# Abstract numeration systems 

Emilie Charlier<br>Department of Mathematics<br>University of Liège

Herbertov 2007

## Where it comes from

Integer base numeration system, $k \geq 2$

$$
n=\sum_{i=0}^{\ell} c_{i} k^{i}, \quad \text { with } \quad c_{i} \in \Sigma_{k}=\{0, \ldots, k-1\}, c_{\ell} \neq 0
$$

Any integer $n$ corresponds to a word $\operatorname{rep}_{k}(n)=c_{\ell} \cdots c_{0}$ over $\Sigma_{k}$.
Definition
A set $X \subseteq \mathbb{N}$ is $k$-recognizable if $\operatorname{rep}_{k}(X) \subseteq \Sigma_{k}^{*}$ is a regular language (accepted by a DFA).

Divisibility criteria
If $X \subseteq \mathbb{N}$ is ultimately periodic, then $X$ is $k$-recognizable for any $k \geq 2$.
(Non-standard) system built upon a sequence $U=\left(U_{i}\right)_{i \geq 0}$ of integers

$$
n=\sum_{i=0}^{\ell} c_{i} U_{i}, \quad \text { with } \quad c_{\ell} \neq 0 \quad \text { greedy expansion }
$$

Any integer $n$ corresponds to a word $\operatorname{rep}_{U}(n)=c_{\ell} \cdots c_{0}$.
Definition
A set $X \subseteq \mathbb{N}$ is $U$-recognizable if $\operatorname{rep}_{U}(X) \subseteq \Sigma_{k}^{*}$ is a regular language (accepted by a DFA).

Some conditions on $U=\left(U_{i}\right)_{i \geq 0}$

- $U_{i}<U_{i+1}$, non-ambiguity
- $U_{0}=1$, any integer can be represented
- $\frac{U_{i+1}}{U_{i}}$ is bounded, finite alphabet of digits $A_{U}$


## Some conditions on $U=\left(U_{i}\right)_{i \geq 0}$

- $U_{i}<U_{i+1}$, non-ambiguity
- $U_{0}=1$, any integer can be represented
- $\frac{U_{i+1}}{U_{i}}$ is bounded, finite alphabet of digits $A_{U}$

Example ( $\left.U_{i}=2^{i+1}: 2,4,8,16,32, \ldots\right)$ you cannot represent odd integers !

## Some conditions on $U=\left(U_{i}\right)_{i \geq 0}$

- $U_{i}<U_{i+1}$, non-ambiguity
- $U_{0}=1$, any integer can be represented
- $\frac{U_{i+1}}{U_{i}}$ is bounded, finite alphabet of digits $A_{U}$

Example ( $\left.U_{i}=2^{i+1}: 2,4,8,16,32, \ldots\right)$ you cannot represent odd integers !

Example $\left(U_{i}=(i+1)\right.$ !: $\left.1,2,6,24, \ldots\right)$
Any integer $n$ can be uniquely written as

$$
n=\sum_{i=1}^{\ell} c_{i} i!\quad \text { with } \quad 0 \leq c_{i} \leq i
$$

Fraenkel'85, Lenstra'06 (EMS Newsletter, profinite numbers)

Take $\left(U_{i}\right)_{i \geq 0}$ satisfying a linear recurrence equation,

$$
U_{i+k}=a_{k-1} U_{i+k-1}+\cdots+a_{0} U_{i}, \quad a_{j} \in \mathbb{Z}, \quad a_{0} \neq 0
$$

Example $\left(U_{i+2}=U_{i+1}+U_{i}, U_{0}=1, U_{1}=2\right)$
Use greedy expansion, ..., 21, 13, 8, 5, 3, 2, 1

| 1 | 1 | 8 | 10000 | 15 | 100010 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| 2 | 10 | 9 | 10001 | 16 | 100100 |
| 3 | 100 | 10 | 10010 | 17 | 100101 |
| 4 | 101 | 11 | 10100 | 18 | 101000 |
| 5 | 1000 | 12 | 10101 | 19 | 101001 |
| 6 | 1001 | 13 | 100000 | 20 | 101010 |
| 7 | 1010 | 14 | 100001 | 21 | 1000000 |

The "pattern" 11 is forbidden, $A_{U}=\{0,1\}$.

## Question

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a strictly increasing sequence of integers,

$$
\begin{aligned}
& \text { is the whole set } \mathbb{N} U \text {-recognizable ? } \\
& \text { i.e., is } \mathcal{L}_{U}=\operatorname{rep}_{U}(\mathbb{N}) \text { regular? }
\end{aligned}
$$

Even if $U$ is linear, the answer is not completely known...

## Question

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a strictly increasing sequence of integers,

$$
\begin{aligned}
& \text { is the whole set } \mathbb{N} U \text {-recognizable ? } \\
& \text { i.e., is } \mathcal{L}_{U}=\operatorname{rep}_{U}(\mathbb{N}) \text { regular? }
\end{aligned}
$$

Even if $U$ is linear, the answer is not completely known...
Theorem (Shallit '94)
If $\mathcal{L}_{U}$ is regular, then $\left(U_{i}\right)_{i \geq 0}$ satisfies a linear recurrent equation.

## Question

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a strictly increasing sequence of integers,

$$
\begin{aligned}
& \text { is the whole set } \mathbb{N} U \text {-recognizable ? } \\
& \text { i.e., is } \mathcal{L}_{U}=\operatorname{rep}_{U}(\mathbb{N}) \text { regular? }
\end{aligned}
$$

Even if $U$ is linear, the answer is not completely known...
Theorem (Shallit '94)
If $\mathcal{L}_{U}$ is regular, then $\left(U_{i}\right)_{i \geq 0}$ satisfies a linear recurrent equation.

Theorem (N. Loraud '95, M. Hollander '98)
They give (technical) sufficient conditions for $\mathcal{L}_{U}$ to be regular: "the characteristic polynomial of the recurrence has a special form".

Best known case : linear "Pisot systems"
If the characteristic polynomial of $\left(U_{i}\right)_{i \geq 0}$ is the minimal polynomial of a Pisot number $\theta$ then "everything" is fine:

## Best known case : linear "Pisot systems"

If the characteristic polynomial of $\left(U_{i}\right)_{i \geq 0}$ is the minimal polynomial of a Pisot number $\theta$ then "everything" is fine:
$\mathcal{L}_{U}$ is regular, addition preserves recognizability, logical first order characterization of recognizable sets, ...
" Just" like in the integer case: $U_{i} \simeq \theta^{i}$.
A. Bertrand '89, C. Frougny, B. Solomyak, D. Berend,
J. Sakarovitch, V. Bruyère and G. Hansel '97, ...

Definition
A Pisot (resp. Salem, Perron) number is an algebraic integer $\alpha>1$ such that its Galois conjugates have modulus $<1$ (resp. $\leq 1,<\alpha$ ).

Motivation for a generalization

A question by P . Lecomte

Motivation for a generalization

A question by $P$. Lecomte

- Everybody takes first a sequence $\left(U_{k}\right)_{k \geq 0}$


## A question by P. Lecomte

- Everybody takes first a sequence $\left(U_{k}\right)_{k \geq 0}$
- then ask for the language $\mathcal{L}_{U}$ of the numeration to be regular and play with recognizable sets

A question by P. Lecomte

- Everybody takes first a sequence $\left(U_{k}\right)_{k \geq 0}$
- then ask for the language $\mathcal{L}_{U}$ of the numeration to be regular and play with recognizable sets
- Why not proceed backwards ?

A question by $P$. Lecomte

- Everybody takes first a sequence $\left(U_{k}\right)_{k \geq 0}$
- then ask for the language $\mathcal{L}_{U}$ of the numeration to be regular and play with recognizable sets
- Why not proceed backwards ?

Remark
Let $x, y \in \mathbb{N}, x<y \Leftrightarrow \operatorname{rep}_{U}(x)<_{\text {gen }} \operatorname{rep}_{U}(y)$.

## Motivation for a generalization

A question by P . Lecomte

- Everybody takes first a sequence $\left(U_{k}\right)_{k \geq 0}$
- then ask for the language $\mathcal{L}_{U}$ of the numeration to be regular and play with recognizable sets
- Why not proceed backwards ?


## Remark

Let $x, y \in \mathbb{N}, x<y \Leftrightarrow \operatorname{rep}_{U}(x)<$ gen $\operatorname{rep}_{U}(y)$.
Example (Fibonacci)
$6<7$ and $1001<$ gen 1010 (same length)
$6<8$ and $1001<$ gen 10000 (different lengths).

## Abstract numeration systems

## Definition (P. Lecomte, M.Rigo '01)

An abstract numeration system is a triple $S=(L, \Sigma,<)$ where $L$ is a regular language over a totally ordered alphabet $(\Sigma,<)$. Enumerating the words of $L$ with respect to the genealogical ordering induced by $<$ gives a one-to-one correspondence

$$
\operatorname{rep}_{S}: \mathbb{N} \rightarrow L \quad \operatorname{val}_{S}=\operatorname{rep}_{S}^{-1}: L \rightarrow \mathbb{N}
$$

First results
remark
This generalizes "classical" Pisot systems like integer base systems or Fibonacci system.

Example (Positional)
$L=\{\varepsilon\} \cup\{1, \ldots, k-1\}\{0, \ldots, k-1\}^{*}$ or $L=\{\varepsilon\} \cup 1\{0,01\}^{*}$

## First results

## remark

This generalizes "classical" Pisot systems like integer base systems or Fibonacci system.

Example (Positional)
$L=\{\varepsilon\} \cup\{1, \ldots, k-1\}\{0, \ldots, k-1\}^{*}$ or $L=\{\varepsilon\} \cup 1\{0,01\}^{*}$
Example (Non positional)
$L=a^{*}, \Sigma=\{a\}$

| $n$ | 0 | 1 | 2 | 3 | 4 | $\cdots$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{rep}(n)$ | $\varepsilon$ | $a$ | aa | aaa | aaaa | $\cdots$ |

$L=\{a, b\}^{*}, \Sigma=\{a, b\}, a<b$

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | $\cdots$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{rep}(n)$ | $\varepsilon$ | $a$ | $b$ | $a a$ | $a b$ | $b a$ | $b b$ | $a a a$ | $\cdots$ |

$$
\begin{aligned}
& L=a^{*} b^{*}, \Sigma=\{a<b\} \\
& \qquad \begin{array}{r|cccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \cdots \\
\hline \operatorname{rep}(n) & \varepsilon & a & b & a a & a b & b b & \text { aaa } & \cdots
\end{array} \\
& \operatorname{val}\left(a^{p} b^{q}\right)= \\
& \frac{1}{2}(p+q)(p+q+1)+q
\end{aligned}
$$

## Example (continued...)

\#b


## Example (continued...)

\#b

\#a

## Example (continued...)

\#b


## Example (continued...)

\#b


Definition of complexity
Let $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA accepting $L$.
For all $q \in Q, L_{q}=\left\{w \in \Sigma^{*} \mid \delta(q, w) \in F\right\}$.

$$
\mathbf{u}_{q}(n)=\#\left(L_{q} \cap \Sigma^{n}\right) \quad \text { and } \quad \mathbf{v}_{q}(n)=\#\left(L_{q} \cap \Sigma^{\leq n}\right) .
$$

In particular, $\mathbf{u}_{q_{0}}(n)=\#\left(L \cap \Sigma^{n}\right)$.
Computing vals $: L \rightarrow \mathbb{N}$
If $\sigma w \in L_{q}, \sigma \in \Sigma, w \in \Sigma^{+}$, then

$$
\operatorname{val}_{L_{q}}(\sigma w)=\operatorname{val}_{L_{q . \sigma}}(w)+v_{q}(|w|)-v_{q . \sigma}(|w|-1)+\sum_{\sigma^{\prime}<\sigma} u_{q . \sigma^{\prime}}(|w|) .
$$

If $\sigma \in L_{q} \cap \Sigma$, then

$$
\operatorname{val}_{L_{q}}(\sigma)=u_{L_{q}}(0)+\sum_{\sigma^{\prime}<\sigma} u_{q \cdot \sigma^{\prime}}(0) .
$$

## Many natural questions...

- What about S-recognizable sets ?
- Are ultimately periodic sets $S$-recognizable for any $S$ ?
- For a given $X \subseteq \mathbb{N}$, can we find $S$ s.t. $X$ is $S$-recognizable ?
- For a given $S$, what are the $S$-recognizable sets ?
- Can we compute "easily" in these systems ?
- Addition, multiplication by a constant, ...
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic...

Theorem
Let $S=(L, \Sigma,<)$ be an abstract numeration system. Any ultimately periodic set is S-recognizable.

Example (For $a^{*} b^{*} \bmod 3,5,6$ and 8 )


Well-known fact (see Eilenberg's book)
The set of squares is never recognizable in any integer base system.
Example
Let $L=a^{*} b^{*} \cup a^{*} c^{*}, a<b<c$.

Well-known fact (see Eilenberg's book)
The set of squares is never recognizable in any integer base system.
Example
Let $L=a^{*} b^{*} \cup a^{*} c^{*}, a<b<c$.

$$
\begin{array}{ccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \cdots \\
\varepsilon & a & b & c & a a & a b & a c & b b & c c & \text { aаa } & \cdots
\end{array}
$$

## Well-known fact (see Eilenberg's book)

The set of squares is never recognizable in any integer base system.
Example
Let $L=a^{*} b^{*} \cup a^{*} c^{*}, a<b<c$.

$$
\begin{array}{ccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \cdots \\
\varepsilon & a & b & c & a a & a b & a c & b b & c c & \text { aаa } & \cdots
\end{array}
$$

Theorem
If $P \in \mathbb{Q}[X]$ is such that $P(\mathbb{N}) \subseteq \mathbb{N}$ then there exists an abstract system $S$ such that $P(\mathbb{N})$ is $S$-recognizable.

Consider multiplication by a constant. . .
Theorem
Let $S=\left(a^{*} b^{*},\{a<b\}\right)$. Multiplication by $\lambda \in \mathbb{N}$ preserves $S$-recognizability iff $\lambda$ is an odd square.

## Example

There exists $X_{3} \subseteq \mathbb{N}$ such that $X_{3}$ is $S$-recognizable but such that $3 X_{3}$ is not $S$-recognizable. (3 is not a square)

There exists $X_{4} \subseteq \mathbb{N}$ such that $X_{4}$ is $S$-recognizable but such that $4 X_{4}$ is not $S$-recognizable. ( 4 is an even square)

For any $S$-recognizable set $X \subseteq \mathbb{N}, 9 X$ or $25 X$ is also $S$-recognizable.

Theorem
Let $\ell$ be a positive integer. For the abstract numeration system

$$
S=\left(a_{1}^{*} \ldots a_{\ell}^{*},\left\{a_{1}<\ldots<a_{\ell}\right\}\right)
$$

multiplication by $\lambda>1$ preserves $S$-recognizability if and only if one of the following condition is satisfied :

- $\ell=1$
- $\ell=2$ and $\lambda$ is an odd square.

Theorem ("Multiplication by a constant")

| slender language | $\mathbf{u}_{q_{0}}(n) \in \mathcal{O}(1)$ | OK |
| ---: | :---: | :---: |
| polynomial language | $\mathbf{u}_{q_{0}}(n) \in \mathcal{O}\left(n^{k}\right)$ | NOT OK |
| exponential language |  |  |
| with polynomial complement | $\mathbf{u}_{q_{0}}(n) \in 2^{\Omega(n)}$ | NOT OK |
| exponential language |  |  |
| with exponential complement | $\mathbf{u}_{q_{0}}(n) \in 2^{\Omega(n)}$ | OK ? |

Example
"Pisot" systems belong to the last class.

