Abstract Numeration Systems and Recognizability

Emilie Charlier

Department of Mathematics University of Liège

Rencontres arithmétique de l'informatique mathématique Janvier 2007

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Outline of the talk

Abstract Numeration Systems

Some natural Questions

First Results about Recognizability

Bounded Languages

 B_{ℓ} -Representation of an Integer

Multiplication by $\lambda = \beta^{\ell}$

・ロト (四) (目) (日) (日) (日)

Definition

An abstract numeration system is a triple $S = (L, \Sigma, <)$ where L is a regular language over a totally ordered alphabet $(\Sigma, <)$.

Enumerating the words of L with respect to the genealogical ordering induced by < gives a one-to-one correspondence

$$\operatorname{rep}_{\mathcal{S}} : \mathbb{N} \to L \qquad \operatorname{val}_{\mathcal{S}} = \operatorname{rep}_{\mathcal{S}}^{-1} : L \to \mathbb{N}.$$

(ロ) (型) (E) (E) (E) (O)

Example

$$L = a^*, \ \Sigma = \{a\}$$

 $\frac{n \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad \cdots}{\operatorname{rep}(n) \mid \varepsilon \quad a \quad aa \quad aaa \quad aaa \quad \cdots}$

Example

$$L = \{a, b\}^*, \ \Sigma = \{a, b\}, \ a < b$$

$$\frac{n \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad \cdots}{\operatorname{rep}(n) \mid \varepsilon \quad a \quad b \quad aa \quad ab \quad ba \quad bb \quad aaa \quad \cdots}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

#b

#b

#b

#b

#b

#b

Remark

This generalizes "classical" Pisot systems like integer base systems or Fibonacci system.

$$L = \{\varepsilon\} \cup \{1, \dots, k-1\} \{0, \dots, k-1\}^* \text{ or } L = \{\varepsilon\} \cup 1\{0, 01\}^*$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Definition A set $X \subseteq \mathbb{N}$ is S-recognizable if $\operatorname{rep}_{S}(X) \subseteq \Sigma^{*}$ is a regular language (accepted by a DFA).

▶ What about S-recognizable sets ?

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

▶ What about *S*-recognizable sets ?

► Are ultimately periodic sets S-recognizable for any S ?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

What about S-recognizable sets ?

- ► Are ultimately periodic sets S-recognizable for any S?
- ▶ For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

What about S-recognizable sets ?

- ► Are ultimately periodic sets S-recognizable for any S?
- ▶ For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

▶ For a given *S*, what are the *S*-recognizable sets ?

What about S-recognizable sets ?

- ► Are ultimately periodic sets S-recognizable for any S ?
- ▶ For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?

ション ふゆ メ リン イロン シックション

- ▶ For a given *S*, what are the *S*-recognizable sets ?
- Can we compute "easily" in these systems ?
 - Addition, multiplication by a constant, ...

What about S-recognizable sets ?

- Are ultimately periodic sets S-recognizable for any S ?
- ▶ For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?

ション ふゆ メ リン イロン シックション

- ▶ For a given *S*, what are the *S*-recognizable sets ?
- Can we compute "easily" in these systems ?
 - Addition, multiplication by a constant, ...
- Any hope for a Cobham's theorem ?

What about S-recognizable sets ?

- Are ultimately periodic sets S-recognizable for any S ?
- ▶ For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- ▶ For a given *S*, what are the *S*-recognizable sets ?
- Can we compute "easily" in these systems ?
 - Addition, multiplication by a constant, ...
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?

What about S-recognizable sets ?

- Are ultimately periodic sets S-recognizable for any S ?
- ▶ For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?

ション ふゆ メ リン イロン シックション

- ▶ For a given *S*, what are the *S*-recognizable sets ?
- Can we compute "easily" in these systems ?
 - Addition, multiplication by a constant, ...
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?

What about S-recognizable sets ?

- Are ultimately periodic sets S-recognizable for any S ?
- ▶ For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?

ション ふゆ メ リン イロン シックション

- ▶ For a given *S*, what are the *S*-recognizable sets ?
- Can we compute "easily" in these systems ?
 - Addition, multiplication by a constant, ...
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic...

First Results about Recognizability

Theorem

Let $S = (L, \Sigma, <)$ be an abstract numeration system. Any arithmetic progression is S-recognizable.

Well-known Fact (see Eilenberg's book)

The set of squares is never recognizable in any integer base system.

Example

Let
$$L = a^*b^* \cup a^*c^*$$
, $\Sigma = \{a, b, c\}$, $a < b < c$.

п	0	1	2	3	4	5	6	7	8	9	• • •
rep(n)	ε	а	b	С	аа	ab	ac	bb	сс	aaa	•••

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

Theorem (Translation)

Let $S = (L, \Sigma, <)$ be an abstract numeration system and $X \subseteq \mathbb{N}$. For each $t \in \mathbb{N}$, X + t is S-recognizable if and only if X is S-recognizable.

Question : Multiplication by a Constant

If $S = (L, \Sigma, <)$ is an abstract numeration system, can we find some necessary and sufficient condition on $\lambda \in \mathbb{N}$ such that for any *S*-recognizable set X, the set λX is still *S*-recognizable ?

$$X S$$
-rec $\xrightarrow{?}$ $\lambda X S$ -rec

ション ふゆ メ リン イロン シックション

Definition

We denote by $\mathbf{u}_L(n)$ the number of words of length *n* belonging to *L*.

Theorem (Polynomial Case)

Let $L \subseteq \Sigma^*$ be a regular language such that $\mathbf{u}_L(n) \in \Theta(n^k)$, $k \in \mathbb{N}$ and $S = (L, \Sigma, <)$. Preservation of S-recognizability after multiplication by λ holds only if $\lambda = \beta^{k+1}$ for some $\beta \in \mathbb{N}$.

ション ふゆ メ リン イロン シックション

First Results about Recognizability

Definition

A language *L* is *slender* if $u_L(n) \in O(1)$.

Theorem (Slender Case)

Let $L \subset \Sigma^*$ be a slender regular language and $S = (L, \Sigma, <)$. A set $X \subseteq \mathbb{N}$ is S-recognizable if and only if X is a finite union of arithmetic progressions.

Corollary

Let S be a numeration system built on a slender language. If $X \subseteq \mathbb{N}$ is S-recognizable then λX is S-recognizable for all $\lambda \in \mathbb{N}$.

Theorem

Let $\beta > 0$. For the abstract numeration system

$$S = (a^*b^*, \{a, b\}, a < b),$$

multiplication by β^2 preserves S-recognizability if and only if β is an odd integer.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Notation

We denote by $\mathcal{B}_{\ell} = a_1^* \cdots a_{\ell}^*$ the bounded language over the totally ordered alphabet $\Sigma_{\ell} = \{a_1 < \ldots < a_{\ell}\}$ of size $\ell \ge 1$.

We consider abstract numeration systems of the form $(\mathcal{B}_\ell, \Sigma_\ell)$ and we denote by rep_ℓ and val_ℓ the corresponding bijections.

A set $X \subseteq \mathbb{N}$ is said to be \mathcal{B}_{ℓ} -recognizable if $\operatorname{rep}_{\ell}(X)$ is a regular language over the alphabet Σ_{ℓ} .

In this context, multiplication by a constant λ can be viewed as a transformation

$$f_{\lambda}: \mathcal{B}_{\ell} \to \mathcal{B}_{\ell}.$$

The question becomes then :

Can we determine some necessary and sufficient condition under which this transformation preserves regular subsets of \mathcal{B}_{ℓ} ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Example

Let $\ell = 2$, $\Sigma_2 = \{a, b\}$ and $\lambda = 25$.

Thus multiplication by $\lambda = 25$ induces a mapping f_{λ} onto \mathcal{B}_2 such that for $w, w' \in \mathcal{B}_2$, $f_{\lambda}(w) = w'$ if and only if $\operatorname{val}_2(w') = 25 \operatorname{val}_2(w)$.

ション ふゆ アメリア メリア しょうめん

B_{ℓ} -Representation of an Integer

We set $\mathbf{u}_{\ell}(n) := \mathbf{u}_{\mathcal{B}_{\ell}}(n) = \#(\mathcal{B}_{\ell} \cap \Sigma_{\ell}^{n})$ and $\mathbf{v}_{\ell}(n) := \#(\mathcal{B}_{\ell} \cap \Sigma_{\ell}^{\leq n}) = \sum_{i=0}^{n} \mathbf{u}_{\ell}(i).$

Lemma For all $\ell \geq 1$ and $n \geq 0$, we have

$$\mathbf{u}_{\ell+1}(n) = \mathbf{v}_{\ell}(n) \tag{1}$$

and

$$\mathbf{u}_{\ell}(n) = \binom{n+\ell-1}{\ell-1}.$$
 (2)

B_{ℓ} -Representation of an Integer

Lemma
Let
$$S = (a_1^* \cdots a_\ell^*, \{a_1 < \cdots < a_\ell\})$$
. We have
 $\operatorname{val}_\ell(a_1^{n_1} \cdots a_\ell^{n_\ell}) = \sum_{i=1}^\ell \binom{n_i + \cdots + n_\ell + \ell - i}{\ell - i + 1}.$

Corollary (Katona, 1966)

Let $\ell \in \mathbb{N} \setminus \{0\}$. Any integer n can be uniquely written as

$$n = \begin{pmatrix} z_{\ell} \\ \ell \end{pmatrix} + \begin{pmatrix} z_{\ell-1} \\ \ell - 1 \end{pmatrix} + \dots + \begin{pmatrix} z_1 \\ 1 \end{pmatrix}$$
(3)

with $z_{\ell} > z_{\ell-1} > \cdots > z_1 \ge 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example

Consider the words of length 3 in the language $a^*b^*c^*$,

aaa < aab < aac < abb < abc < acc < bbb < bbc < bcc < ccc.

We have $\operatorname{val}_3(aaa) = \binom{5}{3} = 10$ and $\operatorname{val}_3(acc) = 15$. If we apply the erasing morphism $\varphi : \{a, b, c\} \to \{a, b, c\}^*$ defined by

$$\varphi(a) = \varepsilon, \varphi(b) = b, \varphi(c) = c$$

on the words of length 3, we get

$$\varepsilon < b < c < bb < bc < cc < bbb < bbc < ccc$$
.

So we have $\operatorname{val}_3(acc) = \operatorname{val}_3(aaa) + \operatorname{val}_2(cc)$ where val_2 is considered as a map defined on the language b^*c^* .

Algorithm computing $\operatorname{rep}_{\ell}(n)$.

```
Let n be an integer and 1 be a positive integer.
For i=1,1-1,...,1 do
if n>0,
find t such that \binom{t}{i} \leq n < \binom{t+1}{i}
z(i) \leftarrow t
n \leftarrow n - \binom{t}{i}
otherwise, z(i) \leftarrow i - 1
```

Consider now the triangular system having $\alpha_1, \ldots, \alpha_\ell$ as unknowns

$$\alpha_i + \cdots + \alpha_\ell = \mathbf{z}(\ell - i + 1) - \ell + i, \quad i = 1, \dots, \ell.$$

One has $\operatorname{rep}_{\ell}(n) = a_1^{\alpha_1} \cdots a_{\ell}^{\alpha_{\ell}}$.

 B_ℓ -Representation of an Integer

Example For $\ell = 3$, one gets for instance

$$12345678901234567890 = \binom{4199737}{3} + \binom{3803913}{2} + \binom{1580642}{1}$$

and solving the system

$$\begin{cases} n_1 + n_2 + n_3 &= 4199737 - 2\\ n_2 + n_3 &= 3803913 - 1\\ n_3 &= 1580642 \end{cases}$$
$$\Leftrightarrow (n_1, n_2, n_3) = (395823, 2223270, 1580642), \end{cases}$$

we have

$$\operatorname{rep}_3(12345678901234567890) = a^{395823}b^{2223270}c^{1580642}.$$

Multiplication by $\lambda = \beta^{\ell}$

Remark We have $\mathbf{u}_{\mathcal{B}_{\ell}}(n) \in \Theta(n^{\ell-1}).$

So we have to focus only on multiplicators of the kind

$$\lambda = \beta^{\ell}.$$

Multiplication by $\lambda = \beta^{\ell}$

Lemma For $n \in \mathbb{N}$ large enough, we have

$$|\operatorname{rep}_{\ell}(\beta^{\ell} n)| = \beta |\operatorname{rep}_{\ell}(n)| + \frac{(\beta - 1)(\ell - 1)}{2} + i$$

with $i \in \{-1, 0, \dots, \beta - 1\}$.

Definition

For all $i \in \{-1,0,\ldots,eta-1\}$ and $k \in \mathbb{N}$ large enough, we define

$$\mathcal{R}_{i,k} := \left\{ n \in \mathbb{N} : |\operatorname{rep}_{\ell}(n)| = k \text{ and} \ |\operatorname{rep}_{\ell}(\beta^{\ell} n)| = \beta k + \frac{(\beta - 1)(\ell - 1)}{2} + i
ight\}.$$

Example (Multiplication by 25 in \mathcal{B}_2)

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ の へ @

Example (The R_i before and after Multiplication by 25.)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

Multiplication by $\lambda = \beta^{\ell}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Multiplication by $\lambda = \beta^{\ell}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorem

Let $S = (a^*b^*c^*, \{a < b < c\})$. For any constant $\beta \in \mathbb{N}$, multiplication by β^3 does not preserve S-recognizability.

Corollary

Let $S = (a^*b^*c^*, \{a < b < c\})$. For any constant $\lambda \in \mathbb{N}$, multiplication by λ does not preserve S-recognizability.

ション ふゆ メ リン イロン シックション

Past Conjecture

Multiplication by β^{ℓ} preserves *S*-recognizability for the abstract numeration system

$$S = (a_1^* \cdots a_\ell^*, \{a_1 < \cdots < a_\ell\})$$

built on the bounded language \mathcal{B}_ℓ over ℓ letters if and only if

$$\beta = \prod_{i=1}^{k} p_i^{\theta_i}$$

where p_1, \ldots, p_k are prime numbers strictly greater than ℓ . In other words, multiplication by β^{ℓ} does not preserve *S*-recognizability if and only if

$$\exists M \in \{2,\ldots,\ell\} : \beta \equiv 0 \pmod{M}.$$