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Abstract. The aim of this research is to evaluate the through thickness residual stresses 
distribution in the walls and in the corners of a cold-formed open section made of a material 
presenting a non linear hardening behaviour. To get results as close as possible to the reality, the 
complete process is modeled, including coiling and uncoiling of the sheet before the cold 
bending of the corner itself. The elastic springback after flattening as well as after final shaping 
are also taken into account. In order to validate the model in predicting the residual stresses 
distribution, the presented results are confronted to experimental measurements and FE results 
collected from the literature.  
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INTRODUCTION 

In the design of structural cold-formed steel members, residual stresses count for a 
lot and may be decisive in the evaluation of the ultimate load in steel structures. The 
current paper presents theoretical equations aiming at evaluating the through thickness 
residual stresses distribution in cold-formed members due to coiling, uncoiling and 
cold braking of the corners. Through these equations, the effect of the radius of coiling 
and folding on the stresses and on the final radius after springback can be examined for 
carbon steel as well as for material presenting a non linear hardening behaviour as 
stainless steel. This is of great interest for the analysis of ultimate load in structural 
cold-formed members whilst compressive residual stresses cause a direct redistribution 
of the stresses during the loading and alters the behaviour in carrying.  



COMPUTATIONS OF RESIDUAL STRESSES 

Coiling, Flattening And Springback 

In this section, the equations proposed by W.M. Quach et al. (4) are modified in 
order to add the non linear hardening behaviour. Due to the complexity of the 
theoretical solution, MATLAB is used to solve the equations numerically. 

It is assumed that the flat sheet is free of stresses before its storage thanks to the 
annealing step. In this modified approach, the steel can exhibit an isotropic non-linear 
hardening behaviour. The longitudinal direction, denoted x, is the coiling direction, y 
corresponds to the thickness of the sheet and z is the transverse direction. As the width 
of the plate is assumed to be large enough to disregard the presence of transverse 
strains, the problem can be summarized as the plane strain pure bending of a sheet in 
the x-y plane.  

 

FIGURE 1.  Plane strain pure bending of a sheet in the x-y plane 

Theoretical Model 

The procedure followed in these investigations is quickly described here. Hooke’s 
law is chosen to characterise transversely isotropic material behaviour and one needs a 
longitudinal and transverse Young’s modulus E and Et as well as Poisson’s ratio to 
describe it. As soon as zε  and yxγ are equal to zero, the incremental part of the strain 
field εd  and the corresponding stress field σd  are given by: 
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unknown part of the problem.  
Since plastic strains occur, Hill’s quadratic flow surface ),,,( LXF kp ασ  and the 

corresponding consistency equation have to be fulfilled.  
 pF = Fequ σσ − =0 (3) 

 ( )
( )

z

x

z

p

x

p

z
p

x
p

L
L

F

F

d
d

σ
σ

σ
λ

σ
λ

ε
ε

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

=  (4) 

z x 

y 



with 1( ) ( )
2

T
equ Lσ σ σ= ;L is the tensor of the anisotropic parameters : 

⎥
⎦

⎤
⎢
⎣

⎡
+−

−+
=

FHH
HHG

L .  

The numerical solution is thus summarised in a system of two equations with two 
unknowns ( p

xdε  and p
zdε ) and is solved in MATLAB. One divides the thickness into 

several layers; at each step of the numerical computation, the curvature increases and 
the system of equations is solved; Fσ  is described by Swift law 0( )p n

F equKσ ε ε= +  
(chosen for representing the non linear hardening behaviour where p

equε  is the 
equivalent plastic strain), and is re-evaluated at each step (according to the increased 
p
equε ) and the flow surface pF  grows up isotropically. Under reverse yielding, one 

supposes isotropic hardening behaviour in each case developed in this work. For 
further information, see (3) and (4). 

Finite Element Model  

A finite element model of the bending of a steel sheet has also been conducted. The 
boundary conditions of the finite element model are depicted below.  

 
FIGURE 2. Boundary conditions for the FE model 

 
The displacements are directed by two lines; the neutral axis of the sheet (x 

direction) is located at the half-width and fits an arc of circle (the radius of which 
being variable during the coiling); the right edge (y direction) remains all the time 
perpendicular to the neutral axis at the point A. The plans in the z direction are 
constrained to follow the displacement parallely with respect to the hypothesis of the 
problem. For symmetry reasons, only one half of the sheet is modelled. The present 
model has been implemented in the LAGAMINE finite element code, which has been 
developed at the University of Liège for more than 20 years. For more information see 
(2). 

Residual Stresses Distribution 

In the current paper, the so-called DP1000 (dual phase) steel has been chosen. This 
steel presents a non-linear hardening behaviour and authors (7) give material 
parameters of Swift law in order to characterise the hardening behaviour. 

 

Symmetry:  
DOF x fixed 

Prescribed 
geometry 

Plane strain 
condition (εz = 0): 
planes move 
parallely and the 
distance remains 
unchanged 

x 
z 

y

A
2 mm 
16 elements  

10mmn, 100 elements  



Table 1. Material parameters for DP 1000 
F G H N K n ε0 
1.051 1.036 0.925 3.182 1626 0.17 0.00487 
nK ,, 0ε  are material parameters determined by tensile test in the rolling direction 

z. 
Moreover, such steel presents an anisotropic yield locus which can be described by 

means of Hill’s 1948 quadratic equation (equ. (3)) using the material parameters given 
in Table 1. 

MATLAB results and finite element results have been reported on the graph 
(FIGURE 3: left graph), where the left part and the right part represent respectively: 
the stresses (obtained by numerical resolution) due to the coiling of the sheet; the 
stresses (obtained by numerical and finite element resolution) due to the coiling (s_c) 
and the uncoiling (s_r) of the shee. In the core of the sheet (y<0.8mm), where the 
stresses remained elastic after coiling, the uncoiling process leaves no stresses. After 
the coiling and uncoiling process, the resulting moment, corresponding to the flexural 
stresses remaining, can be easily evaluated. Unloading via a reverse bending moment 
produces elastic strains and stresses corresponding to the springback of the sheet 
(FIGURE 3: right graph). 
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FIGURE 3. Flexural stresses due to coiling and uncoiling and residual stresses after springback 

(Rc=250mm)  

Residual Stresses Due To Press Braking   

Theoretical Model 

In case of press braking, the sheet is set into a die and is shaped by means of a 
punch (press braking on a V press). First, one supposes that press braking can again be 
modelled as pure bending, thus the final stress distribution in the corner can easily be 
found out by means of the considerations developed previously. Such assumption is 
not far from reality if the length of the bent profile allows ignoring deformation 
through the longitudinal direction. Moreover, in reality, loads are applied via a punch 
and they could be more accurately modelled by means of a uniformly distributed 
internal pressure. In addition, the radius of the fold decreases a lot and the previous 
calculations can not be conducted anymore because of the presence of the radial 
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(through thickness) stresses. Nevertheless, in the frame of the present research, one has 
chosen to keep the previous hypothesis disregarding the presence of the radial stresses.  

The calculations are conducted with considering an initial state of stress 
(sz_residualNUM and sx_residualNUM) and plastic deformations corresponding to 
process preceding the press-braking. In that part of the problem, x indicates the 
longitudinal direction of the fold (initial state of stresses: sz_residualNUM) and z 
indicates the transverse direction (ISS: sx_residualNUM) as the fold is bent in a plane 
perpendicular to the plane of coiling-uncoiling. 

Residual Stresses Distribution 
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FIGURE 4. Residual stresses due to coiling - uncoiling -springback - bending - springback: Rc=250mm, 

Rf=6mm. results for a DP1000 steel.  
As explained, the presence of radial stresses influences the distribution of stresses 

through the thickness during bending and after springback (FIGURE 4). Nevertheless, 
after springback, the distribution of stresses approached by the theoretical (MATLAB 
resolution) method is quite good in regards with the amplitude of stresses provided by 
the FE calculations.   

In Hill’s quadratic yield locus equation (equ. (3)) developed as equ. (5), one can 
notice that σx and σz  are influenced by σy. Moreover σy increases the equivalent plastic 
strain, which also modifies the value of σF. In the tensed part of the sheet, theoretical 
investigation recommends a stronger hardening while in the compressed part, the 
conclusion is the opposite.  
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Discrepancies between the calculations are also due to the distribution of the elastic 

stresses after springback (FIGURE 5). In the case of the bending of a curved sheet, 
this distribution is not linear as described in 8. 



 
FIGURE 5. Residual stresses due to pure bending followed by springback: case of a small radius 

Agreement With Experimental Measurements 

Finite element predictions given by Quach et al. (5) are confronted here with Weng 
and White’s (6) measurements and put side by side with theoretical results in 
FIGURE 6. These results concern the cold-bending of a HY-80 steel (high yield 
strength, low carbon, low alloy steel with nickel, molybdenum and chromium). The 
HY8 steel behaviour is assimilated to a non linear one, the Swift law parameters have 
been fitted on a stress-strain curve corresponding to a tensile test in the longitudinal 
direction (see Table 2). The yield strength is equal to 593.3MPa. 

 
Table 2. Material parameters for HY80 
K n ε0 
1035 0.1063 0.002 

The finite element simulations model the complete press-braking process. They 
provide accurate results and overcome difficulties of measurement but such model 
requires a certain expertise and are time consuming. Additionally, in particular cases, 
they also suffer bad convergence and accurate results cannot be accomplished. 
Otherwise, theoretical results are in good agreement with the measurements in regard 
with the total amplitude of the residual stresses diagram.  
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FIGURE 6. Residual stresses due to press-braking: Rf=139.7mm 
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CONCLUSIONS 

The theoretical calculations of residual stresses in cold-formed steel members 
including non-linear hardening behaviour are complex and require a certain number of 
assumptions. In this paper, theoretical (equations solved via MATLAB) and numerical 
(FE) calculations have been conducted to model the whole process: the coiling-
uncoiling operations followed by natural springback and the press braking process also 
followed by elastic springback. Plane strain condition is assumed both in the coiling-
uncoiling and in the press-braking process. In the theoretical calculations, no radial 
stresses are taken into account in the calculations. The material is supposed to be 
anisotropic and to obey to Hill’s quadratic yield surface and the subsequent plastic 
flow rule. Non linear hardening behaviour is taken into account in the calculations.  

The results confirm a complex distribution of flexural stresses and show good 
agreement with measurements collected in literature.  

In cold formed column, residual stresses cause a direct redistribution of the stresses 
during the loading and alter the behaviour in carrying (6). Consequently, a good 
knowledge of the amplitude of the residual stresses and of their distribution is of great 
interest for the analysis of ultimate loads in structural cold-formed members. 
Pragmatic convention is to model residual stresses in cold formed profile as the sum of 
a membrane type and flexural type. This assumption is unreasonable while the 
calculations show more complex variation of the distribution through the thickness.  
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