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We report on the first extraction of interference fragmentation functions from the semi-inclusive

production of two hadron pairs in back-to-back jets in eþe� annihilation. A nonzero asymmetry in the

correlation of azimuthal orientations of opposite �þ�� pairs is related to the transverse polarization of

fragmenting quarks through a significant polarized dihadron fragmentation function. Extraction of the

latter requires the knowledge of its unpolarized counterpart, the probability density for a quark to fragment

in a �þ�� pair. Since data for the unpolarized cross section are missing, we extract the unpolarized

dihadron fragmentation function from a Monte Carlo simulation of the cross section.
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I. INTRODUCTION

In the hadronization process, there is a nonvanishing
probability that at a hard scale Q2 a highly virtual parton
fragments into two hadrons inside the same jet, carrying
fractional energies z1 and z2, plus other unobserved frag-
ments. This nonperturbative mechanism can be encoded in
the so-called dihadron fragmentation functions (DiFFs) of
the form Dðz1; z2;Q2Þ. The interest in two-particle corre-
lations in eþe� processes was first pointed out in Ref. [1].
DiFFs were introduced for the first time in the context of jet
calculus [2], and they are needed to cancel all collinear
singularities when the semi-inclusive production of two
hadrons from eþe� annihilations is considered at next-to-
leading order in the strong coupling constant [3] (NLO).

Experimental information on two hadron production is
often delivered in terms of a distribution in the invariant
mass Mh of the hadron pair [4–6]. Therefore, it is conve-
nient to describe the process with ‘‘extended’’ DiFFs of the
form Dðz1; z2;Mh;Q

2Þ, in analogy to what is done for
fracture functions [7]. If M2

h � Q2, DiFFs asymptotically

transform into the combination of two single-hadron frag-
mentation functions [8]. If M2

h � Q2, they represent a

truly new nonperturbative object. For polarized fragmen-
tations, certain DiFFs emerge from the interference of
amplitudes with the hadron pair being in two states with
different relative angular momentum [9–12]. Hence, in the
literature they are addressed also as interference fragmen-
tation functions (IFFs) [10]. IFFs can be used, in particular,
as analyzers of the polarization state of the fragmenting
parton [13–16].

The definition of DiFFs and a thorough study of their
properties were presented in Refs. [16,17] (up to leading

twist) and in Ref. [18] (including subleading twist; see also
Ref. [19]). AtM2

h � Q2, DiFFs satisfy the same evolution

equations as the single-hadron fragmentation functions
[20], in contrast to what happens if DiFFs are integrated
overM2

h [3]. They can be factorized and are assumed to be

universal. In fact, they appear not only in eþe� annihila-
tions [21,22], but also in hadron pair production in semi-
inclusive deep-inelastic scattering (SIDIS) [17,22] and in
hadronic collisions [23].
The case of SIDIS production of ð�þ��Þ pairs (or of

any pair of distinguishable unpolarized hadrons) on trans-
versely polarized protons is of particular interest. In fact, in
the fragmentation q" ! ð�þ��ÞX a correlation occurs
between the transverse polarization of the parton q" and
the relative orbital angular momentum of the pair. Such
nonperturbative effect is encoded in the chiral-odd DiFF

H\q
1 [9,10,16], which arises from the interference of frag-

mentation amplitudes ð�þ��ÞL with relative partial waves

L differing by j�Lj ¼ 1 [10,11,17]. The H\q
1 appears in

the factorized formula for the leading-twist SIDIS cross
section in a simple product with the chiral-odd transversity
distribution hq1 [17], the most elusive parton distribution,

needed to give a complete description of the collinear
partonic spin structure of the nucleon (for a review, see

Ref. [24]). The same H\q
1 (and its antiquark partner)

appears in the factorized formula for the leading-twist
cross section for the process eþe� ! ð�þ��Þð�þ��ÞX
[21,22], where the transverse polarization of the elemen-
tary q" �q# pair is correlated to the azimuthal orientation of
the planes containing the momenta of the two pion pairs

[15,21]. Thus, extracting the hq1H
\q
1 and H\q

1
�H\q
1 combi-

nations through specific azimuthal asymmetries in SIDIS
and eþe�, respectively, offers a way to isolate the trans-
versity hq1 with significant theoretical advantages

[11,17,25,26] with respect to the traditional strategy based
on the Collins effect [27].

*aurore.courtoy@ulg.ac.be
†alessandro.bacchetta@unipv.it
‡marco.radici@pv.infn.it
§andrea.bianconi@bs.infn.it

PHYSICAL REVIEW D 85, 114023 (2012)

1550-7998=2012=85(11)=114023(15) 114023-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.114023


The spin asymmetry in the SIDIS process ep" !
e0ð�þ��ÞX was measured by the HERMES collaboration
[28]; preliminary data are available also from the
COMPASS collaboration [29]. Clear evidence for the re-
quired azimuthal asymmetry in the process eþe� !
ð�þ��Þð�þ��ÞX has been recently reported by the
Belle collaboration [30]. A combined analysis of these
data has led to the first extraction of transversity in the
framework of collinear factorization using two-hadron
inclusive measurements [26]. The results seem for the
moment compatible with the only other available parame-
trization of hq1 , which is based on the Collins effect in

single-hadron production [31]. However, more data are
needed to strengthen the case, including also proton-proton
collisions where preliminary results are available from the
PHENIX collaboration [32].

All these analyses require a good knowledge of the
dependence upon z1, z2, and Mh of the polarized DiFF

H\q
1 , as well as of its polarization-averaged partner Dq

1 . In

this paper, we study the full dependence of both DiFFs for
the u, d, s, and c flavors. We start at a low hadronic scale
Q2

0 ¼ 1 GeV2 using a parametrization inspired by previous

model calculations of DiFFs [12,22,33]. Then, we apply
evolution equations to DiFFs using the HOPPET code [34],
suitably extended to include chiral-odd splitting functions.
Finally, we fit the recent Belle data on azimuthal asymme-
tries in the orientation of ð�þ��Þ pairs collected at Q2 ¼
100 GeV2 (close to the�ð4SÞ resonance). In the absence of
published data for the unpolarized cross section, we pa-
rametrize the Dq

1 by fitting the prediction of the PYTHIA

event generator [35] adapted to the Belle kinematics, since
this code is known to give a good description of the total
cross section [36]. The information delivered by PYTHIA

is much richer than the asymmetry measurement.
Consequently, the analysis for Dq

1 can be developed to a

much deeper detail than what is possible for H\q
1 . It is

anyway useful to obtain a thorough knowledge of the
unpolarized DiFF, even if based on ‘‘virtual’’ data. In the
future, we hope it will be possible to perform an analogous
study on real data.

The paper is organized as follows. In Sec. II, we briefly
recall the formalism for the eþe� ! ð�þ��Þð�þ��ÞX
process. In Sec. III, we describe the steps leading to the
extraction of Dq

1 from the Monte Carlo simulation. In

Sec. IV, we describe the extraction of H\q
1 from real

data. Finally, in Sec. V we discuss some outlooks for future
improvements.

II. FORMALISM

We consider the process eþe� ! ð�þ��Þjet1 �
ð�þ��Þjet2X, depicted in Fig. 1. An electron and a positron
with momenta le� and leþ , respectively, annihilate produc-
ing a photon with timelike momentum transfer q ¼ le� þ
leþ , i.e. q

2 ¼ Q2 � 0. A quark and an antiquark are then

emitted, each one fragmenting into a residual jet and a
ð�þ��Þ pair with momenta and masses P1, M1, and P2,
M2, respectively, (for the pair in the antiquark jet, we use the
notation �P1, �M1, and �P2, �M2, respectively, and similarly for
all other observables pertaining the antiquark hemisphere).
We introduce the pair total momentum Ph ¼ P1 þ P2 and
relative momentum R ¼ ðP1 � P2Þ=2, and the pair invari-
ant massMh with P

2
h ¼ M2

h. The two ð�þ��Þ pairs belong
to two back-to-back jets, from which Ph � �Ph � Q2. Using
the standard notations for the light-cone components of a
4-vector, we define the following light-cone fractions

z ¼ P�
h

q�
¼ z1 þ z2 � ¼ 2

R�

P�
h

¼ z1 � z2
z

�z ¼ �Pþ
h

qþ
¼ �z1 þ �z2 �� ¼ 2

�Rþ
�Pþ
h

¼ �z1 � �z2
�z

:

(1)

The z is the fraction of quarkmomentum carried by the pion
pair, and � describes how the total momentum of the pair is
split between the two pions [12] (and similarly for �z, �� ,
referred to the fragmenting antiquark). In Fig. 1, we identify
the lepton frame with the plane formed by the annihilation
direction of leþ and the axis ẑ ¼ �Ph, in analogy to the
Trento conventions [37]. The relative angle is defined as
�2 ¼ arccosðleþ � Ph=ðjleþjjPhjÞÞ and is related, in the lep-
ton center-of-mass frame, to the invariant y ¼ Ph � le�=Ph �
q by y ¼ ð1þ cos�2Þ=2. The azimuthal angles �R and ��R

give the orientation of the planes containing themomenta of
the pion pairs with respect to the lepton frame. They are
defined by [22]

�R ¼ ðleþ � PhÞ � RT

jðleþ � PhÞ � RTj arccos
�
leþ � Ph

jleþ � Phj �
RT � Ph

jRT � Phj
�

��R ¼ ðleþ � PhÞ � �RT

jðleþ � PhÞ � �RTj
arccos

�ðleþ � PhÞ
jleþ � Phj �

ð �RT � PhÞ
j �RT � Phj

�
;

(2)

FIG. 1 (color online). Definition of the kinematics for the
process eþe� ! ð�þ��Þjet1ð�þ��Þjet2X.

COURTOY et al. PHYSICAL REVIEW D 85, 114023 (2012)

114023-2



where RT is the transverse component of R with respect to
Ph (and similarly for �RT). The above framework corre-
sponds in Ref. [30] to the frame where no thrust axis is
used to define angles, andwhere all quantities are labeled by
the subscript ‘‘R’’.

The previous definitions imply that [12]

jRj
Mh

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

M2
h

s
: (3)

Moreover, the light-cone fractions � , �� , can be rewritten
as [12]

� ¼ 2
jRj
Mh

cos� �� ¼ 2
j �Rj
�Mh

cos ��; (4)

where � describes the direction of P1, in the center-of-mass
frame of the pion pair, with respect to the direction of Ph in
the lepton frame (and similarly for �� in the other hemi-
sphere). From Eqs. (1) and (4), DiFFs depend directly on z,
cos�, and they can be expanded in terms of Legendre
polynomials of cos�. We keep only the first two terms,
which correspond to L ¼ 0ðsÞ and L ¼ 1ðpÞ relative par-
tial waves of the pion pair [17], since we assume that at low
invariant mass the contribution from higher partial waves is
negligible.

Using the definitions and transformations above, we can
start from Eq. (30) of Ref. [21] (see also Ref. [22]) and
write the leading-twist unpolarized cross section for the
production of two pion pairs (summing over everything
else) as

d�0

d cos�2dzd cos�dMhd�zd cos ��d �MhdQ
2

¼ 3��2

2Q2

1þ cos2�2
4

X
q

e2qD
q
1ðz;Mh;Q

2Þ �Dq
1ð�z; �Mh;Q

2Þ;

(5)

where the flavor sum is understood to run over quarks and
antiquarks, and in the expansion of D1 ( �D1) in Legendre
polynomials of cos� ( cos ��) we have kept the first non-
vanishing term after integrating in d cos� (d cos ��) [17].

The fully differential polarized part of the leading-twist
cross section contains many terms (see Eq. (19) in
Ref. [21]). But in the framework of collinear factorization,
i.e. after integrating upon all transverse momenta but RT

and �RT , only one term survives beyond d�0. It is identified
by its azimuthal dependence cosð�R þ ��RÞ, which is re-
sponsible for the asymmetry in the relative position of the
planes containing the momenta of the two pion pairs. Then,
the integrated full cross section can be written as

d�

d cos�2dzd cos�dMhd�Rd�zd cos ��d �Mhd ��RdQ
2

¼ 1

4�2
d�0ð1þ cosð�R þ ��RÞAÞ; (6)

where we define the so-called Artru–Collins azimuthal
asymmetry (compare with Eq. (21) in Ref. [21] and
Eq. (11) in Ref. [22])

Aðcos�2; z; cos�;Mh; �z; cos ��; �Mh;Q
2Þ

¼ sin2�2
1þ cos2�2

sin� sin ��
jRj
Mh

j �Rj
�Mh

�
P

q e
2
qH

\q
1;spðz;Mh;Q

2Þ �H\q
1;spð�z; �Mh;Q

2ÞP
q e

2
qD

q
1ðz;Mh;Q

2Þ �Dq
1ð�z; �Mh;Q

2Þ : (7)

In the expression above, we have used the relation RT ¼
R sin� (and similarly for �RT). Again, in the expansion of
DiFFs in Legendre polynomials of cos� ( cos ��) we have
kept the first nonvanishing term after integrating in d cos�
(d cos ��) [17]. For the polarized part, this amounts to keep

that component of H\q
1 corresponding to the interference

between a pair in relative s wave and the other one in

relative p wave, namely H\q
1;sp [22]. Note also that, at

variance with Ref. [21], the azimuthally asymmetric term
is not isolated by integrating over �R and ��R, since the
integration could not be complete in the experimental
acceptance. Rather, it is extracted as the coefficient of the
cosð�R þ ��RÞ modulation on top of the flat distribution
produced by the unpolarized part.
For our analysis, it is necessary to consider the unpolar-

ized cross section d�0 also for the production of just one
pion pair. From Eq. (5), we have

Z
d�zd �Mhd cos ��d�

0j �D1¼�ð1��zÞ

� d�0

d cos�2dzd cos�dMhdQ
2

¼ 3��2

Q2

1þ cos2�2
4

X
q

e2qD
q
1ðz;Mh;Q

2Þ: (8)

Our strategy is the following. We start from a parame-
trization of DiFFs at the low hadronic scale Q2

0 ¼ 1 GeV2

by taking inspiration from previous model analyses
[12,22,33]. Then, we evolve DiFFs at leading order (LO)
up to the Belle scale Q2 ¼ 100 GeV2 by using the HOPPET

code [34], suitably extended to include chiral-odd splitting
functions. In principle, the unpolarized D1 should be
extracted by global fits of the unpolarized cross section,
in the same way as it is done for single-hadron fragmenta-
tion [38]. Because no data are available yet, we extract it
by fitting the single pair distribution simulated by a
Monte Carlo event generator. Next, we fit the experimental
data for the Artru-Collins asymmetry of Eq. (7) and we

extract H\
1 from this fit. In the following, we list some

more details of our analysis and we discuss the final
results.
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III. EXTRACTION OF D1 FROM THE SIMULATED
UNPOLARIZED CROSS SECTION

In this section, we describe in more detail the
Monte Carlo simulation of the unpolarized cross section
and its fitting procedure, and we present the results of the
parametrization of the unpolarized DiFF D1.

A. The Monte Carlo simulation

We used a PYTHIA simulation [35] to study ð�þ��Þ
pairs with momentum fraction z and invariant mass Mh

from eþe� annihilations at the Belle kinematics [36]. The
pair distribution should be described according to the un-
polarized cross section of Eq. (8) integrated in �2 and �,
since we assume the integration to be complete in the
Monte Carlo sample. The actual expression of the cross
section is

d�0

dzdMhdQ
2
¼ 4��2

Q2

X
q

e2qD
q
1ðz;Mh;Q

2Þ: (9)

Events are generated with no cuts in acceptance. The
data sample is based on a Monte Carlo integrated luminos-
ity LMC ¼ 647:26 pb�1 corresponding to 2:194� 106

events. The total number of produced pion pairs is ntot ¼
1:040� 106, approximately one pair every two events. We
use these numbers to normalize D1, but the results for the

Artru-Collins asymmetry (and, consequently, for H\
1 =D1)

are independent of the normalization.
The counts of pion pairs are collected in a bidimensional

40� 50 binning in ðz;MhÞ. The invariant mass is limited in
the range 0:29 � Mh � 1:29 GeV, the lower bound being
given by the natural threshold 2m� and the upper cut
excluding scarcely populated or frequently empty bins.
Each pion pair is required to have a fractional energy z �
0:2 in order to focus only on pions coming from the
fragmentation process. To avoid large mass corrections,
we impose the condition

�h � 2Mh

zQ
� 1; (10)

which we in practice implement as �h � 1=2.
For the fragmentation process q ! ð�þ��ÞX in the

range 0:29 � Mh � 1:29 GeV, the invariant mass distri-
bution has a rich structure. The most prominent channels
can be cast in two main categories, three resonant channels
and a ‘‘continuum’’ (see the discussion around Fig. 2 in
Ref. [12]; see also Refs. [4–6,39]):

(i) the production of ð�þ��Þ pairs in relative p wave
via the decay of the 	 resonance; it is the cleanest
channel and is responsible for a peak in the invariant
mass distribution at Mh 	 776 MeV,

(ii) the production of ð�þ��Þ pairs in relative p wave
via the decay of the! resonance; it produces a sharp
peak at Mh 	 783 MeV but smaller than the pre-
vious one. However, the ! resonance has a large

branching ratio for the decay into ð�þ��Þ�0 [40].
We include also this contribution after summing
over the unobserved �0; it generates a a broad
peak roughly centered around Mh 	 500 MeV,

(iii) the production of ð�þ��Þ pairs via the decay of the
K0

S resonance, which produces a very narrow peak

at Mh 	 498 MeV,
(iv) everything else included in a channel which for

convenience we call continuum and we model as
the fragmentation into an ‘‘incoherent’’ pion pair.

The fragmentationvia the
 resonance also produces a peak
overlapping with the K0

S one (plus a smaller hump atMh 	
350 MeV) but with less statistical weight. Hence, we will
neglect this channel and we will neglect as well all other
resonances which are not visible in the PYTHIA output [12].
In summary, the behavior of the fragmentation into

ð�þ��Þ pairs with respect to their invariant mass will be
simulated in four ways: three channels corresponding to
the decay of the 	, !, and K0

S resonances, and a channel

that includes everything else (continuum). Using the
Monte Carlo, we study each channel separately. For each
channel, the flavor sum in Eq. (9) is decomposed in the
contribution of q ¼ u, d, s, and c.

B. Fitting the Monte Carlo simulation

In the first step, for each channel ch ¼ cont, 	,!,K, and
for each flavor q ¼ u, d, s, c, we parametrize
Dq

1;chðz;Mh;Q
2
0Þ at the hadronic scaleQ2

0 ¼ 1 GeV2 taking

inspiration from Refs. [12,22,26]. For ð�þ��Þ pairs, iso-
spin symmetry and charge conjugation suggest that

Du
1 ¼ Dd

1 ¼ �Du
1 ¼ �Dd

1 ; (11)

Ds
1 ¼ �Ds

1; Dc
1 ¼ �Dc

1: (12)

The best fit of the Monte Carlo output at the Belle scale
shows compatibility with both conditions (11) and (12) for
all channels but for the K0

S ! ð�þ��Þ decay, where the

choice Dd
1;K � Du

1;K is required. In general, we choose Ds
1

to differ from Du
1 only in the z dependence.

The full analytic expression of Dq
1;chðz;Mh;Q

2
0Þ can be

found in appendix A. Here, we illustrate the z and Mh

dependence ofDu
1;	 as an example, since it displays enough

general features that are common to most of the other
channels. The function Du

1;	ðz;Mh;Q
2
0Þ is described by

Du
1;	ðz;Mh;Q

2
0Þ

¼ ðN	
1 Þ2z�

	
1 ð1� zÞð�	

2
Þ2ð2jRjÞð�	

1
Þ2

� ½exp½�Pð�	
1 ;�

	
2 ;�

	
3 ;0;�ð�	

1 þ�
	
2 þ�

	
3 Þ; zÞM2

h

� exp½�Pð�	

1 ;0; �
	
2 ;0;0;zÞ
þð
	

1 Þ2BWðm	;�	;MhÞ
;
(13)

where
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Pða1; a2; a3; a4; a5; xÞ ¼ a1
1

x
þ a2 þ a3xþ a4x

2 þ a5x
3

BWðm;�; xÞ ¼ 1

ðx2 �m2Þ2 þm2�2
:

(14)

The function BW is proportional to the modulus squared
of a relativistic Breit–Wigner for the considered resonant
channel, and it depends on its mass and width. In this case
of the 	 ! ð�þ��Þ decay, it involves the fixed parameters
m	 ¼ 0:776 GeV and �	 ¼ 0:150 GeV. The other ten

parameters ðN	
1 ; �

	
1 ; �

	
2 ; �

	
1 ; �

	
1 ; �

	
2 ; �

	
3 ; �

	
1 ; �

	
2 ; 


	
1 Þ are fit-

ting parameters. In Eq. (13), the dependence on z andMh is
factorized, namely, it can be represented as the product of
two functions f1ðzÞf2ðMhÞ, except for the exponential term
exp½PM2

h
, where P is the polynomial depending only on z.
A good fit of the Monte Carlo output can be reached only if
the latter contribution is included.

More generally, in every channel there is a factorized
part where the z dependence is of the kind z�1ð1� zÞ�2 and
the Mh dependence is of the kind 2jRj�, with jRj given by
Eq. (3). The�1,�2, and�, are fitting parameters. Then, the
factorized part is multiplied by an unfactorizable contribu-
tion which can be generally represented as exp½df�gðzÞ þ
hf�gðMhÞ þ ff�gðzMhÞ
. The functions d, h, f, are typically
polynomials depending also on sets of fitting parameters
f�g, f�g, f�g, respectively. The appearance of the term
ff�gðzMhÞ prevents the fitting function from assuming a

factorized dependence in z and Mh. The best fit of the
Monte Carlo output requires a nonvanishing and important
contribution from ff�gðzMhÞ [41]. For the resonant chan-

nels, the unfactorizable contribution is added to the modu-
lus squared of a Breit–Wigner distribution in Mh with the
mass and width of the considered resonance and weighted
with a fitting parameter 
. The K0

S ! ð�þ��Þ decay re-

quires a more elaborated analysis around the peak, since
the resonance width is narrower than the width of the
Monte Carlo bin (see appendix).

The �1, �2, �, f�g, f�g, f�g, 
, sets of parameters (and
the normalization N) can all depend on the selected chan-
nel and sometimes also on the flavor of the fragmenting
quark. They are fixed by evolving each Dq

1;chðz;Mh;Q
2
0Þ to

the Belle scale Q2 ¼ 100 GeV2 and then by fitting the
Monte Carlo output for the unpolarized cross section d�0

of Eq. (9) for each channel ch at Q2 ¼ 100 GeV2 by
minimizing


2
ch ¼

X
q

X
ij

ðNch;q
ij �LMCðd�0q

ch ÞijÞ2
LMCðd�0q

ch Þij
; (15)

where Nch;q
ij is the number of pion pairs produced in the

simulation by the flavor q in the channel ch in the bin

ðzi;MhjÞ. The ðd�0q
ch Þij is the fitting unpolarized cross

section for the specific flavor q and channel ch, integrated
over the bin ðzi;MhjÞ of width ð�z;�MhÞ, i.e.

ðd�0q
ch Þij�

Z ziþ�z

zi

dz
Z Mhjþ�Mh

Mhj

dMh

d�0q
ch

dzdMhdQ
2

¼4��2

Q2
e2q
Z ziþ�z

zi

dz
Z Mhjþ�Mh

Mhj

dMhD
q
1;chðz;Mh;Q

2Þ:
(16)

In order to make the computation less heavy, we have
approximated the integral in the above equation with the

d�0q
ch evaluated in the central value of the bin ðzi;MhjÞ, and

multiplied by �z�Mh. We have checked that this approxi-
mation introduces negligible systematic errors. Evolution
effects are calculated using the HOPPET code [34]. Splitting
functions have been considered at LO. Gluons are gener-
ated only radiatively, because a nonvanishing gluon
DiFF Dg

1 at the starting scale Q2
0 would be largely uncon-

strained. Nevertheless, we reach good fits for all channels
(see Table I).
The 
2

ch minimization is performed using MINUIT, sepa-

rately for each channel, on a grid of 40� 50� 4 bins in
(zi,Mhj, flavor) (the actual dimension of the grid is slightly

smaller because of the constraint in Eq. (10)). In Table I,
we list the values of the 
2

ch per degree of freedom

(
2
ch=dof) for each channel as well as of the global one,

obtained from their average weighted over the fraction of
total degrees of freedom. The continuum can be repre-
sented with 17 parameters. Each of the 	 and ! channels
involves 20 parameters, while the K0

S resonance 22 ones.

Their best values are listed in the appendix, together with
their statistical errors. As an example, in Table II we list the
best values of the fitting parameters in Eq. (13) together
with their statistical errors, corresponding to �
2 ¼ 1.
The theoretical uncertainty on Dq

1;ch at Q2
0 and on d�0 at

the Belle scale are calculated using the covariant error
matrix from MINUIT and the standard formula for error
propagation.

TABLE I. The 
2=dof obtained by fitting the simulated yield
of ð�þ��Þ pairs produced either directly (continuum), or via the
	, !, or K0

S resonances, and the global one.

cont 	 ! K0
S global


2=dof 1.69 1.28 1.68 1.85 1.62

TABLE II. Best-fit parameters forDu
1;	ðz;Mh;Q

2
0Þ fromEq. (13).

The errors correspond to �
2 ¼ 1.

	

u ¼ d N
	
1 ¼ 0:209� 0:011 �

	
1 ¼ 0:999� 0:013

�
	
1 ¼ 0:104� 0:025 �

	
2 ¼ �1:2095� 0:0078

�
	
1 ¼ 4:045� 0:173 �

	
2 ¼ �15:679� 0:870

�	
3 ¼ 20:582� 1:205 
	

1 ¼ 1:103� 0:057
�	
1 ¼ �1:067� 0:023 �	

2 ¼ �1:357� 0:140
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C. Results for D1

In Fig. 2, we show Dq
1ðz;Mh;Q

2
0Þ, summed over all

channels, as a function of Mh for z ¼ 0:25, 0.45, and
0.65 (from top to bottom) at the starting scale Q2

0 ¼
1 GeV2. For each panel, the solid, dot-dashed, and dashed,
curves correspond to the contribution of the flavors u, s,
and c, respectively. The d contribution is identical to the u
one, according to Eq. (11), but for the K0

S ! �þ�� chan-

nel, where the difference is anyway small. We recall that at
this scale we assume no contribution from the gluon. The

DiFFs are normalized using the Monte Carlo luminosity
LMC, although the overall normalization will not influence
the results of the next sections. In the top panel, we can
distinguish the narrow peak due to the K0

S resonance on top

of a large hump, due to the superposition of the contribu-
tions coming from the continuum and from the ! !
ð�þ��Þ�0 decay. At Mh ¼ 0:77 GeV, we clearly see the
peak of the 	 resonance. Instead, the peak of the ! !
ð�þ��Þ decay is hardly visible. Moving from top to
bottom, we can appreciate how the relative importance of
the 	 channel increases over the other ones as z increases.
In Fig. 3, we show Dq

1ðz;Mh;Q
2
0Þ, summed over all

channels, as a function of z for Mh ¼ 0:4, 0.8, and
1 GeV (from top to bottom) at the starting scale
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FIG. 3 (color online). The Dq
1ðz;Mh;Q

2
0Þ, summed over all

channels, as a function of z for Mh ¼ 0:4, 0.8, and 1 GeV
(from top to bottom) at the hadronic scale Q2

0 ¼ 1 GeV2.

Same notations as in previous figure.
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FIG. 2 (color online). The Dq
1ðz;Mh;Q

2
0Þ, summed over all

channels, as a function of Mh for z ¼ 0:25, 0.45, and 0.65
(from top to bottom) at the hadronic scale Q2

0 ¼ 1 GeV2.

Solid, dot-dashed, and dashed, curves correspond to the contri-
bution of the flavors u ¼ d, s, and c, respectively.
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Q2
0 ¼ 1 GeV2. Notations are the same as in the previous

figure. It is worth noting the relatively high importance of
the charm contribution, especially at low z for low and
intermediate values of Mh.

In Fig. 4, the points with error bars are the numbers Nij

of pion pairs produced by the simulation in the bin

ðzi;MhjÞ, summed over all flavors and channels and di-

vided by the Monte Carlo luminosity LMC; i.e., they
represent the simulated experimental unpolarized cross
section with errors defined in Eq. (15). The histograms

refer to ðd�0q
ch Þij in Eq. (16) summed over all flavors and

channels, i.e., to the fitting unpolarized cross section
evolved at the Belle scale Q2 ¼ 100 GeV2. In reality, we
have independently fitted each of the four channels. For
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FIG. 4 (color online). The unpolarized cross section d�0 at
Q2 ¼ 100 GeV2 as a function of Mh for the three bins 0:24 �
z � 0:26, 0:44 � z � 0:46, 0:64 � z � 0:66 (from top to bot-
tom). Histograms for the fitting formula of Eq. (16), summed
over all flavors and channels, and integrated in each Mh bin.
Points with error bars for the simulated observable with statis-
tical errors. The figure serves only for illustration purposes. For
the description of the actual fitting procedure, see details in the
text, particularly around Eqs. (15) and (16).
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FIG. 5 (color online). The unpolarized cross section d�0 at
Q2 ¼ 100 GeV2 as a function of z for the three bins 0:39 �
Mh � 0:41, 0:79 � Mh � 0:81, 0:99 � Mh � 1:01 GeV (from
top to bottom). Same notations as in the previous figure. The
figure serves only for illustration purposes. For the description of
the actual fitting procedure, see details in the text, particularly
around Eqs. (15) and (16).
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illustration purposes, here we show the plots in theMh bins
only for the three bins 0:24 � z � 0:26, 0:44 � z � 0:46,
0:74 � z � 0:76 (from top to bottom, respectively) after
summing upon all flavors and channels. The agreement
between the histogram of theoretical predictions and the
points for the simulated experiment confirms the good
quality of the fit. As in Fig. 2, going from top to bottom
panels one can appreciate the modifications with changing
z of the relative weight among the various channels active
in the invariant mass distribution (kaon peak, 	 peak, broad
continuum, etc.).

In Fig. 5, the fitting ðd�0q
ch Þij and simulated Nij=LMC

unpolarized cross sections, summed over all flavors and
channels, are now plotted as functions of the z bins for the
three bins 0:39 � Mh � 0:41, 0:79 � Mh � 0:81, 0:99 �
Mh � 1:01 GeV (from top to bottom) in the same condi-
tions and with the same notations as in the previous figure.
The agreement remains very good but for few bins at low z

at the highest considered Mh, and confirms the quality of
the extracted parametrization of the unpolarized DiFF.

IV. EXTRACTION OF H\
1 FROM MEASURED

ARTRU-COLLINS ASYMMETRY

We now consider the Artru-Collins asymmetry of Eq. (7)
. Since we cannot integrate away the �2, �, and �� angles in
the experimental acceptance, we will consider their aver-
age values in each experimental bin. As such, Eq. (7)
corresponds to the experimental a12R in Ref. [30].
It is convenient to define also the following quantities

nqðQ2Þ ¼
Z 1

0:2
dz

Z 2

2m�

dMhD
q
1ðz;Mh;Q

2Þ

n"qðQ2Þ ¼
Z 1

0:2
dz

Z 2

2m�

dMh

jRj
Mh

H\q
1;spðz;Mh;Q

2Þ:
(17)

Then, the Artru-Collins asymmetry can be simplified to

Aðz;Mh;Q
2Þ ¼ � hsin2�2i

h1þ cos2�2i
hsin�ihsin ��i jRj

Mh

P
q
e2qH

\q
1;spðz;Mh;Q

2Þn"qðQ2Þ
P
q
e2qD

q
1ðz;Mh;Q

2ÞnqðQ2Þ

� � hsin2�2i
h1þ cos2�2i

hsin�ihsin ��i jRj
Mh

P
q
e2qH

\q
1;spðz;Mh;Q

2Þn"qðQ2Þ
Dðz;Mh;Q

2Þ ; (18)

where we understand that �nqðQ2Þ ¼ nqðQ2Þ (due to Eqs. (11) and (12)), �n"qðQ2Þ ¼ �n"qðQ2Þ (see the following Eqs. (20)
and (21)), and we have defined

Dðz;Mh;Q
2Þ¼4

9
Du

1ðz;Mh;Q
2ÞnuðQ2Þþ1

9
Dd

1ðz;Mh;Q
2ÞndðQ2Þþ1

9
Ds

1ðz;Mh;Q
2ÞnsðQ2Þþ4

9
Dc

1ðz;Mh;Q
2ÞncðQ2Þ: (19)

Isospin symmetry and charge conjugation can be applied
also to the polarized fragmentation into ð�þ��Þ pairs such
that [12,22,26]

H\;u
1 ¼ �H\;d

1 ¼ � �H\;u
1 ¼ �H\;d

1 ; (20)

H\;s
1 ¼ � �H\;s

1 ¼ H\;c
1 ¼ � �H\;c

1 ¼ 0: (21)

These relations should hold for all channels but for the K0
S

resonance. However, pion pairs produced in the K0
S decay

are in the relative s wave, and with our assumptions there
are no p wave contributions to interfere with. Therefore,
we assume H\;q

1;sp � 0 for the K0
S channel, such that

Eqs. (20) and (21) are valid in general throughout our
analysis.

Using these symmetry relations, we can further manipu-
late Eq. (18) and define

Hðz;Mh;Q
2Þ ¼ � h1þ cos2�2i

hsin2�2i
9

5

1

hsin�ihsin ��i
�Dðz;Mh;Q

2ÞAðz;Mh;Q
2Þ

� jRj
Mh

H\u
1;spðz;Mh;Q

2Þn"uðQ2Þ; (22)

whereZ 1

0:2
dz

Z 2

2m�

dMhHðz;Mh;Q
2Þ ¼ ½n"uðQ2Þ
2: (23)

Our strategy is the following. At the hadronic scale
Q2

0 ¼ 1 GeV2, we parametrize Hðz;Mh;Q
2
0Þ. Then, we

evolve it using the HOPPET code [34], suitably extended
to include LO chiral-odd splitting functions. At the Belle
scale of Q2 ¼ 100 GeV2, we fit the function H using
Eq. (22), i.e. employing bin by bin the measured Artru-
Collins asymmetry A, the average values of angles �2, �, ��,
and the asymmetry denominator D. The latter is obtained
from Eqs. (19) and (16) by fitting the Monte Carlo simu-
lation of the unpolarized cross section. The final step
consists in the identification

jRj
Mh

H\u
1;spðz;Mh;Q

2Þ ¼ Hðz;Mh;Q
2Þ

ðR1
0:2 dz

R
2
2m�

dMhHðz;Mh;Q
2ÞÞ1=2 :

(24)

This result is possible because of the symmetry relations
(20) and (21). In fact, the chiral-odd splitting functions do
not mix quarks with gluons in the evolution, but they can
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mix quarks with different flavors. However, Eqs. (20) and
(21) imply that only the flavors u or d are actually active in
the asymmetry and they are the same. Consequently, the
factorized expression of H in Eq. (22) is preserved with
changing Q2, thus justifying Eq. (24).

A. Fitting the experimental data

The experimental data on the Artru-Collins asymmetry
are organized in three different grids: a 9� 9 one in ðz; �zÞ, a
8� 8 one in ðMh; �MhÞ, and a 8� 8 one in ðz;MhÞ [42]. We
choose the third one because it contains the most complete
information about the ðz;MhÞ dependence of DiFFs, in-
cluding their correlations (see Sec. III B). As reported in
Table VIII of Ref. [42], only 58 of the 64 bins are filled. We
use 46 of them by dropping the highest bin in z ([0.8,1])
and in Mh ([1.5, 2.0]) because they are scarcely populated
and our description of D1 is worse. The upper cut in Mh is
also consistent with the grid used in the Monte Carlo
simulation of the unpolarized cross section (see Sec. III A).

Using MINUIT, we minimize


2 ¼ X
ij

ðHth
ij �H

exp
ij Þ2

�2
ij

; (25)

where H
exp
ij is obtained using Eq. (22). Namely, for each

bin ðzi;MhjÞ the average value of angles �2, �, and ��, is

taken from Ref. [42]. Then, using Eqs. (19) and (16) the
contribution Dij of the function D is defined as

Dij �
Z ziþ�z

zi

dz
Z Mhjþ�Mh

Mhj

dMhDðz;Mh;Q
2Þ

¼ 1

4��2=Q2

X
q¼u;d;s;c

nqðQ2ÞX
ch

ðd�0q
ch Þij; (26)

where ðd�0q
ch Þij fits the Monte Carlo simulation of the

unpolarized cross section for the considered bin, channel
ch, and flavor q. By summing the latter over all experi-
mental bins and channels (and dividing by the factor
4��2=Q2), we get the nqðQ2Þ for each flavor. Finally, in

Eq. (22) the Artru-Collins asymmetry A for the bin
ðzi;MhjÞ is taken from the Belle measurement [30].

The error �ij in Eq. (25) is obtained by summing the

statistical and systematic errors in quadrature for the mea-
surement of A reported by the Belle collaboration [42],
multiplied by all factors relating A to H according to
Eq. (22). The sum runs upon the above mentioned 46 bins.

The last ingredient of the 
2 formula is Hth
ij . It is ob-

tained by first parametrizing the function H in Eq. (22) at
the starting scale Q2

0 as

Hðz;Mh;Q
2
0Þ¼N2jRjð1�zÞexp½�1ðz��2MhÞ


�½Pð0;1;�1;0;0;zÞþzPð0;0;�2;�3;0;MhÞ

þ1

z
Pð0;0;�4;�5;0;MhÞ
BW

�
m	;




m	

;Mh

�
;

(27)

where the polynomial P and the function BWare defined in
Eq. (14).1 Then, we evolve it at the Belle scale Q2 using
the HOPPET code [34], suitably extended to include LO

TABLE III. The free parameters with their statistical errors
from Eq. (27), obtained by fitting the experimental Artru-Collins
asymmetry of Ref. [30].

N ¼ 0:0132� 0:0033
�1 ¼ �2:873� 0:229 �2 ¼ �0:644� 0:094
�1 ¼ 23:310� 7:534 �2 ¼ �199:410� 17:728
�3 ¼ 276:920� 20:511 �4 ¼ 36:732� 3:796
�5 ¼ �42:406� 4:427 
 ¼ 0:303� 0:023
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FIG. 6 (color online). The ratio R of Eq. (28), summed over all
channels, at the hadronic scale Q2

0 ¼ 1 GeV2. Upper panel for R
as a function of Mh for z ¼ 0:25 (solid line), z ¼ 0:45 (dashed
line), and z ¼ 0:65 (dot-dashed line). Lower panel for R as a
function of z for Mh ¼ 0:4 GeV (solid line), Mh ¼ 0:8 GeV
(dashed line), and Mh ¼ 1:0 GeV (dot-dashed line). For the
calculation of the uncertainty bands, see details in the text.
The ratio is affected also by a 10% systematic error.

1Note that Eq. (14) is proportional to the modulus squared of a
relativistic Breit-Wigner, but also to its imaginary part.
Therefore, the parametrization in Eq. (27) is in agreement with
the assumption that H\q

1;sp is given by the interference between a
relative s wave and a relative p wave [12]
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FIG. 7 (color online). The Artru-Collins asymmetry atQ2 ¼ 100 GeV2 for the experimental bins ðzi;MhjÞ. Points with error bars for
the measurement by Belle [30]. The solid line represents the top side of the histogram for the fitting formula of Eq. (29). The shaded
area is the corresponding statistical error (see text for more details).

COURTOY et al. PHYSICAL REVIEW D 85, 114023 (2012)

114023-10



chiral-odd splitting functions, and we integrate it on the
considered bin ðzi;MhjÞ.

By minimizing the 
2 of Eq. (25), we get the best values
for the 9 parameters N, �i¼1;2, �i¼1�5, 
. They are listed in
Table III, together with their statistical errors obtained
from the condition �
2 ¼ 1. The 
2=dof turns out to
be 0.57.

By summing Hðzi;Mhj;Q
2Þ over all bins, we get the

½n"uðQ2Þ
2 of Eq. (23). In the last step, we get the polarized

DiFF H\u
1;sp bin by bin from Eq. (24).

B. Results for H\
1

In Fig. 6, we show the ratio

Rðz;MhÞ ¼ jRj
Mh

H\u
1;spðz;Mh;Q

2
0Þ

Du
1ðz;Mh;Q

2
0Þ

; (28)

summed over all channel, at the hadronic scale Q2
0 ¼

1 GeV2. The upper panel displays the ratio as a function
of Mh at three values of z: 0.25 (solid line), 0.45 (dashed
line), and 0.65 (dot-dashed line). The lower panel displays
it as a function of z atMh ¼ 0:4 GeV (solid line), 0.8 GeV
(dashed line), and 1 GeV (dot-dashed line). The uncer-
tainty bands correspond to the statistical errors of the fitting
parameters (see Table III). They are calculated through the
standard procedure of error propagation using the covari-
ance matrix provided by MINUIT (with �
2 ¼ 1). Because
of differences between the Monte Carlo simulation and the
experimental cross section, we estimated a 10% systematic
error in the determination of R. In the upper panel, the solid
line stops at Mh ¼ 0:9 GeV because there are no experi-
mental data at higher invariant masses for z ¼ 0:25. The fit
is less constrained in that region and the error band be-
comes larger. The same effect is visible in the lower panel
for the highest displayed Mh (dot-dashed line) at low z.
Note that in the upper panel all three curves display a dip at
Mh 	 0:5 GeV. It corresponds to the peak for the K0

S !
�þ�� decay, which is present in the denominator of R
(viaDu

1) but not in the numerator (we recall that we assume

H\u
1;sp � 0 for this channel, see the discussion after

Eqs. (20) and (21)).
In Fig. 7, we show the Artru–Collins asymmetry atQ2 ¼

100 GeV2. Each panel corresponds to the indicated experi-
mental z bin, ranging from [0.2, 0.27] to [0.7, 0.8]. In each
panel, the points with error bars indicate the Belle mea-
surement for the experimental Mh bins [42]. For each bin
ðzi;MhjÞ, the solid line represents the top side of the

histogram for the fitting asymmetry obtained by inverting
Eq. (22), i.e.

Ath
ij ¼ � hsin2�2i

h1þ cos2�2i
hsin�ihsin ��i 5

9

Hth
ij

Dij

; (29)

where Dij is defined in Eq. (26), Hth
ij is defined in the

discussion about Eq. (27), and the average values of the
angles in the considered bin are taken from Ref. [42].

The shaded areas are the statistical errors of Ath
ij , deduced

from the parameter errors in Table III through the standard
formula for error propagation. Note that the statistical
uncertainty of the fit is very large for the highest Mh bin.

V. CONCLUSIONS AND OUTLOOKS

In this paper, we have parametrized for the first time the
full dependence of the dihadron fragmentation functions
(DiFFs) that describe the nonperturbative fragmentation of
a hard parton into two hadrons inside the same jet, plus
other unobserved fragments. The dependence of DiFFs on
the invariant mass and on the energy fraction carried by a
ð�þ��Þ pair produced in eþe� annihilations, is extracted
by fitting the recent Belle data [30].
The analytic formulae for both unpolarized and polar-

ized DiFFs at a starting hadronic scale are inspired by
previous model calculations of DiFFs [12,22,33]. Then,
they are evolved at leading order using the HOPPET code
[34], suitably extended to include chiral-odd splitting func-
tions that can describe scaling violations of chiral-odd
polarized DiFFs.
In the absence of published data for the unpolarized

cross section, we extract the unpolarized DiFF (appearing
in the denominator of the asymmetry) by fitting the simu-
lation produced by the PYTHIA event generator [35] at Belle
kinematics, since this code is known to give a good
description of the eþe� total cross section [36].
Given the rich structure of the invariant mass distribu-

tion in the selected range ½2m�; 1:3
 GeV, we have con-
sidered three different channels for producing a ð�þ��Þ
pair (via 	, !, or K0

S decays), as well as a continuum

channel that includes everything else [12]. The analysis
is performed at leading order; gluons are generated only
radiatively. In the Monte Carlo simulation of the unpolar-
ized cross section, more than 1 million ð�þ��Þ pairs are
collected in 31585 bins and their distribution is fitted using
MINUIT, reaching a global 
2=dof of 1.62. Statistical errors
are small because of the large statistics in the Monte
Carlo. Experimental data for the Artru–Collins asymmetry
are collected instead in 46 bins and are fitted with a
9-parameters function getting a final 
2=dof of 0.57.
The long-term goal of this work is to improve the above

analysis by repeating the Monte Carlo simulation at differ-
ent hard scales. In this way, we should be able to better
constrain the evolution of the unpolarized DiFF and to
reduce the systematic uncertainty deriving from the arbri-
tariness in the choice of the analytic expression at the
starting hadronic scale. Moreover, including also data
with asymmetries for ð�;KÞ and ðK;KÞ pairs the flavor
analysis would improve beyond the present limitations
induced by isospin symmetry and charge conjugation ap-
plied to ð�þ��Þ pairs only.
As we make progress in the knowledge of DiFFs, it

is crucial to have new data on hadron pair production
officially released. Using the COMPASS data on
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semi-inclusive deep-inelastic scattering on transversely
polarized protons and deuterons [29], we will be able to
update the results of Ref. [26] about the extraction of the
transversity parton distribution. From the PHENIX data on
(polarized) proton-proton collisions [32], we can also ex-
plore an alternative extraction of transversity [23], aiming
at studying the yet unknown contribution from antiquarks.
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APPENDIX: FUNCTIONAL FORM OF D1 AT
Q2

0 ¼ 1 GeV2

In this appendix, we list the analytic formulae for the
unpolarized DiFFDq

1;ch at the hadronic scaleQ
2
0 ¼ 1 GeV2

for each flavor q ¼ u, d, s, c, and for the resonant channels
	, !, and K0

S, as well as for the continuum. For each case,

we add a table with the best-fit values and statistical errors
of the involved parameters.

We recall that the recurring structures of the polynomial
Pða1; a2; a3; a4; a5; xÞ and the function BWðm;�; xÞ are
defined in Eq. (14).

1. Functional form of the continuum channel
at Q2

0 ¼ 1 GeV2

a. Up and down

Du
1;contðz;Mh;Q

2
0Þ

¼ Nc
1z

�c
1ð1� zÞð�c

2
Þ2ð2jRjÞð�c

1
Þ2

� exp

�
�
�
Pð�c

1; �
c
2; �

c
3; 0; 0; zÞ þ

�c
4

Mh

�
2ð2jRjÞ2

�
Dd

1;contðz;Mh;Q
2
0Þ ¼ Du

1;contðz;Mh;Q
2
0Þ; (A1)

with best-fit parameters listed in Table IV.

b. Strange

Ds
1;contðz;Mh;Q

2
0Þ ¼ ðNc

2Þ2ð1� zÞð�c
3
Þ2Du

1;contðz;Mh;Q
2
0Þ;

(A2)

with best-fit parameters listed in Table V.

c. Charm

Dc
1;contðz;Mh;Q

2
0Þ

¼ Nc
3z

�c
4ð1� zÞð�c

5
Þ2ð2jRjÞð�c

2
Þ2

� exp

�
�
�
Pð�c

5; 0; �
c
6; 0; 0; zÞ þ

�c
7

Mh

�
2ð2jRjÞ2

�
;

(A3)

with best-fit parameters listed in Table VI.

2. Functional form of the � channel at Q2
0 ¼ 1 GeV2

a. Up and down

The Du
1;	ðz;Mh;Q

2
0Þ is defined in Eq. (13) and the best

values of its parameters are reported in Table II. Then, we
take

Dd
1;	ðz;Mh;Q

2
0Þ ¼ Du

1;	ðz;Mh;Q
2
0Þ: (A4)

TABLE IV.

cont

u ¼ d Nc
1 ¼ 0:601� 0:013 �c

1 ¼ 0:8446� 0:0059
�c
1 ¼ �2:282� 0:018 �c

2 ¼ 1:0012� 0:0072
�c
1 ¼ 0:7133� 0:0083 �c

2 ¼ �0:155� 0:038
�c
3 ¼ 1:180� 0:044 �c

4 ¼ �1:051� 0:017

TABLE V.

cont

s Nc
2 ¼ 0:7825� 0:0038 �c

3 ¼ 0:636� 0:012

TABLE VI.

cont

c Nc
3 ¼ 1:437� 0:054 �c

2 ¼ 0:940� 0:010
�c
4 ¼ �2:310� 0:027 �c

5 ¼ 1:7020� 0:0080
�c
5 ¼ 0:6336� 0:0059 �c

6 ¼ 0:816� 0:018
�c
7 ¼ �0:645� 0:030

TABLE VII.

	

s N
	
2 ¼ 0:861� 0:074 �

	
3 ¼ �0:244� 0:110

TABLE VIII.

	

c N
	
3 ¼ 0:450� 0:031 �

	
2 ¼ 0:697� 0:028

�
	
4 ¼ 1:850� 0:093 �

	
5 ¼ 2:474� 0:025

�	
4 ¼ 3:958� 0:357 
	

2 ¼ 2:223� 0:081
�	
3 ¼ �1:220� 0:066 �	

4 ¼ 3:721� 1:234
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b. Strange

Ds
1;	ðz;Mh;Q

2
0Þ¼ ðN	

2 Þ2z�
	
3 ð1�zÞDu

1;	ðz;Mh;Q
2
0Þ; (A5)

with best-fit parameters listed in Table VII.

c. Charm

Dc
1;	ðz;Mh;Q

2
0Þ ¼ ðN	

3 Þ2z�
	
4 ð1� zÞð�	

5
Þ2ð2jRjÞð�	

2
Þ2

� ½exp½�Pð0; �	
4 ; 0; 0;��	

4 ; zÞM2
h


� exp½�Pð�	
3 ; 0; �

	
4 ; 0; 0; zÞ


þ ð
	
2 Þ2BWðm	;�	;MhÞ
; (A6)

with best-fit parameters listed in Table VIII.

3. Functional form of the ! channel at Q2
0 ¼ 1 GeV2

a. Up and down

Du
1;!ðz;Mh;Q

2
0Þ

¼ð1�zÞð�!
1
Þ2ð2jRjÞ�!

1
1

1þexp½5ðMh�1:2Þ

�½N!

1 exp½�Pð�!
1 ;�

!
2 ;�

!
3 ;0;0;zÞð2jRjÞ2�!

2 

�exp½�Pð�!

1 ;0;�
!
2 ;0;0;zÞ


þð
!
1 Þ2BWðm!;�!;MhÞ


Dd
1;!ðz;Mh;Q

2
0Þ¼Du

1;!ðz;Mh;Q
2
0Þ; (A7)

with m! ¼ 0:783 GeV and �! ¼ 0:008 GeV, and with
best-fit parameters listed in Table IX.

b. Strange

Ds
1;!ðz;Mh;Q

2
0Þ ¼ ðN!

2 Þ2z�!
2 Du

1;!ðz;Mh;Q
2
0Þ; (A8)

with best-fit parameters listed in Table X.

c. Charm

Dc
1;!ðz;Mh;Q

2
0Þ

¼ ð1� zÞð�!
3 Þ2ð2jRjÞ�!

3
1

1þ exp½5ðMh � 1:2Þ

� ½N!

3 exp½�Pð0; �!
4 ; 0; 0; 0; zÞð2jRjÞ2�!

4 

� exp½�Pð�!

3 ; 0; �
!
4 ; 0; 0; zÞ


þ ð
!
2 Þ2BWðm!;�!;MhÞ
; (A9)

with best-fit parameters listed in Table XI.

4. Functional form of the K0
S channel

at Q2
0 ¼ 1 GeV2

a. Up

Du
1;Kðz;Mh;Q

2
0Þ ¼ 2jRj exp½Pð�K

1 ; �
K
2 ; �

K
3 ; �

K
4 ; 0; zÞ


�
�
2ðNK

1 Þ2�Mh

N
BWðmK;�K;MhÞ

þ ð
K
1 Þ2 exp½Pð0; 1; �K

1 ; �
K
2 ; 0;MhÞ

þ �K
3 zMh


�
; (A10)

where

N ¼
Z 0:51

0:49
dMh2jRjBWðmK;�K;MhÞ; (A11)

with mK ¼ 0:498 GeV, �K ¼ 10�8 GeV, and �Mh ¼
0:02 GeV, and with best-fit parameters listed in Table XII.

TABLE IX.

!

u ¼ d N!
1 ¼ 3:234� 1014 � 4:377� 1013 �!

1 ¼ 1:220� 0:025

�!
1 ¼ 12:539� 0:083 �!

2 ¼ 0:2899� 0:0019
�!
1 ¼ 1:970� 0:105 �!

2 ¼ 31:032� 0:328
�!
3 ¼ 10:228� 0:736 
!

1 ¼ 0:0388� 0:0010
�!
1 ¼ �0:862� 0:061 �!

2 ¼ �0:279� 0:445

TABLE X.

!

s N!
2 ¼ 0:297� 0:010 �!

2 ¼ �1:233� 0:058

TABLE XI.

!

c N!
3 ¼ 1:758� 1013 � 2:428� 1012�!

3 ¼ 1:837� 0:073
�!

3 ¼ 11:326� 0:111 �!
4 ¼ 0:3822� 0:0045

�!
4 ¼ 33:268� 0:358 
!

2 ¼ �0:0277� 0:0021
�!
3 ¼ 0:338� 0:048 �!

4 ¼ 7:800� 0:721

TABLE XII.

K0
S

u NK
1 ¼ 0:191� 0:027

�K
1 ¼ 0:210� 0:049 �K

2 ¼ 5:243� 0:477
�K
3 ¼ �2:922� 0:795 �K

4 ¼ �5:270� 0:680
�K
1 ¼ 2:384� 0:110 �K

2 ¼ �5:043� 0:080
�K
3 ¼ 0:633� 0:091 
K

1 ¼ 0:0634� 0:0089

TABLE XIII.

K0
S

d NK
2 ¼ 1:373� 0:028 �K

1 ¼ 0:426� 0:037
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b. Down

Dd
1;Kðz;Mh;Q

2
0Þ ¼ ðNK

2 Þ2z�K
1 Du

1;Kðz;Mh;Q
2
0Þ; (A12)

with best-fit parameters listed in Table XIII.

c. Strange

Ds
1;Kðz;Mh;Q

2
0Þ ¼ ðNK

3 Þ2z�K
2 Du

1;Kðz;Mh;Q
2
0Þ; (A13)

with best-fit parameters listed in Table XIV.

d. Charm

Dc
1;Kðz;Mh;Q

2
0Þ ¼ 2jRj exp½Pð�K

5 ; �
K
6 ; �

K
7 ; �

K
8 ; 0; zÞ


�
�ðNK

4 Þ2�Mh

N
BWðmK;�K;MhÞ

þ ð
K
2 Þ2 exp½Pð0; 1; �K

4 ; �
K
5 ; 0;MhÞ

þ �K
6 zMh


�
; (A14)

with best-fit parameters listed in Table XV.
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