End RT + (3,6,9)months, End RT + (1, 1.5, 2)years
- EORTC QLQC30 questionnaire - Appetite loss scale Have you lacked appetite? ('Not at all', 'A little', 'Quite a bit', 'Very much')
- Covariates: Time, Treatment (RT+CT vs RT), Tumor cell (pure vs mixed)

Summary of the data
$N=247, T=8, K=4$
Questions of interest

- Treatment effect
- Tumor cell effect

Proportional odds model

Aim is to find a model that takes into account

- the ordinal nature of the outcome under study
- the correlation between repeated observations
- the unavoidable presence of missing data

Proportional odds model

Aim is to find a model that takes into account

- the ordinal nature of the outcome under study
- the correlation between repeated observations
- the unavoidable presence of missing data

Proportional odds model

$$
\begin{aligned}
& \log i t\left[\operatorname{Pr}\left(Y_{i j} \leq k\right)\right]=\theta_{k}+\mathrm{x}_{\mathrm{ij}}^{\prime} \beta \quad, \quad i=1, \cdots, N ; \quad j=1, \cdots, T \\
&, \quad k=1, \cdots, K-1
\end{aligned}
$$

Proportional odds model

Aim is to find a model that takes into account

- the ordinal nature of the outcome under study
- the correlation between repeated observations
- the unavoidable presence of missing data

Proportional odds model

$$
\begin{aligned}
& \log i t\left[\operatorname{Pr}\left(Y_{i j} \leq k\right)\right]=\theta_{k}+\mathrm{x}_{\mathrm{ij}}^{\prime} \beta \quad, \quad i=1, \cdots, N ; \quad j=1, \cdots, T \\
&, \quad k=1, \cdots, K-1
\end{aligned}
$$

Properties: invariant when reversing the order of categories deleting/collapsing some categories

Proportional odds model

Aim is to find a model that takes into account

- the ordinal nature of the outcome under study
- the correlation between repeated observations
- the unavoidable presence of missing data

Proportional odds model

$$
\begin{aligned}
& \log i t\left[\operatorname{Pr}\left(Y_{i j} \leq k\right)\right]=\theta_{k}+\mathrm{x}_{\mathrm{ij}}^{\prime} \beta \quad, \quad i=1, \cdots, N ; \quad j=1, \cdots, T \\
&, \quad k=1, \cdots, K-1
\end{aligned}
$$

Properties: invariant when reversing the order of categories deleting/collapsing some categories

Assumption : relationship between Y and X is the same for all categories of Y

Testing the proportional odds model

Tests for assessing proportionality when the outcomes are uncorrelated were extended to longitudinal data (Stiger, 1999).

What if the proportional odds assumption is violated?

- Fitting a more general model
- Dichotomize the ordinal variable and fit separate binary logistic regression models (Bender, 1998).

Our solution

- Fitting a model that allows relaxing the proportional odds assumption when necessary

The partial proportional odds model

The partial proportional odds model (Peterson and Harrel, 1990) allows non-proportional odds for all or a subset q of the p explanatory covariates.

In univariate case,

$$
\operatorname{logit}[\operatorname{Pr}(Y \leq k)]=\theta_{k}+\mathbf{x}^{\prime} \boldsymbol{\beta}+\mathbf{z}^{\prime} \gamma_{\mathbf{k}} \quad, k=1, \cdots, K-1
$$

where \mathbf{z} is a q-dimensional vector $(q \leq p)$ of the explanatory variables for which the proportional odds assumption does not hold and γ_{k} is the $(q \times 1)$ corresponding vector of coefficients and $\gamma_{\mathbf{1}}=\mathbf{0}$. When $\gamma_{\mathbf{k}}=\mathbf{0}$ for all k, the model reduces to the proportional odds model

Extension of the partial proportional odds model to longitudinal data (Donneau et al., 2010)

In a longitudinal setting,

$$
\begin{aligned}
& \operatorname{logit}\left[\operatorname{Pr}\left(Y_{i j} \leq k\right)\right]=\theta_{k}+\mathbf{x}_{\mathbf{i j}}^{\prime} \boldsymbol{\beta}+\mathbf{z}_{\mathbf{i j}}^{\prime} \gamma_{\mathrm{k}} \quad, \quad i=1, \cdots, N ; \quad j=1, \cdots, T \\
&, \quad k=1, \cdots, K-1
\end{aligned}
$$

where $\left(\mathbf{z}_{\mathbf{i} 1}, \cdots, \mathbf{z}_{\mathbf{i T}}\right)^{\prime}$ is a $(T \times q)$ matrix, $q \leq p$, of a subset of q-explanatory variables for which the proportional odds assumption does not apply and γ_{k} is the $(q \times 1)$ corresponding vector of regression parameters with $\gamma_{1}=\mathbf{0}$.

As an example ($\mathrm{p}=2$ and $\mathrm{q}=1$), assume that the proportional odds assumption holds for X_{1} and not for X_{2}, then

$$
\operatorname{logit}\left[\operatorname{Pr}\left(Y_{i j} \leq k\right)\right]=\theta_{k}+\beta_{1} X_{1}+\left(\beta_{2}+\gamma_{k, 2}\right) X_{2}
$$

Estimation

Estimation of the regression parameters

- GEE - extension of GLM to longitudinal data (Liang and Zegger, 1986)
- Define of a $(K-1)$ expanded vector of binary responses $\mathbf{Y}_{\mathrm{ij}}=\left(Y_{i j, 1}, \ldots, Y_{i j,(K-1)}\right)^{\prime}$ where $Y_{i j k}=1$ if $Y_{i j} \leq k$ and 0 otherwise
- $\operatorname{logit}\left[\operatorname{Pr}\left(Y_{i j} \leq k\right)\right]=\operatorname{logit}\left[\operatorname{Pr}\left(Y_{i j k}=1\right)\right] \rightarrow$ member of GLM family

$$
\sum_{i=1}^{N} \frac{\partial \boldsymbol{\pi}_{\mathbf{i}}^{\prime}}{\partial \boldsymbol{\beta}} \mathbf{W}_{\mathbf{i}}^{-1}\left(\mathbf{Y}_{\mathbf{i}}-\boldsymbol{\pi}_{\mathbf{i}}\right)=0
$$

where $\mathbf{Y}_{\mathbf{i}}=\left(\mathbf{Y}_{\mathbf{i} 1}, \ldots, \mathbf{Y}_{\mathbf{i} \mathbf{T}}\right)^{\prime}, \pi_{\mathbf{i}}=E\left(\mathbf{Y}_{\mathbf{i}}\right)$ and $\mathbf{W}_{\mathbf{i}}=\mathbf{V}_{\mathbf{i}}^{\mathbf{1 / 2}} \mathbf{R}_{\mathbf{i}} \mathbf{V}_{\mathbf{i}}^{1 / 2}$ with $\mathbf{V}_{\mathbf{i}}$ the diagonal matrix of the variance of the element of $\mathbf{Y}_{\mathbf{i}}$. The matrix $\mathbf{R}_{\mathbf{i}}$ is the 'working' correlation matrix that expresses the dependence among repeated observations over the subjects.

Missingness

Missing data patterns

- Drop out / attrition
- Non-monotone missingness

Missing data mechanism (Little and Rubin, 1987)

- MCAR: Missing completely at random
- MAR: Missing at random
- MNAR: Missing not at random

Example : Appetite loss - (1) Treatment effect

Model

- Consider the model:

$$
\operatorname{logit}\left[\operatorname{Pr}\left(Y_{i j} \leq k\right)\right]=\theta_{k}+\left(\beta_{1}+\gamma_{\mathbf{k} 1}\right) t_{i j}+\left(\beta_{2}+\gamma_{\mathbf{k} \mathbf{2}}\right) \text { Treat }_{i}+\left(\beta_{3}+\gamma_{\mathbf{k} 3}\right) t_{i j} \times \text { Treat }_{i}
$$

- $k=1,2,3$
- $t_{i j}$: $j^{\text {th }}$ time of measurement on subject i
- Treat $_{i}$: treatment group $(1=\mathrm{RT}+\mathrm{CT}$ vs $0=\mathrm{RT})$

Assumption

- Missing data mechanism is MCAR (GEE)
- Proportional odds assumption is verified for t, Treat and $t \times$ Treat.
$\gamma_{\mathbf{k}, \mathbf{t}}=\mathbf{0} \quad(p=0.86)$
$\gamma_{\mathbf{k}, \text { Treat }}=\mathbf{0} \quad(p=0.21)$
$\gamma_{\mathbf{k}, \mathbf{t} \times \text { Treat }}=\mathbf{0} \quad(p=0.17)$

Example : Appetite loss - (1) Treatment effect

Model becomes

$$
\operatorname{logit}\left[\operatorname{Pr}\left(Y_{i j} \leq k\right)\right]=\theta_{k}+\beta_{1} t_{i j}+\beta_{2} \text { Treat }_{i}+\beta_{3}\left(t_{i j} \times \text { Treat }_{i}\right) \quad, k=1,2,3
$$

Estimation

Table1: GEE parameter estimates for the appetite
loss scale - Proportional odds model

Covariates	Estimate	SE	p-value
θ_{1}	1.21	0.14	
θ_{2}	2.48	0.16	
θ_{3}	3.81	0.21	
$t_{i j}$	0.08	0.04	0.033
Treat $_{i}$	-0.39	0.19	0.034
$t_{i j} \times$ Treat $_{i}$	-0.12	0.05	0.009

A significant difference between treatment arms was found in favor of the RT alone treatment.

Example: Appetite loss - (2) Tumor cell effect

Model

- Consider the model:

$$
\operatorname{logit}\left[\operatorname{Pr}\left(Y_{i j} \leq k\right)\right]=\theta_{k}+\left(\beta_{1}+\gamma_{\mathbf{k} 1}\right) t_{i j}+\left(\beta_{2}+\gamma_{\mathbf{k} \mathbf{2}}\right) \text { Tumor }_{i}+\left(\beta_{3}+\gamma_{\mathbf{k} 3}\right) t_{i j} \times \text { Tumor }_{i}
$$

- $k=1,2,3$
- $t_{i j}$: $j^{\text {th }}$ time of measurement on subject i
- Tumor $_{i}$: type of diagnosed tumor $(1=$ pure vs $0=$ mixed $)$

Assumption

- Missing data mechanism is MCAR (GEE)
- Proportional odds assumption is not met for t, Tumor and $t \times$ Tumor.
$\gamma_{\mathbf{k}, \mathbf{t}}=\mathbf{0} \quad(p=0.015)$
$\gamma_{\mathbf{k}, \text { Tumor }}=\mathbf{0} \quad(p=0.044)$
$\gamma_{\mathbf{k}, \mathbf{t} \times \text { Tumor }}=\mathbf{0} \quad(p=0.008)$

Example : Appetite loss - (2) Tumor cell effect

Estimations
Table2: GEE parameter estimates for the appetite loss scale - Partial proportional odds model

Covariates	k	Estimate	SE	p-value
θ_{1}	1	-0.75	0.25	
θ_{2}	2	1.58	0.41	
θ_{3}	3	1.93	0.78	
$t_{i j}$	1	0.49	0.06	<0.0001
$t_{i j}$	2	-0.10	0.12	0.39
$t_{i j}$	3	0.53	0.22	0.015
Tumor $_{j}$	1	1.30	0.20	<0.0001
Tumor $_{j}$	2	0.45	0.33	0.18
Tumor $_{j}$	3	1.14	0.65	0.079
$t_{i j} \times$ Tumor $_{j}$	1	-0.34	0.04	<0.0001
$t_{i j} \times$ Tumor $_{j}$	2	0.092	0.097	0.34
$t_{i j} \times$ Tumor $_{j}$	3	-0.32	0.16	0.04

Example: Appetite loss - (2) Tumor cell effect

$\operatorname{logit}\left[\operatorname{Pr}\left(Y_{i j} \leq 1\right)\right]=-0.75+0.49 t_{i j}+1.30$ Tumor $_{j}-0.34 t_{i j} \times$ Tumor $_{j}$
$\operatorname{logit}\left[\operatorname{Pr}\left(Y_{i j} \leq 2\right)\right]=1.58-0.10 t_{i j}+0.45$ Tumor $_{j}+0.092 t_{i j} \times$ Tumor $_{j}$
$\operatorname{logit}\left[\operatorname{Pr}\left(Y_{i j} \leq 3\right)\right]=1.93+0.53 t_{i j}+1.14$ Tumor $_{j}-0.32 t_{i j} \times$ Tumor $_{j}$
where $1=$ "Not at all', $2=$ 'A little', $3=$ 'Quite a bit', $4=$ 'Very much'

Interpretation

- At baseline, pure cell tumor patients have $e^{1.30}=3.7$ time higher odds of having no appetite loss than mixed cells tumor patients.
- At baseline, pure cell tumor patients have $e^{0.45}=1.6$ time higher odds of having at most little appetite loss than mixed cells tumor patients.
- At baseline, pure cell tumor patients have $e^{1.14}=3.1$ time higher odds of having at most quite a bite appetite loss than mixed cells tumor patients.

Conclusion

We have explored the extension of the partial proportional odds model to the case of longitudinal data

- Estimation mechanism (GEE)
- Testing for the proportional odds assumption for each covariate
- Final model that
takes into account the ordinal nature of the variable under study takes into account the correlation between repeated observations allows relaxing the proportional odds assumption (when necessary)
- Missing data to be first investigated (GEE, WGEE, Mi-GEE)

Thank you for your attention

