Abstract numeration systems

Emilie Charlier

Department of Mathematics University of Liège

Herbertov 2007

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Integer base numeration system, $k \ge 2$

$$n=\sum_{i=0}^{\ell}c_i\,k^i,\quad ext{with}\quad c_i\in\Sigma_k=\{0,\ldots,k-1\},\ c_\ell
eq 0$$

ション ふゆ メ リン イロン シックション

Any integer *n* corresponds to a word $\operatorname{rep}_k(n) = c_\ell \cdots c_0$ over Σ_k .

Definition

A set $X \subseteq \mathbb{N}$ is *k*-recognizable if $\operatorname{rep}_k(X) \subseteq \Sigma_k^*$ is a regular language (accepted by a DFA).

Divisibility criteria

If $X \subseteq \mathbb{N}$ is ultimately periodic, then X is k-recognizable for any $k \ge 2$. (Non-standard) system built upon a sequence $U = (U_i)_{i \ge 0}$ of integers

$$n = \sum_{i=0}^{\ell} c_i U_i$$
, with $c_{\ell} \neq 0$ greedy expansion

ション ふゆ メ キャ キャ マ ちょうく

Any integer *n* corresponds to a word $\operatorname{rep}_U(n) = c_\ell \cdots c_0$.

Definition

A set $X \subseteq \mathbb{N}$ is *U*-recognizable if $\operatorname{rep}_U(X) \subseteq \Sigma_k^*$ is a regular language (accepted by a DFA).

Some conditions on $U = (U_i)_{i \ge 0}$

- $U_i < U_{i+1}$, non-ambiguity
- $U_0 = 1$, any integer can be represented
- $\frac{U_{i+1}}{U_i}$ is bounded, finite alphabet of digits A_U

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Some conditions on $U = (U_i)_{i \ge 0}$

- $U_i < U_{i+1}$, non-ambiguity
- $U_0 = 1$, any integer can be represented
- $\frac{U_{i+1}}{U_i}$ is bounded, finite alphabet of digits A_U

Example $(U_i = 2^{i+1} : 2, 4, 8, 16, 32, \ldots)$

you cannot represent odd integers !

Some conditions on $U = (U_i)_{i \ge 0}$

• $U_i < U_{i+1}$, non-ambiguity

•
$$U_0 = 1$$
, any integer can be represented

• $\frac{U_{i+1}}{U_i}$ is bounded, finite alphabet of digits A_U

Example $(U_i = 2^{i+1} : 2, 4, 8, 16, 32, ...)$

you cannot represent odd integers !

Example $(U_i = (i + 1)! : 1, 2, 6, 24, ...)$

Any integer n can be uniquely written as

$$n = \sum_{i=1}^{\ell} c_i i!$$
 with $0 \le c_i \le i$

ション ふゆ メ リン イロン シックション

Fraenkel'85, Lenstra'06 (EMS Newsletter, profinite numbers)

A nice setting

Take $(U_i)_{i>0}$ satisfying a linear recurrence equation,

$$U_{i+k}=a_{k-1}U_{i+k-1}+\cdots+a_0U_i, \quad a_j\in\mathbb{Z}, \ a_0\neq 0.$$

Example $(U_{i+2} = U_{i+1} + U_i, U_0 = 1, U_1 = 2)$ Use greedy expansion, ..., 21, 13, 8, 5, 3, 2, 1

1	1	8	10000	15	100010
2	10	9	10001	16	100100
3	100	10	10010	17	100101
4	101	11	10100	18	101000
5	1000	12	10101	19	101001
6	1001	13	100000	20	101010
7	1010	14	100001	21	1000000

The "pattern" 11 is forbidden, $A_U = \{0, 1\}$.

U-recognizability

Question Let $U = (U_i)_{i \ge 0}$ be a strictly increasing sequence of integers,

> is the whole set \mathbb{N} *U*-recognizable ? i.e., is $\mathcal{L}_U = \operatorname{rep}_U(\mathbb{N})$ regular ?

> > ション ふゆ メ キャ キャ マ ちょうく

Even if U is linear, the answer is not completely known...

U-recognizability

Question Let $U = (U_i)_{i \ge 0}$ be a strictly increasing sequence of integers,

> is the whole set \mathbb{N} *U*-recognizable ? i.e., is $\mathcal{L}_U = \operatorname{rep}_U(\mathbb{N})$ regular ?

> > ション ふゆ メ リン イロン シックション

Even if U is linear, the answer is not completely known...

Theorem (Shallit '94)

If \mathcal{L}_U is regular, then $(U_i)_{i\geq 0}$ satisfies a linear recurrent equation.

U-recognizability

Question Let $U = (U_i)_{i \ge 0}$ be a strictly increasing sequence of integers,

> is the whole set \mathbb{N} *U*-recognizable ? i.e., is $\mathcal{L}_U = \operatorname{rep}_U(\mathbb{N})$ regular ?

Even if U is linear, the answer is not completely known...

Theorem (Shallit '94)

If \mathcal{L}_U is regular, then $(U_i)_{i\geq 0}$ satisfies a linear recurrent equation.

Theorem (N. Loraud '95, M. Hollander '98)

They give (technical) sufficient conditions for \mathcal{L}_U to be regular: "the characteristic polynomial of the recurrence has a special form".

Best known case : linear "Pisot systems"

If the characteristic polynomial of $(U_i)_{i\geq 0}$ is the minimal polynomial of a Pisot number θ then "everything" is fine:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Best known case : linear "Pisot systems"

If the characteristic polynomial of $(U_i)_{i\geq 0}$ is the minimal polynomial of a Pisot number θ then "everything" is fine: \mathcal{L}_U is regular, addition preserves recognizability, logical first order characterization of recognizable sets, ... "Just" like in the integer case : $U_i \simeq \theta^i$.

- A. Bertrand '89, C. Frougny, B. Solomyak, D. Berend,
- J. Sakarovitch, V. Bruyère and G. Hansel '97, ...

Definition

A Pisot (resp. Salem, Perron) number is an algebraic integer $\alpha > 1$ such that its Galois conjugates have modulus < 1 (resp. $\leq 1, < \alpha$).

ション ふゆ メ リン イロン シックション

A question by P. Lecomte

A question by P. Lecomte

• Everybody takes first a sequence $(U_k)_{k\geq 0}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

A question by P. Lecomte

- Everybody takes first a sequence $(U_k)_{k\geq 0}$
- ▶ then ask for the language L_U of the numeration to be regular and play with recognizable sets

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

A question by P. Lecomte

- ► Everybody takes first a sequence (U_k)_{k≥0}
- ► then ask for the language L_U of the numeration to be regular and play with recognizable sets

ション ふゆ アメリア メリア しょうくしゃ

Why not proceed backwards ?

A question by P. Lecomte

- ► Everybody takes first a sequence (U_k)_{k≥0}
- ► then ask for the language L_U of the numeration to be regular and play with recognizable sets

ション ふゆ メ リン イロン シックション

Why not proceed backwards ?

Remark Let $x, y \in \mathbb{N}$, $x < y \Leftrightarrow \operatorname{rep}_U(x) <_{gen} \operatorname{rep}_U(y)$.

A question by P. Lecomte

- ► Everybody takes first a sequence (U_k)_{k≥0}
- then ask for the language L_U of the numeration to be regular and play with recognizable sets
- Why not proceed backwards ?

Remark Let $x, y \in \mathbb{N}$, $x < y \Leftrightarrow \operatorname{rep}_U(x) <_{gen} \operatorname{rep}_U(y)$.

Example (Fibonacci)

```
6 < 7 and 1001 <_{gen} 1010 (same length) 6 < 8 and 1001 <_{gen} 10000 (different lengths).
```

Definition (P. Lecomte, M.Rigo '01)

An *abstract numeration system* is a triple $S = (L, \Sigma, <)$ where *L* is a regular language over a totally ordered alphabet $(\Sigma, <)$. Enumerating the words of *L* with respect to the genealogical ordering induced by < gives a one-to-one correspondence

$$\operatorname{rep}_{\mathcal{S}} : \mathbb{N} \to L \qquad \operatorname{val}_{\mathcal{S}} = \operatorname{rep}_{\mathcal{S}}^{-1} : L \to \mathbb{N}.$$

ション ふゆ メ リン イロン シックション

First results

remark

This generalizes "classical" Pisot systems like integer base systems or Fibonacci system.

Example (Positional)

 $L = \{\varepsilon\} \cup \{1, \dots, k-1\} \{0, \dots, k-1\}^* \text{ or } L = \{\varepsilon\} \cup 1\{0, 01\}^*$

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

First results

remark

This generalizes "classical" Pisot systems like integer base systems or Fibonacci system.

Example (Positional) $L = \{\varepsilon\} \cup \{1, \dots, k-1\} \{0, \dots, k-1\}^* \text{ or } L = \{\varepsilon\} \cup 1\{0, 01\}^*$ Example (Non positional) $L = a^*, \ \Sigma = \{a\}$ $L = \{a, b\}^*, \Sigma = \{a, b\}, a < b$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

#b

#b

#b

#b

#b

#b

#b

#b

Definition of complexity

Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be a DFA accepting L. For all $q \in Q$, $L_q = \{w \in \Sigma^* \mid \delta(q, w) \in F\}$. $\mathbf{u}_{a}(n) = \#(L_{a} \cap \Sigma^{n})$ and $\mathbf{v}_{a}(n) = \#(L_{a} \cap \Sigma^{\leq n}).$ In particular, $\mathbf{u}_{a_0}(n) = \#(L \cap \Sigma^n)$. Computing val₅ : $L \to \mathbb{N}$ If $\sigma w \in L_{\sigma}, \sigma \in \Sigma, w \in \Sigma^+$, then

$$\operatorname{val}_{L_q}(\sigma w) = \operatorname{val}_{L_{q,\sigma}}(w) + v_q(|w|) - v_{q,\sigma}(|w|-1) + \sum_{\sigma' < \sigma} u_{q,\sigma'}(|w|).$$

If $\sigma \in L_q \cap \Sigma$, then

$$\operatorname{val}_{L_q}(\sigma) = u_{L_q}(0) + \sum_{\sigma' < \sigma} u_{q.\sigma'}(0).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Many natural questions...

- What about S-recognizable sets ?
 - ► Are ultimately periodic sets S-recognizable for any S ?
 - ▶ For a given $X \subseteq \mathbb{N}$, can we find S s.t. X is S-recognizable ?

ション ふゆ メ リン イロン シックション

- For a given S, what are the S-recognizable sets ?
- Can we compute "easily" in these systems ?
 - Addition, multiplication by a constant, ...
- Are these systems equivalent to something else ?
- Any hope for a Cobham's theorem ?
- Can we also represent real numbers ?
- Number theoretic problems like additive functions ?
- Dynamics, odometer, tilings, logic...

Theorem

Let $S = (L, \Sigma, <)$ be an abstract numeration system. Any ultimately periodic set is S-recognizable.

Example (For $a^*b^* \mod 3, 5, 6$ and 8)

Well-known fact (see Eilenberg's book)

The set of squares is never recognizable in any integer base system.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Example

Let $L = a^*b^* \cup a^*c^*$, a < b < c.

Well-known fact (see Eilenberg's book)

The set of squares is never recognizable in any integer base system.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Example Let $L = a^*b^* \cup a^*c^*$, a < b < c. 0 1 2 3 4 5 6 7 8 9 ... ε a b c aa ab ac bb cc aaa ...

Well-known fact (see Eilenberg's book)

The set of squares is never recognizable in any integer base system.

Example Let $L = a^*b^* \cup a^*c^*$, a < b < c. 0 1 2 3 4 5 6 7 8 9 ... ε a b c aa ab ac bb cc aaa ...

Theorem

If $P \in \mathbb{Q}[X]$ is such that $P(\mathbb{N}) \subseteq \mathbb{N}$ then there exists an abstract system S such that $P(\mathbb{N})$ is S-recognizable.

▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ ● の ○ ○

Consider multiplication by a constant...

Theorem

Let $S = (a^*b^*, \{a < b\})$. Multiplication by $\lambda \in \mathbb{N}$ preserves S-recognizability iff λ is an odd square.

Example

There exists $X_3 \subseteq \mathbb{N}$ such that X_3 is *S*-recognizable but such that $3X_3$ is not *S*-recognizable. (3 is not a square)

There exists $X_4 \subseteq \mathbb{N}$ such that X_4 is *S*-recognizable but such that $4X_4$ is not *S*-recognizable. (4 is an even square)

ション ふゆ アメリア メリア しょうくしゃ

For any S-recognizable set $X \subseteq \mathbb{N}$, 9X or 25X is also S-recognizable.

Theorem

Let ℓ be a positive integer. For the abstract numeration system

$$S = (a_1^* \dots a_\ell^*, \{a_1 < \dots < a_\ell\}),$$

multiplication by $\lambda > 1$ preserves S-recognizability if and only if one of the following condition is satisfied :

▲ロ ▶ ▲周 ▶ ▲目 ▶ ▲目 ▶ ■ ● の ○ ○

$$\blacktriangleright \ell = 1$$

Theorem ("Multiplication by a constant")						
slender language	$ \mathbf{u}_{q_0}(n) \in \mathcal{O}(1) $	OK				
polynomial language	$ \mathbf{u}_{q_0}(n) \in \mathcal{O}(n^k) $	NOT OK				
exponential language						
with polynomial complement	$u_{q_0}(n) \in 2^{\Omega(n)}$	ΝΟΤ ΟΚ				
exponential language						
with exponential complement	$ \mathbf{u}_{q_0}(n) \in 2^{\Omega(n)} $	OK ?				

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Example

"Pisot" systems belong to the last class.