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Characterising and Exploiting Workloads of Highly
Interactive Video-on-Demand

Andrew Brampton · Andrew MacQuire · Michael Fry · Idris A. Rai ·
Nicholas J. P. Race · Laurent Mathy

Abstract This paper presents a detailed character-
isation of user behaviour for a series of interactive
video experiments over a 12 month period, in which
we served popular sporting and musical content. In ad-
dition to generic VCR-like features, our custom-built
Video-on-Demand application provides advanced inter-
activity features such as bookmarking. The dramatic
impact of such functionality on how users consume con-
tent is studied and analysed. We discuss in detail how
this user behaviour can be exploited by content dis-
tributors to improve user experience. Specifically, we
study how simple dynamic bookmark placement and
interactivity-aware content pre-fetching and replication
can reduce the impact of highly interactive media on
CDN performance.

Keywords Interactive, Video-on-Demand, Sports,
World Cup, Content Distribution

1 Introduction

In recent years the Internet has increasingly been
used to distribute bandwidth-intensive streaming me-
dia. Due to the resources required to deliver such con-
tent, dedicated Content Distribution Networks (CDNs)
are often used to improve the experience of end-users.
As such systems evolve, users expect correspondingly
improved interactive functionality, something which is
increasingly difficult to achieve with diverse content
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types exhibiting varied access patterns. In order to pro-
vide a high quality of service, modern CDNs must there-
fore be optimised to respond to user behaviour with
regard to different content types.

In this paper, we study user behaviour for an in-
teractive Video-on-Demand (VoD) system that serves
users with a selection of content. Broadly, we served
videos in the sporting and musical genres, with respec-
tive examples being the entire 2006 FIFA World Cup
and 2007 Eurovision Song Contest. A key distinguish-
ing element of our work is that by using our own VoD
system, we could offer novel interactive functionality
beyond typical VCR-like features (i.e., the ability to
pause, resume and skip back and forth within a given
video stream). The prime example of this is bookmark-
ing : direct links to points of interest within the video.
An example of a bookmark within our sporting content
could be a common event such the start of a match, or
a potentially more popular event, such as a goal. Like-
wise, in our musical content, we would typically book-
mark the beginning of each distinct piece. Our system
also allowed users to contribute their own bookmarks
at any time, distinct from those added during the pub-
lishing process.

Previous studies making use of entertainment con-
tent have witnessed the classic start-to-finish playback
model in their access patterns, with occasional VCR-
like interactivity. In our experiments, however, user be-
haviour proved highly dynamic. Users often chose to
watch (and replay) small segments of the full video,
in a complete departure from the start-to-finish model.
The behaviour observed may also exist in other gen-
res with popular highlight (e.g., educational, entertain-
ment, news, etc.). While our scope is limited to sparsely
accessed content, we feel our results are of interest and
are relevant to significant new genres of on-line video
content
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We carried out a statistical analysis of the observed
workload resulting from the dynamic user behaviour,
and identified models, various metrics and workload
properties. These models can be used to drive simu-
lations of the type of interactivity behaviour studied
in this paper. We also discuss how delivery networks
can exploit the observed behaviour to improve user-
perceived performance. For instance, we show that the
order in which users view bookmarks can be predicted
based on previous activity, enabling CDNs to leverage
this data for performance gains. We also show how
simple dynamic bookmark placement techniques and
interactivity-aware content management techniques can
improve CDN resource usage and performance.

The remainder of this paper is structured as follows:
Section 2 reviews and discusses previous work on VoD
workloads. Section 3 describes our experimental setup
and methodology. Section 4 then analyses the traces
we obtained during our trial period and discusses their
significance. Section 5 presents and explores two sim-
ple techniques content distribution networks can use to
exploit the highly dynamic user behaviour found in our
analysis, in order to improve both user satisfaction and
resource usage. Finally, Section 6 concludes the paper
with a brief summary of results and a discussion of fu-
ture work.

2 Related Work

Much previous work on characterising user interaction
has involved authors analysing real-world traces, usu-
ally of at least one month in length. A commonly-
used repository of such data is the Internet Traffic
Archive (ITA) [8]. The ITA maintains a collection of
both large and small-scale log files from a number of
diverse sources; popular examples being the entire 1998
FIFA World Cup’s web server logs, or two months of
logs from the NASA Kennedy Space Center in 1995.
Unfortunately, many publicly available log files are sim-
ilarly outdated. Although this may imply that they are
likely to be well studied, it equally means they may not
be suitable for characterising modern streaming access
patterns with VCR-like interactivity. It is perhaps for
this reason that many works in this field have instead
made use of privately obtained data, often from large
networks such as Akamai’s [2] or anonymous sources for
non-disclosure reasons.

Despite this, many common trends are still observed
amongst differing Video-on-Demand workloads, old and
new. For instance, it is often found that only a small
percentage of objects account for the majority of overall
requests. Similarly, a small percentage of the requests
often account for a large percentage of the overall data

transfer. Accordingly, numerous papers have therefore
postulated that the popularity of objects follows a Zipf
distribution [7,13,6,12], although some have also indi-
cated that this is not always the case [5,1]. In terms
of Video-on-Demand session arrivals several suitable
(and often heavy-tailed) models have been suggested,
e.g., the Poisson, Pareto and Exponential distributions
etc. [3]. In general terms, it seems that access patterns
depend highly on the nature of the content. Costa et
al. highlighted this during their examination of four
VoD workloads in three domains (education, entertain-
ment video and entertainment audio). For instance, the
authors found that educational content was far more
popular in the daytime on weekdays, whereas requests
for entertainment-based content were more evenly dis-
tributed across the entire week. They also note how a
small yet significant fraction of users begin playback
at arbitrary positions within the video, and issue an
increasing number of requests in correlation with the
video length. In terms of the requests issued, ‘pause’
was found to be, by far, the most common interaction.
It was also noted that the probability of a given in-
teraction was dependent on the type of the previous
interactions, although the number of these actions was
irrelevant [7].

Another common observation was that the popular-
ity of media segments was either roughly uniformly dis-
tributed or skewed towards the beginning of videos [7,
3]. This is a property of the start-to-finish playback
model where users passively watch from the begin-
ning to the end with little interactivity. Following from
this, multiple authors have observed that a substan-
tial percentage of media downloads are aborted before
completion. Guo et al. suggest that this may be a re-
sult of clients conducting “pseudo-streaming”; in other
words, simply playing back a downloading video file as
it arrives. The authors note that in comparison with
real streaming, downloading/pseudo-streaming content
is neither bandwidth efficient, nor performance effec-
tive [10,1].

The majority of previous work into characterising
user behaviour in Video-on-Demand systems has con-
sidered simple or VCR-like interactivity exclusively.
The impact of newer interactivity features such as book-
marking has not yet been considered to our knowledge.
Accordingly, we designed our experiment to allow for
the study of such effects, as discussed in the following
section.
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Fig. 1: Video-On-Demand system diagrams

3 Experimental Setup

We set up a simple, interactive Video-on-Demand sys-
tem1. The system was divided into three main compo-
nents: the capture server, the Video-on-Demand server,
and a web interface as depicted in Figure 1.

Our capture server recorded publicly-broadcast raw
MPEG-2 streams of the programmes selected for our
experiments. Once this process completed, the system
transcoded the stream to high and low bitrate Macro-
media Flash 7 FLV files (1 Mbps and 300 Kbps re-
spectively). Administrators would then manually add
metadata to the system describing the files as well as
marking the location of key events within the videos.
These locations are referred to as bookmarks, and typi-
cally included events of interest. Within our sport con-
tent, for example, goals, fouls and similar occurrences
were bookmarked. The final FLV files were then trans-
ferred to the VoD server, making them accessible to
the users. The full procedure described typically took
around twice the length of the recorded video, and so
the videos were available shortly after being aired.

The VoD system was an Apache webserver, which
served the Flash-based user interface over HTTP. This
server was only accessible to staff and students within
Lancaster University’s campus, and those staff and stu-
dents connecting remotely via the university’s Virtual
Private Network (VPN). To aid in logging, all requests
made through the user interface were verbose, allowing
us to determine exactly which controls users pressed
and when. Additionally, each playback window would
maintain a periodic (10 second) HTTP-request heart-
beat with the server, which was used to determine when
connectivity was unexpectedly lost.

1 More information about the system and its source code is

available at http://www.rcdn.org/

To handle user tracking, each user was assigned a
unique session ID, which was stored within a HTTP
cookie and their URLs. Each event that was logged
contained this identifier, allowing us to track individ-
ual users throughout their visit to the site. If, however,
a user blocked or deleted their cookie, they would ap-
pear to be new to the system upon each visit. We note
within our analysis where this uncertainty could affect
the results.

The web interface consisted of two main sections:
an index page allowing the user to select any available
video from the system, and the player interface that
displayed the video (as shown in Figure 1b). We were
aware that the user interface would constrain the users’
actions somewhat, and it was therefore designed to be
as simple and generic as possible. Forward and back-
ward buttons were provided that allowed seeking 10,
30 and 60 seconds in either direction. As these are rela-
tively short distances, we also provided a seek bar which
enabled users to seek to any arbitrarily chosen time. Fi-
nally, a list of bookmarks was displayed to the users,
which enabled them to jump directly to key events.
Bookmarks were added by an administrator, but later
the interface was extended to also allow users to submit
their own bookmarks (via the tag button), which other
users could see and use. User bookmarks often covered
events that were not typically bookmarked, but were
of particular interest (such as events that came under
later scrutiny).

3.1 Content

We ran our experiments in two phases, firstly cover-
ing the 2006 FIFA World Cup and nine months later
a wider range of sport and musical events. The con-
tent selections were chosen because they had points of
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interest to bookmark, and would yield sufficient user
demand.

The first experiment made available a total of 66
matches from the World Cup (64 from the event it-
self, and 2 pre-competition friendlies) starting from the
9th of June 2006. Only results after the 13th of June
were analysed due to alterations made to the logging
system and user interface before that date. Each match
was recorded from the beginning of the pre-match com-
mentary through to the end of coverage, and at the
very least every goal, penalty, and match start/end-
point (inclusive of half-time) was bookmarked.

From the 13th of April 2007 we began covering new
content as part of a second experimental study. This
time, our approach was designed to test various auto-
nomic management techniques, and to revalidate our
previous experimental results. Furthermore, we wished
to determine the relevance of our analysis/models to
other genres (such as music). Over the following two
months we covered the last six matches from the 2007
UEFA Champions League football tournament, some
other miscellaneous football matches, seven Formula 1
races, as well as several recordings from music chan-
nels and the 2007 Eurovision Song Contest semi-final
and final. The football matches were bookmarked in the
same manner as the previous World Cup event. In the
Formula 1 content we bookmarked the beginning and
end of the race, as well as any noteworthy events such
as a driver having to retire (after a crash or technical
difficulties). Within the musical content the beginning
of each track was bookmarked with its corresponding
artist and title. A similar approach was taken with the
Eurovision Song Contest, where the beginning of each
song was bookmarked with the name of the country
taking part.

In total there were 88 videos, each video on average
was 2.5 hours in length with a standard deviation of
30 minutes. The maximum video length was 4 hours,
and the minimum length 45 minutes. There were 695
bookmarks, with each video having on average 7.8.

4 Analysis

In this section, we use traces from our system to char-
acterise user behaviour and the resulting workload. Us-
ing a combination of R-Square fitting and Kolmogorov-
Smirnov Tests, models for the various features were de-
termined. Aggregated results are shown when applica-
ble, but in some cases it is more appropriate to show
results for individual videos. We noted in many cases
the features analysed were similar for each video, so
for simplicity we will specifically discuss two individ-
ual videos in greater detail: the World Cup’s Argentina

vs. Serbia and Montenegro match, and the Eurovision
Song Contest final. Both were amongst the top 5 most
popular videos and were representative of their genres
(namely sport and music). We will refer to these files
as arg-scg and eurovision respectively.

Throughout the two experiments we observed a to-
tal of 1800 unique users to the site, with each video
receiving on average 68.2 unique users (and an overall
maximum of 383). During this period we served 925
hours of video, which equates to 3.3 terabits of data.
We received an average demand of 287±31 requests per
day, with Thursday being the most popular. Through-
out the day we saw the typical diurnal sinusoidal access
patterns averaging 12± 10 requests per hour, reaching
its peak at midday with an average demand of 29 re-
quests per hour.

We witnessed 123 unique users for arg-scg, and 131
unique users for eurovision, who watched for a com-
bined total of 29.1 hours and 79.6 hours respectively.
Note that if an individual does not maintain the same
HTTP cookie between sessions (e.g., their cookie is
deleted) they will appear as a new unique user. Equally,
if two individuals share the same cookie, they will ap-
pear as a single unique user. While we expect these
cases to be rare, they may however introduce error into
the unique user count.

4.1 Interactions

Recall that our system allowed various interactive oper-
ations, namely pausing, resuming, seeking forwards &
backwards, and jumping to bookmarks. This range of
operations, combined with the nature of the content,
highly influenced user behaviour. As a result, for most
users we observed a complete departure from the typi-
cal start-to-finish playback model that has been noted
in previous work [7].

Table 1 shows, over the duration of the experi-
ment, the frequency of each action and its correspond-
ing percentage against all other operations. Small for-
ward seeks were used a combined 24.9% of the time,
whereas backward seeking was only used 7.67%. These
actions only accounted for the relatively small seeks
(10, 30, and 60 seconds), whereas potentially large seeks
(seek-bar and following bookmarks) made up 34.5% of
all operations. The table also shows that in each ses-
sion (a viewing of a single video), a user on average
used backward actions once, bookmarks and seek bar
actions 4.5 times, and forward actions 3.25 times.

Previous studies have shown that the most common
action is pause/resume [7], however we see that for our
traces, forward operations are by far the most common,
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Action Frequency Percentage (%) Mean & Standard Deviation (σ) per Session

Back 10s 3098 4.50 0.59 (σ = 3.14)
Back 30s 654 0.95 0.12 (σ = 0.83)

Back 60s 1532 2.22 0.29 (σ = 1.90)
Forward 10s 7438 10.79 1.41 (σ = 8.61)
Forward 30s 1804 2.62 0.34 (σ = 2.93)

Forward 60s 7930 11.51 1.50 (σ = 7.38)
Seek-bar 9902 14.37 1.88 (σ = 7.39)

Bookmarks 13857 20.11 2.62 (σ = 2.63)
User bookmarks 1236 1.79 0.23 (σ = 1.01)

Pause 11839 17.18 2.24 (σ = 7.65)

Resume 9616 13.96 1.82 (σ = 6.80)

Table 1: Interactions observed throughout the experiment

closely followed by seeking to bookmarks. The table
also shows that the number of pause operations account
for 17.18% of all actions. Pausing not being the most
common action can be explained by the short session
durations observed. This is in accordance with previous
work which found a positive correlation between session
time and the number of pause operations [14].

To better understand how users navigated through
a bookmarked video, we analysed the behaviour in the
arg-scg and eurovision videos, which had 10 and 24
bookmarks respectively. In Figures 2a & 2b each point
is a seek that is identified by a “from” time on the x-axis
and a “to” time on the y-axis. A point x, y therefore
represents a user that has jumped from their current
playback point x to a new point, y. Vertical and hor-
izontal lines in the figures denote the position of the
bookmarks. The diagonal line is a current-time marker
such that seeks forward are points which lie above it,
while seeks backward appear below it. Therefore, no
point can fall precisely on the diagonal. It is immedi-
ately obvious from the figures that many points are on
horizontal lines, implying that most seeks were to the
bookmarks.

The forward seek buttons appear to have been
mostly used for skipping to the next event, shown on
both figures as points slightly above the diagonal line
between the bookmarks. This could be due to user unfa-
miliarity with the bookmark interface, or possibly users
simply browsing the video. Backward actions were typ-
ically used around bookmarks, where users would often
re-watch the bookmarked event. In some cases users
may also have wished to see video immediately preced-
ing the bookmark. An example of this is shown in Fig-
ure 2a before the bookmark at time 2815, where users
sought up to 75 seconds backwards to see more of the
build up to the goal.

Clusters of points can also be seen on horizontal
lines shortly after a vertical line, indicating that users
jumped from bookmark to bookmark. In fact, the con-
centration of clusters of point just above the diagonal

time reference indicates that users have a tendency to
follow bookmarks in sequence, as exemplified in Fig-
ure 2b.

Overall, for both videos these results demonstrate
that users did not simply view continuously start-to-
finish, and were in fact highly influenced when pre-
sented with bookmarks.

4.2 Seek Distance

The understanding of locality is important for caching
and pre-fetching algorithms. By looking at how far
users sought we can determine the probability of ac-
cessing media nearby the playback point. We therefore
define seek distance as the absolute difference, in sec-
onds, between a user’s current playback point and their
requested seek destination.

Figures 3a & 3b display a CDF of seek distance
for backward and forward actions. A large proportion
of seeks (between 50%-70%) are of a 15 seconds, 30
seconds, or 60 seconds values. These seeks represent the
short seek button presses. 40% of backward seeks were
less than or equal to 15 seconds in length. This property
could be exploited by keeping a small client side buffer
of previously watched segments, which would satisfy
many backward seeks if the user has already viewed
them.

Even though small seeks are the majority, there are
between 30% and 50% of seeks which are further than
60 seconds. These seeks consist of jumps to bookmarks
or “blind” seeks with the seekbar. These long range
seeks are log-normally distributed with a mean of 1968
seconds and 1630 seconds for forward and backward
seeks respectively. They can be fitted to log-normal
models with parameters µ = 6.8269 and σ = 1.5953
for forward seeks, and µ = 6.3273 and σ = 1.7906 for
backward seeks. It can been seen that the backward dis-
tribution has a greater positive skew than the forward
distribution, thus it will generate many small seeks.
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(b) Eurovision (cropped at 4000 seconds for clarity)

Fig. 2: Jumps made by users within two videos
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Fig. 3: CDF of seek distance

These behaviours exhibit a high degree of spatial
locality, with the majority of seeks being within 60
seconds. Regarding long-ranged seeks, the log-normally
distributed models imply that some very large distance
seeks do occur, but the majority of seeks are shorter.
Overall the seek distances exhibit a median of 60 sec-
onds for forward seeks and 34 seconds for backward
seeks.

4.3 Popularity

We study popularity in terms of the number of viewers
who watched an object or a segment. An object in our
system is a single video whereas a segment is a section
of video one second in length.

The ranking for both object and segment popularity
is shown in Figure 4. The eurovision, and arg-scg were
approximately 10,000 seconds in length, causing 10,000
segments to be ranked for each video. Recall that only

88 videos were available, so the lowest object rank is 88.
Our analysis reveals that object popularity does not fol-
low the typical power-law distribution observed within
CDNs [6,3,15] but instead is a normal distribution with
parameters µ = 60 and σ = 32. This can be attributed
to the nature of our videos and the relatively few new
objects each day.

The popularity of one-second segments for all the
videos exhibit a Weibull distribution with parameters
λ = 2.887 and k = 0.69527. Log-normal distributions
provide the best fits for the arg-scg and eurovision re-
sults independently with parameters µ = 2.00, σ =
0.587 and µ = 2.32, σ = 0.567 respectively. Note that
log-normal and Weibull distributions closely relate to
power-law or heavy-tailed distributions [11,9]: they are
skewed distributions where a small percentage of sam-
ples contributes to a sizeable weight of their distribu-
tion. We observe that a small percentage, (the 10%
most popular segments), accounted for about 44% of all
requests. Previously, Costa et al. [7] found that for ed-
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ucational and entertainment content, the popularity of
segments is roughly uniformly distributed with a slight
skew towards the beginning for entertainment content.
Our result, however, implies that there are segments
with orders of magnitude more viewers than others.

To illustrate the order-of-magnitude differences in
viewers, we present Figures 5a & 5b which show the
popularity of each second of video for arg-scg and eu-
rovision respectively. The vertical lines signify the po-
sition of the bookmarks; note for the eurovision video
there were no bookmarks after 6000 seconds since the
performances bookmarked were only in the first half. It
is clear from the figures that there are peaks of popu-
larity, highly influenced by the bookmarks. In arg-scg
(and in other sport content) we observe that most of
the bookmarks are equally popular. However, in the
eurovision (and other music genres), we observe there
is a greater variance in the popularity of the book-
marks. This can be attributed to sports having numer-
ous events which all users wish to watch, however in
music videos there may be only certain artists which
interest the user.

Popularity metrics are important to many CDN al-
gorithms as they help to decide which resources to al-
locate to each object. We have seen that bookmarked
videos provide a content format with specific segments
of interest (goals, for example). This result emphasises
the use of partial caching techniques [4] to cache only
popular segments.

4.4 Longevity

The popularity of both videos and bookmarks in our
system faded over time. We call the duration at which
any such item remains utilised its longevity. The study
of a video or bookmark’s longevity can aid cache re-

placement policies, as well as other content manage-
ment decisions.

Figure 6 shows the popularity of all our bookmarks
versus the time they were first used. The figure suggests
that following an initial peak and a slight resurgence,
there was a rapid decrease in interest after a short
period. R-Square fitting reveals that the bookmark
longevity can be suitably estimated using a Weibull dis-
tribution with λ = 3.10 and k = 0.615. This suggests
that the popularity exhibits long-tailed properties. We
also observe that 40% of the bookmark usage occurs
within 24 hours, with the remainder slowly occurring
over the following weeks.

The popularity of videos decreased over time, but
this is not true for the popularity of segments within
the videos. The segments which were popular when the
video was first published were still popular within the
video weeks later, long after the video had lost popu-
larity. This was tested on each video by calculating the
distribution of segment popularity for the first 50% of
requests versus the last 50% of requests. The difference
in distributions was minor, with an average R-Square
value of 0.9. On a visual inspection of the number of
viewers per second, it was clear that the popularity still
focused around the bookmarks.

4.5 Session Lengths

Session length is the total time a user accessed a video,
regardless of the actions they may have taken whilst
doing so. For example, a session may be longer than
the actual length of the video if the user chose to re-
watch segments, and/or pause.

Figures 7a & 7b show the CDF of both session and
inter-seek times (discussion of inter-seek times follows
in the next subsection). It can be observed from the ses-
sion times that most users access each video for a very
short time relative to its overall length (possibly just
watching the events they are interested in). In particu-
lar, note that in the arg-scg case around 80% of sessions
lasted less than 15 minutes. Given that the video was
2.2 hours in length, 15 minutes corresponds to only 11%
of the total video. A similar result was found with eu-
rovision, with 80% of sessions lasting less than 12% of
the total video duration. The average session duration
was found to be only 11 minutes and 18 minutes for
arg-scg and eurovision respectively.

We also found that a small minority (roughly 3%)
of session durations were longer than the length of a
video. Of these durations roughly 39% were between 3
to 8 hours long. Our logs show that these users paused
for a long time before deciding to resume playback.
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4.6 Inter-seek Times

Inter-seek time is described as the duration for which
a user watched a section of a video before seeking to
a new location (disregarding any paused periods). This
can be useful, for example, to determine the amount to
replicate when using partial caching.

From our logs, we found that on average a user per-
formed 8.98 seek operations around a video, resulting in
a mean inter-seek time of 50.4 seconds. Figures 7a & 7b
show the CDF for inter-seek times as well as session
length. As the inter-seek times are generally shorter
than session times, this implies that the majority of
users viewed the content as a series of excerpts, usually
under a minute in length.

The inter-seek time in the music content was found
to be on average longer. This is because the length of a
bookmarked musical performance generally exceeds the
length of an event within a football match. Regardless
of the difference in inter-seek times, we found that they

can be estimated by log-normal distributions. For in-
stance, the inter-seek time for arg-scg can be modelled
with parameters µ = 2.15 and σ = 1.72.

Previous studies have found that the majority of
inter-seek times are very short [14]. For educational
content, inter-seek times have also been shown to be
Poisson or Pareto distributed [3]. We however found
only two thirds of our videos had inter-seek times that
could be suitably modelled by a Pareto distribution,
and none that could be modelled well with a Poisson
distribution. Models of inter-seek times can be used by
a delivery system to determine the size of video repli-
cas and the time available to react before a user seeks
elsewhere in the video.

4.7 Sequence

The traces were analysed to study the extent to which
users’ actions could be predicted. Since jumps to book-
marks made up a relatively large percentage of all re-
quests, we limit this prediction to which bookmark will
be visited next. If a system could predict which book-
mark would be requested next by a user, then it could
pro-actively respond in order to optimise content de-
livery. For example, based on the next predicted book-
mark, the relevant segments could be pushed out by a
server with spare capacity, or pre-fetched by a client.

We call the order that bookmarks are viewed by a
single user a sequence of bookmarks. Every user’s se-
quence can be aggregated together to form a directed
graph. Each node in the graph represents a bookmark
with links between them representing the probability of
seeking to that bookmark next. Figure 8 shows a sec-
tion of one of these directed graphs depicted as a tree
for clarity. The “Start” node represents the beginning



9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000

C
D

F

Time (seconds)

Inter-seek times
Session times

(a) Eurovision

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000

C
D

F

Time (seconds)

Inter-seek times
Session times

(b) Argentina vs. Serbia and Montenegro

Fig. 7: CDFs of session lengths and inter-seek times
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Fig. 8: Sequence diagram for Argentina vs. Serbia and
Montenegro depicted as a tree

of the video, and the “End” node represents the com-
pletion of a session. There is also an “Unknown” node
which signifies when a seek to another bookmark has
not been made within 200 seconds of visiting the pre-
vious bookmark (the observed upper bound for book-
marked events’ length). For clarity, links with low prob-
abilities have also been aggregated to form a “N Oth-
ers” node, where N is the number of aggregated links.

It is clear from the figure that there are multiple
choices to visit from each node, although there is gen-
erally one link that is significantly more likely to be
chosen. For example, the probability of viewing book-
mark “Goal 2-0” immediately after “Goal 1-0” is 80%.
We can also see that following the “Kick Off” bookmark
50% of users did not visit another bookmark within 200
seconds and instead continue to watch, this could indi-
cate that this subset of users were interested in watch-
ing the full game instead of just the highlights. An in-
teresting observation for caching is the occurrence of
self-loops. 6% of links were between the same two book-
marks, which made up 6.5% of all requests.
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Fig. 9: CDF of link probabilities for all videos

To understand how many bookmark-to-bookmark
links are predictable, Figure 9 shows a CDF of proba-
bilities for all links for all videos, as well as probabili-
ties for just the most popular link from each bookmark.
From this figure we can conclude that 10% of all links
have more than a 58% chance of being followed. Look-
ing at just the most popular link from each bookmark
we observe that over half of the bookmarks have an out-
going link with a probability over 50%; an encouraging
result for user predictability.

In this analysis we assumed that all users will visit
the bookmark in similar order, however in a large het-
erogeneous environment this may not be true. Different
sub-groups may wish to view a different set of events
possibly in a different order to other sub-groups. Across
our videos we did try and identify if there were groups
of individuals that behaved differently to the majority,
however none were found. This could possibly be due
to our genre of media, with all sports fans wishing to
see the same events, in the natural sequential order.
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4.8 Hotspot Length

Jumps to bookmarks comprised roughly 20% of all re-
quests with an additional 32% of seeks being within 60
seconds of a bookmark. Bookmarks form the majority
of requests within the content, and represent the be-
ginning of a popular segment of video which we call a
hotspot. The beginning of a hotspot is generally known
(i.e., the bookmark point), but the end is not. Knowing
the length of the hotspot can be useful for numerous
tasks such as caching and pre-fetching. We therefore
define wait time as the time elapsed between a user
following a bookmark and seeking.

Figures 10a & 10b show a CDF of wait times for
each bookmark in the arg-scg and eurovision videos. It
can be seen that in the football match the wait times
follow a similar distribution, with the majority of users
waiting less than 40 seconds (this, for example, could
corresponds to the length of a run up to a goal). The
eurovision results are more varied with average wait
times being much longer. This is due to the typical song
in the Eurovision Song Contest being 180 seconds in
length. Finally, there is a “Start” bookmark listed in
both figures: this is the entry point into both videos,
and does not correspond to any event.

To better understand the wait times, distributions
were fitted. In the general aggregated case a Weibull
model fits best with parameters λ = 24.594 and
k = 0.7034. For individual bookmarks log-normal and
Weibull models proved best in the majority of cases.
With these models the upper bound of a hotspots’
lengths can be extrapolated by using, for example, the
95th percentile.

4.9 User Behaviour Models

Model fitting is important for understanding the dif-
ferent properties of the system, and aids in simulation
creation and algorithmic design. Various models have
been discussed for the different parameters of the sys-
tem. In all cases many models (e.g., normal, log-normal,
exponential, Weibull, Pareto, Poisson, Zipf) were fitted
to the data with varying success. Generally, more than
one distribution fitted well. This subsection will sum-
marise the analytical models found for each parameter.

Table 2 gives an overview of the best matching mod-
els for each metric discussed previously, with their cor-
responding R-square values. Of particular importance
are the types of distribution which can have a signifi-
cant impact on the system. For example, the Weibull
and log-normal models are both long-tailed, and sys-
tems may have to anticipate the skewed distribution to
cope effectively.

The models shown so far are from aggregated results
across all the videos. Instead, it may be interesting to
model the different metrics of each particular video.
However due to the diversity in models and parameters
it is not possible to show each model, so instead Ta-
ble 3 summaries which models fit with a R-square value
greater than 95%. The “max models” column represents
the number of datasets that are of sufficient size to have
models fitted. For example, there are 695 bookmarks,
yet only 203 had enough data to be fitted to a hotspot
length, and of these, 165 fitted well to a Log-normal
model, 135 to a Weibull models, etc.

4.10 Summary

Our results have shown that the interactivity options
available to users highly influence their behaviour. In
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Metric Distribution R-square

Object Popularity Normal ( µ = 60.129 , σ = 32.111 ) 0.97996
Segment Popularity Log-normal ( µ = 0.551 , σ = 1.32 ) 0.98084

Weibull ( λ = 2.887 , k = 0.69527 ) 0.98284
Session Length Log-normal ( µ = 4.73, σ = 1.90 ) 0.99779

Weibull ( λ = 233.17, k = 0.51125 ) 0.98666

Inter-seek times Log-normal ( µ = 1.2886, σ = 2.318 ) 0.99644
Weibull ( λ = 7.5243, k = 0.35646 ) 0.99353

Seek Distance (forward) Log-normal ( µ = 7.2668, σ = 1.2194 ) 0.99567
Seek Distance (backward) Log-normal ( µ = 7.195, σ = 1.3132 ) 0.99083

Hotspot Length Log-normal ( µ = 2.6361, σ = 1.388 ) 0.98463

Weibull ( λ = 24.594 , k = 0.7034 ) 0.99545
Bookmark Longevity Weibull ( λ = 3.1004 , k = 0.61592 ) 0.99796

Table 2: A summary of metrics with their corresponding distributions

Metric Max Models Log-normal Weibull Pareto Normal Exponential Zipf No fit
Segment Popularity 84 (from 88 videos) 61 65 12 58 42 13 17

Session Length 81 (from 88 videos) 75 72 0 5 31 4 0
Inter-seek times 87 (from 88 videos) 83 83 54 1 3 55 3
Hotspot Length 203 (from 695 bookmarks) 165 135 91 5 48 53 22

Table 3: Metrics for individual videos and their corresponding distributions

particular, it was found that the novel interactive fea-
ture of bookmarking played a pivotal role, leading to
access patterns quite dissimilar from previous related
studies that looked at VCR-like interactivity alone.
The combination of our content type and the addition
of bookmarks led to users accessing content in rela-
tively short segments sparsely distributed throughout
the length of the videos. Segment popularity is skewed
with the most popular segments clearly around the
bookmarks, forming hotspots. From both a user and
a CDN’s perspective, this can be viewed as advanta-
geous; users can reach interesting content more quickly
through the bookmarks, and the increased locality of
interest means CDNs can respond more effectively by,
for example, prioritising hotspot replication.

Content placement is an important and difficult
problem for CDNs. The CDN has to decide where
within the network to replicate or cache content. Typi-
cally the content is placed near to the users, and repli-
cated as a whole. However, as we have seen, not all
segments within a piece of content are equal and a
CDN can leverage this information to replicate cer-
tain segments more than others. This is especially use-
ful when popularity nearly always concentrates around
bookmarks, allowing the relevant segments to be repli-
cated throughout the network before user demand in-
creases.

A CDN could be designed to handle high levels
of user interactivity, with relatively short sessions and
inter-seek times. Our results have shown that hotspots
following bookmarks were orders of magnitude shorter
than the video containing them. Furthermore, it en-
courages the use of an agile delivery mechanism that al-

lows distribution of small sparsely distributed segments
quickly and efficiently.

We have also shown that users view the bookmarks
in a similar order, giving them a degree of predictabil-
ity. This could allow a CDN to exploit pre-fetching tech-
niques to improve the user’s experience. For example, if
the CDN could predict the next segment the user will
watch, then this could be pre-fetched into the user’s
playback buffer and when the user seeks to that seg-
ment there will be no delay caused by seek latency and
buffering.

The use of bookmarks depends on them being well
positioned and of interest to the user. We noted in
the first experiment that 40% of bookmarks had at
least one user seek before the bookmark, with 30.7%
of these seeks occurring within 5 seconds of jumping to
the bookmark. This perhaps represents users who were
almost immediately dissatisfied with the bookmark’s lo-
cation. We noted this happened consistently for roughly
6% of the total bookmarks. Upon further inspection, it
appeared the bookmarks were inadvertently misplaced.
This led to users performing additional seeks to find the
correct location, thus placing extra load on the servers.

In Section 5, we explore and study the implications
of two techniques designed to exploit some of the prop-
erties suggested from our analysis.

5 Techniques for Interactivity Support

During our second video trial, we took the opportunity
to go beyond characterising user behaviour, by test-
ing autonomic content management techniques in a live
system. In this section we discuss and analyse a simple
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Scenario A

1. Jumps to Bt
2. Watches for w

3. Seeks to St (St < Bt)

Scenario B

1. Jumps to Bt
2. Watches for w

3. Seeks to St (Bt < St < Bt + w)

Scenario C

1. Jumps to Bt
2. Watches for w

3. Seeks to St (St > Bt + w)

Fig. 11: Different scenarios that may induce bookmark
movement

dynamic bookmark placement technique, as well as an
interactivity-aware content pre-fetching method based
on the prediction of which bookmark would be viewed
next.

5.1 Moving Bookmarks

During our video trials, bookmarks were appropriately
positioned by administrators before the video was pub-
lished. It was previously noted that a small percentage
of bookmarks were unintentionally misplaced. There
are many reasons why a bookmark could be misplaced,
such as human error, or a lack of insight into user re-
quirements. For example: a bookmark could be placed
before a penalty kick, but many users may first wish to
see the foul that led to the penalty. As such, it could
be beneficial if the system could autonomically detect
poorly placed bookmarks and correct them based on
feedback derived from the user’s actions.

To develop a reactive algorithm that moves book-
marks dependent on user behaviour, different possible
scenarios should first be explained. Figure 11 shows
three different sequences of actions a user would follow
shortly after seeking to a bookmark.

Scenario A shows the user briefly viewing the book-
mark, then seeking to a time earlier than it. While this
could indicate that the bookmarked event was short
and that the user wanted to view it again, it could

equally imply that the bookmark was placed later than
it should have been.

Scenario B is similar to Scenario A but differs in
that the user does not seek back to a point before
the bookmark; this means the user is simply replay-
ing footage, thus implying the bookmark is correctly
placed for that individual.

Scenario C represents a situation in which the user’s
motives are difficult to determine. Since they watch
briefly then seek forward, several possibilities exist: the
bookmarked event may have ended, the bookmark may
have been placed prematurely, or the user is simply
seeking forward towards the next event.

A further possibility, not shown in the figure, is for
a user to seek far away from a bookmark in either di-
rection. Since it is unlikely their destination would be
related to the bookmark, such an action would not in-
dicate the bookmark was incorrectly placed.

Scenario A and Scenario C are therefore the only
scenarios where the user’s actions could indicate the
bookmark is misplaced. All other actions should rein-
force the position of the bookmark to reduce future
movements once it is correctly placed. Additionally
since we are less sure of the user’s intentions in Scenario
C we should only make minor changes to the book-
mark’s placement to limit the impact of false-positives.

Algorithm 1 has been developed to identify these
situations and act appropriately with regard to moving
a bookmark. An exponential moving average (EMA)
is used to recalculate the bookmark’s position with a
smoothing constant α. The value used for α is depen-
dent on the identified scenario. Initially these values
were 0.1 and 0.05 allowing us to place greater con-
fidence in the seeking-backward Scenario A than the
seeking-forward Scenario C. These values were chosen
as the intuitive first guesses for experimental purposes,
and should be refined with future experiments. For our
testing scenario we also used maximum wait times of
20 and 60 seconds for backward and forward seeks re-
spectively. These maximum values were chosen because
they exceeded approximately 80% of all wait times.

To test this algorithm, several of the bookmarks
in our second video trial (not our initial World Cup
experiment) were deliberately misplaced by different
amounts before they appeared on the live site. Over
time the bookmarks were moved autonomically by our
algorithm. For example, Figures 12a & 12b show the po-
sition of a single bookmark as it was moved by the sys-
tem with respect to time and received requests. In both
cases the system responds and the bookmark quickly
moves to a new position, and then gradually converges
until it becomes stable. In most cases the majority of
movements were only in one direction, but for a cou-
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Fig. 12: Manchester United vs Milan single bookmark position

Algorithm 1 Bookmark moving algorithm
// Bt is the location of the bookmark at time t

// St is the location the user sought at time t
// w is the time the user waited before seeking to St

if St < Bt then

// The user seeks backwards before the bookmark
if w <= 20 and St > (Bt − 60) then

// The seek occurred within 20 seconds of viewing the
bookmark and lands within 60 seconds of the bookmark

α = 0.1

Bt+1 = αSt + (1− α)Bt

end if

else if St > (Bt + w) then

// The user seeks forward
if w <= 60 and St < (Bt + 120) then

// The seek occurred within 60 seconds of viewing the

bookmark and lands within 120 seconds of the bookmark
α = 0.05

Bt+1 = αSt + (1− α)Bt

end if
end if

ple of bookmarks the positions oscillated between two
values. The most prominent example of this was a foul
in a football match which led to a penalty. Some users
wished to see the foul but others only wished to see
the penalty a minute later. In these small number of
cases it is subjective to decide if a bookmark is correctly
placed, and in fact using this algorithm the bookmarks
may never converge to a single point. In such cases, it
may be best to bias the bookmark towards the earlier
position, so both the early and later events can easily
be seen.

Instead of subjectively deciding if a bookmark has
moved to its correct location, we examined how much
traffic might have been saved by moving the bookmark
to a new location. If, for example, a bookmark was
moved forward 10 seconds closer to the desired loca-
tion, and a user views for 90 seconds, then by moving

the bookmark we have potentially stopped video being
transferred which might have normally been skipped
over. A reduction of 10/(90 + 10) = 10% is there-
fore made. Of course, this is only true if the user does
not seek backward to watch the skipped 10 seconds, in
which case we save nothing, and in fact incur an extra
seek. Figure 13a displays a CDF of the potential reduc-
tion in viewing duration per bookmark request from
the use of the algorithm. We can see that 16% of the
requests made no saving: these are accounted for by
early requests before the bookmarks were moved, and
requests where the user incurs an additional seek.

Figure 13b illustrates how rapidly these reductions
are made (and whether or not they are sustained)
through a plot of the fractional potential saving versus
the number of requests received across all the moved
bookmarks. For the first 20% of requests the reduc-
tions are low yet they improve, and then stabilise at a
reduction of between 30-40% per request. The 95% con-
fidence intervals are quite wide in most cases (averaging
around ±10 seconds) although this variance is mostly
due to differences in playback length and not the 16%
of requests with no saving.

With minimal processing this simple algorithm has
been able to reposition the bookmarks to more appro-
priate locations based on observed user behaviour, re-
sulting in consistent traffic reductions. The algorithm
can still be improved by fine tuning the α values. Larger
values would move the bookmark more quickly at the
cost of increasing the probability of incorrect decisions.
This investigation has been left for future work.

5.2 Predictive Pre-fetching

Due to the increased interactivity of users and their de-
parture from the start-to-finish model, it is no longer
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Fig. 13: Reduction in viewing duration due to the algorithm

wise to only pre-fetch ahead of the playback point. How-
ever, as noted in Section 4.7 it is still possible to pre-
dict which bookmark a user will view next, allowing
the client to intelligently pre-fetch content, benefitting
both clients and servers. For the clients, pre-fetching re-
moves seek latency when seeking to a pre-fetched seg-
ment, both in terms of the network seek latency in-
curred and also the time taken to buffer enough video
for playback, as well as helping to avoid buffer under-
runs under poor network conditions. Similarly, on the
server side, pre-fetching can help reduce the peak server
load by increasing the load at quieter times with pre-
fetching requests, thus making the overall load more
uniform.

However, pre-fetching does come with a cost; re-
sources are wasted if a segment is downloaded and never
used. Deciding which segments to pre-fetch is there-
fore an important task. We devised a set of pre-fetching
strategies which we tested within a simulator driven by
the eurovision trace obtained from our system. Clients
were provisioned with a dedicated link to the server, ca-
pable of transferring twice the bitrate required to play
the content. Once a client has fetched enough data to
fill a 5 second playback buffer, half of their bandwidth
is allocated to the pre-fetcher whilst the other half con-
tinues to fill the playback buffer.

For simplicity, and because interest always formed
around bookmarks, each strategy will only pre-fetch
segments immediately following a bookmark (i.e.,
bookmark hotspots). In all experiments the amount of
each hotspot pre-fetched was determined by varying the
percentile of that particular hotspot’s length model, as
described in Section 4.8. The details for each pre-fetch
strategy are listed below:

Ahead simply continues to pre-fetch ahead of the
playback point assuming the client has a unlimited
buffer. This is similar to what some existing stream-
ing applications do.

Ahead (to hotspot end) again simply continues
to pre-fetch ahead of the playback point but only until
the end of hotspot associated with the bookmark being
viewed.

Ahead (and Predictive) works in a similar way
to Ahead (to hotspot end), however once it reaches the
end of the hotspot it begins to use the Predictive pre-
fetch scheme.

Predictive uses knowledge observed from other
users as to which bookmark is likely to be requested
next, and thus starts to pre-fetch the bookmark
hotspots in descending order of probability of being vis-
ited. The more users interacting with the system, the
more accurate the predictive knowledge becomes.

Sequence will pre-fetch bookmark hotspots in the
order in which they appear within the video regardless
of the current playback point. For example, in a football
match the goals would be pre-fetched in a sequential
order.

Sequence After again pre-fetches bookmark
hotspots in the order in which they appear within the
video; the difference being only hotspots that are after
the current playback point are fetched. For example, if
a user has yet to fetch the first bookmark’s hotspot but
is already viewing the second, then the first will not be
pre-fetched.

Two metrics were measured to determine how well
the different schemes behaved. The first metric dis-
played in Figure 14a is the fraction of requests with
zero seek latency. A seek latency of zero occurs when the
user has already pre-fetched a playback buffer’s worth
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Fig. 14: Various metrics for different pre-fetch schemes versus bookmark length

of video from a requested seek point. The second met-
ric measured the ratio of fetched data which was never
watched, and therefore needlessly fetched. This usage
ratio is shown in Figure 14b.

Using the simple Ahead scheme 31% of seeks have
zero latency, this is made up of seeks to segments that
have already been viewed, and small forward seeks into
the ahead buffer. Adapting this scheme to only pre-
fetch to the end of the bookmarks (i.e. the Ahead (to
hotspot end) scheme) has a minor negative effect on the
seek latency, whilst increasing the average usage ratio.

The Sequence and Sequence After schemes are very
similar, but the simple modification to the Sequence
After scheme allowed it to achieve a lower seek latency
whilst not degrading its average usage ratio. This was
because users had a tendency to not seek to a book-
mark before the current playback point, and always go
forward within the video, leaving the Sequence scheme
stuck pre-fetching hotspots before the current playback
point.

Both the Predictive and the Sequence After schemes
perform in a similar manner, with the Predictive
schemes always outperforming the other. Due to this
fact, the Sequence After scheme could be used in place
of the Predictive scheme whilst knowledge is collected
to improve the Predictive scheme’s accuracy.

The best outcome was the combination of Ahead
and Predictive schemes named Ahead (and Predictive).
This exploited the fact that users rarely viewed beyond
the end of a hotspot, and thus pre-fetching another
hotspot was of benefit.

In the previous experiments the Predictive scheme
was primed with knowledge from all users, but in reality
this knowledge would be built up over time. To test how
quickly this knowledge can be obtained we ran another
set of experiments where the Predictive and Ahead (and
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Fig. 15: How zero seek latencies is effected by amount
of pre-fetch knowledge

Predictive) schemes were primed with different amounts
of knowledge. The results of this are shown in Figure 15.
We set the percentile hotspot length to 0.55 and 0.9
which were chosen since 0.55 is where the seek latency
began to stabilise, and 0.9 where the usage ratio be-
gan to drop rapidly. The knowledge is ranked from 0
to 3000 which represents the number of seek requests
received. It can be seen that very quickly (within 250
seek requests) the knowledge has become useful, and
eventually plateaus at 1500 seek requests. Any seek re-
quests after this point just increase the confidence in
the knowledge and does not improve it.

6 Conclusions and Future Work

We have presented a study and characterisation of user
behaviour for our interactive Video-on-Demand system.
We note that by adding simple bookmarks to points
of interest within the media, the access patterns are
greatly influenced. This behaviour led to high levels
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of seeking which created relatively-short and sparsely-
distributed segments with orders of magnitude more
popularity than others.

Various distributions were fitted to the different
metrics considered, providing a greater understanding
of how users interact with such systems. Beyond the
insight gained, the models constitute a valuable tool-
box for driving future simulations which require highly
interactive workloads.

Many existing delivery mechanisms are not designed
for high levels of interactive behaviour and are instead
optimised for classic start-to-finish streaming. CDNs
must therefore adapt to efficiently handle these kinds of
access patterns. They could, for example, take advan-
tage of the long-tailed distributions of segment popu-
larity by replicating those that generate the most de-
mand. For instance, we observed that 10% of segments
accounted for 44% of all requests.

The departure from classic start-to-finish playback
encourages the design of agile delivery mechanisms that
allow quick seeking, and allow certain more popular
segments to be more highly distributed. We have seen
that adding bookmarks will highly influence the order
in which users view the content, making the sequence
of actions somewhat predictable. This can then be ex-
ploited by allowing users to pre-fetch content that they
are predicted to need shortly, thus reducing any delays
they are likely to experience. However, we noted that
bookmarks could be harmful by causing unnecessary
seeks if incorrectly placed. This could be remedied for
both client and server by simply moving the bookmark
autonomically based on observed user behaviour.

So far we have only considered bookmarks within
music and sport videos, but bookmarks are equally ap-
plicable in many other genres. For example, bookmarks
are commonly found in the form of chapters on video
DVDs. It is not clear if the same high levels of interac-
tivity would be observed, or if the classic start-to-finish
model would still be prevalent.

For a system to be fully autonomic the bookmarks
should perhaps be created automatically. This could
occur after the system has detected a large number of
requests for a specific area of a video. A bookmark could
then be provisionally placed and its position refined by
a bookmark-moving algorithm, such as the one found
in Section 5.1.

During our experiment users were unhappy that we
“spoilt the experience” of watching the sporting events
covered somewhat. This was because the user could
quickly determine the final outcome of the event from
the bookmark names. The suggestion was made that
we avoid labelling the bookmarks and instead simply
describe them as points of interest. This could equally

work if the bookmarks were autonomically created since
a system would be unable to name them itself. Note,
unnamed bookmarks would only be useful if they are
typically accessed sequentially, and not based on their
name alone.

It was clear that pre-fetching bookmark hotspots
only covered 35% of all viewed segments. Thus pre-
fetching schemes should consider more segments. This
of course would make it harder to decide which seg-
ments to pre-fetch next. The probability of making
a wrong decision could be reduced if the pre-fetching
technique was modified, for example pre-fetching more
than one choice simultaneously.

The predictive pre-fetching algorithms used knowl-
edge inferred from the observations of other users. For
example, if the majority of all users visited two book-
marks in the same order, it is likely the next user will
do the same. How this knowledge is collected, and how
this knowledge is disseminated is left open for future
study. We did not discuss who would use this knowl-
edge, indeed both the client and server could exploit it
differently, each with respective pros and cons. For ex-
ample, if the client has spare capacity, it could start to
pre-fetch based on both its own previous behaviour and
that of the majority of other users. The server could
also decide to pre-replicate, or to push out segments
predicted to be required when it has spare capacity.

While not the case for all content, high levels of
interactivity are becoming more common, whilst users
are both relying on and expecting Video-on-Demand
services to provide more advanced interactive function-
ality. Our study suggests that CDN mechanisms must
improve to handle more diverse applications, content
and users. To achieve this, the development of new al-
gorithms must be driven by models derived from real-
istic characterised workloads. The development of such
strategies is reliant on gaining a deep understanding
of the relevant workload parameters. The analysis and
models presented in this paper aim to aid in this en-
deavour.
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