Abstract Numeration Systems and Recognizability

Emilie Charlier
Department of Mathematics
University of Liège

Rencontres arithmétique de l'informatique mathématique Janvier 2007

Outline of the talk

Abstract Numeration Systems

Some natural Questions

First Results about Recognizability

Bounded Languages
B_{ℓ}-Representation of an Integer

Multiplication by $\lambda=\beta^{\ell}$

Abstract Numeration Systems

Definition

An abstract numeration system is a triple $S=(L, \Sigma,<)$ where L is a regular language over a totally ordered alphabet $(\Sigma,<)$.
Enumerating the words of L with respect to the genealogical ordering induced by $<$ gives a one-to-one correspondence

$$
\operatorname{rep}_{S}: \mathbb{N} \rightarrow L \quad \operatorname{val}_{S}=\operatorname{rep}_{S}^{-1}: L \rightarrow \mathbb{N}
$$

Abstract Numeration Systems

Example
$L=a^{*}, \Sigma=\{a\}$

n	0	1	2	3	4	\cdots
$\operatorname{rep}(n)$	ε	a	aа	aаa	аааа	\cdots

Example
$L=\{a, b\}^{*}, \Sigma=\{a, b\}, a<b$

$$
\begin{array}{r|ccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots \\
\hline \operatorname{rep}(n) & \varepsilon & a & b & a a & a b & b a & b b & a a a & \cdots
\end{array}
$$

Abstract Numeration Systems

Example

$$
L=a^{*} b^{*}, \Sigma=\{a, b\}, a<b
$$

n	0	1	2	3	4	5	6	\cdots
$\operatorname{rep}(n)$	ε	a	b	$a a$	$a b$	$b b$	aaa	\cdots

$$
\operatorname{val}\left(a^{p} b^{q}\right)=\frac{1}{2}(p+q)(p+q+1)+q
$$

Abstract Numeration Systems

Abstract Numeration Systems
\#b

\#a

Abstract Numeration Systems

Abstract Numeration Systems

Abstract Numeration Systems

Remark

This generalizes "classical" Pisot systems like integer base systems or Fibonacci system.

$$
L=\{\varepsilon\} \cup\{1, \ldots, k-1\}\{0, \ldots, k-1\}^{*} \text { or } L=\{\varepsilon\} \cup 1\{0,01\}^{*}
$$

Definition

A set $X \subseteq \mathbb{N}$ is S-recognizable if $\operatorname{rep}_{S}(X) \subseteq \Sigma^{*}$ is a regular language (accepted by a DFA).

- What about S-recognizable sets ?
- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?
- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?
- For a given S, what are the S-recognizable sets ?

Some natural Questions

- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?
- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
- Addition, multiplication by a constant, ...

Some natural Questions

- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?
- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
- Addition, multiplication by a constant, ...
- Any hope for a Cobham's theorem ?
- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?
- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
- Addition, multiplication by a constant, ...
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?

Some natural Questions

- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?
- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
- Addition, multiplication by a constant, ...
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?

Some natural Questions

- What about S-recognizable sets ?
- Are ultimately periodic sets S-recognizable for any S ?
- For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?
- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
- Addition, multiplication by a constant, ...
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic. . .

First Results about Recognizability

Theorem
Let $S=(L, \Sigma,<)$ be an abstract numeration system. Any arithmetic progression is S-recognizable.

Well-known Fact (see Eilenberg's book)
The set of squares is never recognizable in any integer base system.
Example
Let $L=a^{*} b^{*} \cup a^{*} c^{*}, \Sigma=\{a, b, c\}, a<b<c$.

$$
\begin{array}{r|ccccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \cdots \\
\hline r e p(n) & \varepsilon & a & b & c & a a & a b & a c & b b & c c & a a a & \cdots
\end{array}
$$

First Results about Recognizability

Theorem (Translation)
Let $S=(L, \Sigma,<)$ be an abstract numeration system and $X \subseteq \mathbb{N}$. For each $t \in \mathbb{N}, X+t$ is S-recognizable if and only if X is S-recognizable.

Question: Multiplication by a Constant
If $S=(L, \Sigma,<)$ is an abstract numeration system, can we find some necessary and sufficient condition on $\lambda \in \mathbb{N}$ such that for any S-recognizable set X, the set λX is still S-recognizable ?

$$
X S \text {-rec } \quad \xrightarrow{?} \quad \lambda X S \text {-rec }
$$

First Results about Recognizability

Definition

We denote by $\mathbf{u}_{L}(n)$ the number of words of length n belonging to L.

Theorem (Polynomial Case)
Let $L \subseteq \Sigma^{*}$ be a regular language such that $\mathbf{u}_{L}(n) \in \Theta\left(n^{k}\right), k \in \mathbb{N}$ and $S=(L, \Sigma,<)$. Preservation of S-recognizability after multiplication by λ holds only if $\lambda=\beta^{k+1}$ for some $\beta \in \mathbb{N}$.

First Results about Recognizability

Definition

A language L is slender if $\mathbf{u}_{L}(n) \in O(1)$.
Theorem (Slender Case)
Let $L \subset \Sigma^{*}$ be a slender regular language and $S=(L, \Sigma,<)$. A set $X \subseteq \mathbb{N}$ is S-recognizable if and only if X is a finite union of arithmetic progressions.

Corollary

Let S be a numeration system built on a slender language. If $X \subseteq \mathbb{N}$ is S-recognizable then λX is S-recognizable for all $\lambda \in \mathbb{N}$.

First Results about Recognizability

Theorem
Let $\beta>0$. For the abstract numeration system

$$
S=\left(a^{*} b^{*},\{a, b\}, a<b\right),
$$

multiplication by β^{2} preserves S-recognizability if and only if β is an odd integer.

Bounded Languages

Notation

We denote by $\mathcal{B}_{\ell}=a_{1}^{*} \cdots a_{\ell}^{*}$ the bounded language over the totally ordered alphabet $\Sigma_{\ell}=\left\{a_{1}<\ldots<a_{\ell}\right\}$ of size $\ell \geq 1$.
We consider abstract numeration systems of the form ($\mathcal{B}_{\ell}, \Sigma_{\ell}$) and we denote by rep ${ }_{\ell}$ and val_{ℓ} the corresponding bijections.

A set $X \subseteq \mathbb{N}$ is said to be \mathcal{B}_{ℓ}-recognizable if $\operatorname{rep}_{\ell}(X)$ is a regular language over the alphabet Σ_{ℓ}.

Bounded Languages

In this context, multiplication by a constant λ can be viewed as a transformation

$$
f_{\lambda}: \mathcal{B}_{\ell} \rightarrow \mathcal{B}_{\ell}
$$

The question becomes then :
Can we determine some necessary and sufficient condition under which this transformation preserves regular subsets of \mathcal{B}_{ℓ} ?

Bounded Languages

Example

Let $\ell=2, \Sigma_{2}=\{a, b\}$ and $\lambda=25$.

$$
\begin{array}{rllrll}
8 & \xrightarrow{\times 25} & 200 & \mathbb{N} & \xrightarrow{\times \lambda} & \mathbb{N} \\
\mathrm{rep}_{2} \downarrow & & \downarrow \mathrm{rep}_{2} & \mathrm{rep}_{\ell} \downarrow & & \downarrow \mathrm{rep}_{\ell} \\
a b^{2} & \xrightarrow{f_{25}} & a^{9} b^{10} & \mathcal{B}_{\ell} & \xrightarrow{f_{\lambda}} & \mathcal{B}_{\ell}
\end{array}
$$

Thus multiplication by $\lambda=25$ induces a mapping f_{λ} onto \mathcal{B}_{2} such that for $w, w^{\prime} \in \mathcal{B}_{2}, f_{\lambda}(w)=w^{\prime}$ if and only if $\operatorname{val}_{2}\left(w^{\prime}\right)=25 \operatorname{val}_{2}(w)$.

B_{ℓ}-Representation of an Integer

We set

$$
\mathbf{u}_{\ell}(n):=\mathbf{u}_{\mathcal{B}_{\ell}}(n)=\#\left(\mathcal{B}_{\ell} \cap \sum_{\ell}^{n}\right)
$$

and

$$
\mathbf{v}_{\ell}(n):=\#\left(\mathcal{B}_{\ell} \cap \Sigma_{\ell}^{\leq n}\right)=\sum_{i=0}^{n} \mathbf{u}_{\ell}(i)
$$

Lemma
For all $\ell \geq 1$ and $n \geq 0$, we have

$$
\begin{equation*}
\mathbf{u}_{\ell+1}(n)=\mathbf{v}_{\ell}(n) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{u}_{\ell}(n)=\binom{n+\ell-1}{\ell-1} \tag{2}
\end{equation*}
$$

B_{ℓ}-Representation of an Integer

Lemma
Let $S=\left(a_{1}^{*} \cdots a_{\ell}^{*},\left\{a_{1}<\cdots<a_{\ell}\right\}\right)$. We have

$$
\operatorname{val}_{\ell}\left(a_{1}^{n_{1}} \cdots a_{\ell}^{n_{\ell}}\right)=\sum_{i=1}^{\ell}\binom{n_{i}+\cdots+n_{\ell}+\ell-i}{\ell-i+1} .
$$

Corollary (Katona, 1966)
Let $\ell \in \mathbb{N} \backslash\{0\}$. Any integer n can be uniquely written as

$$
\begin{equation*}
n=\binom{z_{\ell}}{\ell}+\binom{z_{\ell-1}}{\ell-1}+\cdots+\binom{z_{1}}{1} \tag{3}
\end{equation*}
$$

with $z_{\ell}>z_{\ell-1}>\cdots>z_{1} \geq 0$.

B_{ℓ}-Representation of an Integer

Example

Consider the words of length 3 in the language $a^{*} b^{*} c^{*}$,

$$
a a a<a a b<a a c<a b b<a b c<a c c<b b b<b b c<b c c<c c c .
$$

We have $\operatorname{val}_{3}(a a a)=\binom{5}{3}=10$ and $\operatorname{val}_{3}(a c c)=15$. If we apply the erasing morphism $\varphi:\{a, b, c\} \rightarrow\{a, b, c\}^{*}$ defined by

$$
\varphi(a)=\varepsilon, \varphi(b)=b, \varphi(c)=c
$$

on the words of length 3 , we get

$$
\varepsilon<b<c<b b<b c<c c<b b b<b b c<b c c<c c c .
$$

So we have $\operatorname{val}_{3}(a c c)=\operatorname{val}_{3}(a a a)+\operatorname{val}_{2}(c c)$ where val_{2} is considered as a map defined on the language $b^{*} c^{*}$.

B_{ℓ}-Representation of an Integer

Algorithm computing rep ${ }_{\ell}(n)$.
Let n be an integer and 1 be a positive integer.
For $i=1, l-1, \ldots, 1$ do
if $n>0$,
find t such that $\binom{\mathrm{t}}{\mathrm{i}} \leq \mathrm{n}<\binom{\mathrm{t}+1}{\mathrm{i}}$
$z(i) \leftarrow t$
$\mathrm{n} \leftarrow \mathrm{n}-\binom{\mathrm{t}}{\mathrm{i}}$
otherwise, $\mathrm{z}(\mathrm{i}) \leftarrow \mathrm{i}-1$
Consider now the triangular system having $\alpha_{1}, \ldots, \alpha_{\ell}$ as unknowns

$$
\alpha_{i}+\cdots+\alpha_{\ell}=z(\ell-i+1)-\ell+i, \quad i=1, \ldots, \ell .
$$

One has $\operatorname{rep}_{\ell}(\mathrm{n})=a_{1}^{\alpha_{1}} \cdots a_{\ell}^{\alpha_{\ell}}$.

B_{ℓ}-Representation of an Integer

Example

For $\ell=3$, one gets for instance
$12345678901234567890=\binom{4199737}{3}+\binom{3803913}{2}+\binom{1580642}{1}$
and solving the system

$$
\begin{gathered}
\left\{\begin{aligned}
n_{1}+n_{2}+n_{3} & =4199737-2 \\
n_{2}+n_{3} & =3803913-1 \\
n_{3} & =1580642
\end{aligned}\right. \\
\Leftrightarrow\left(n_{1}, n_{2}, n_{3}\right)=(395823,2223270,1580642),
\end{gathered}
$$

we have

$$
\operatorname{rep}_{3}(12345678901234567890)=a^{395823} b^{2223270} c^{1580642}
$$

Multiplication by $\lambda=\beta^{\ell}$

Remark

We have $\mathbf{u}_{\mathcal{B}_{\ell}}(n) \in \Theta\left(n^{\ell-1}\right)$.
So we have to focus only on multiplicators of the kind

$$
\lambda=\beta^{\ell} .
$$

Multiplication by $\lambda=\beta^{\ell}$

Lemma

For $n \in \mathbb{N}$ large enough, we have

$$
\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} n\right)\right|=\beta\left|\operatorname{rep}_{\ell}(n)\right|+\frac{(\beta-1)(\ell-1)}{2}+i
$$

with $i \in\{-1,0, \ldots, \beta-1\}$.
Definition
For all $i \in\{-1,0, \ldots, \beta-1\}$ and $k \in \mathbb{N}$ large enough, we define

$$
\begin{aligned}
& \mathcal{R}_{i, k}:=\left\{n \in \mathbb{N}:\left|\operatorname{rep}_{\ell}(n)\right|=k\right. \text { and } \\
& \left.\qquad \quad\left|\operatorname{rep}_{\ell}\left(\beta^{\ell} n\right)\right|=\beta k+\frac{(\beta-1)(\ell-1)}{2}+i\right\} .
\end{aligned}
$$

Multiplication by $\lambda=\beta^{\ell}$

Example (Multiplication by 25 in \mathcal{B}_{2})

Multiplication by $\lambda=\beta^{\ell}$

Example (The R_{i} before and after Multiplication by 25.)

Multiplication by $\lambda=\beta^{\ell}$

Multiplication by $\lambda=\beta^{\ell}$

Multiplication by $\lambda=\beta^{\ell}$

Theorem
Let $S=\left(a^{*} b^{*} c^{*},\{a<b<c\}\right)$. For any constant $\beta \in \mathbb{N}$, multiplication by β^{3} does not preserve S-recognizability.

Corollary
Let $S=\left(a^{*} b^{*} c^{*},\{a<b<c\}\right)$. For any constant $\lambda \in \mathbb{N}$, multiplication by λ does not preserve S-recognizability.

Past Conjecture

Multiplication by β^{ℓ} preserves S-recognizability for the abstract numeration system

$$
S=\left(a_{1}^{*} \cdots a_{\ell}^{*},\left\{a_{1}<\cdots<a_{\ell}\right\}\right)
$$

built on the bounded language \mathcal{B}_{ℓ} over ℓ letters if and only if

$$
\beta=\prod_{i=1}^{k} p_{i}^{\theta_{i}}
$$

where p_{1}, \ldots, p_{k} are prime numbers strictly greater than ℓ. In other words, multiplication by β^{ℓ} does not preserve S-recognizability if and only if

$$
\exists M \in\{2, \ldots, \ell\}: \beta \equiv 0 \quad(\bmod M)
$$

