
An Effective Decision Procedure for Linear
Arithmetic over the Integers and Reals ?

BERNARD BOIGELOT, SÉBASTIEN JODOGNE †, and PIERRE WOLPER

Université de Liège

Institut Montefiore, B28

4000 Liège, Belgium

This paper considers finite-automata based algorithms for handling linear arithmetic with both real

and integer variables. Previous work has shown that this theory can be dealt with by using finite
automata on infinite words, but this involves some difficult and delicate to implement algorithms.
The contribution of this paper is to show, using topological arguments, that only a restricted class
of automata on infinite words are necessary for handling real and integer linear arithmetic. This

allows the use of substantially simpler algorithms, which have been successfully implemented.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifica-
tion—Formal methods; F.1.1 [Computation by abstract devices]: Models of computation—
Automata; F.4.1 [Mathematical Logic and formal languages]: Mathematical Logic—Com-

putational logic; F.4.3 [Mathematical Logic and formal languages]: Formal languages—
Classes defined by grammars or automata.

General Terms: Algorithms, Theory.

Additional Key Words and Phrases: Decision procedure, Finite-state representations, Integer and
real arithmetic, Weak ω−automata.

1. INTRODUCTION

Among the techniques used to develop algorithms for deciding or checking logical
formulas, finite automata have played an important role in a variety of cases. Clas-
sical examples are the use of infinite-word finite automata by Büchi [Büchi 1962]
for obtaining decision procedures for the first and second-order monadic theories
of one successor, as well as the use of tree automata by Rabin [Rabin 1969] for
deciding the second-order monadic theory of n successors. More recent examples

Authors’ e-mail : {boigelot,jodogne,pw}@montefiore.ulg.ac.be
Authors’ website : http://www.montefiore.ulg.ac.be/∼{boigelot,jodogne,pw}/
? This work was partially funded by a grant of the “Communauté française de Belgique - Direction

de la recherche scientifique - Actions de recherche concertées” and by the European IST-FET
project Advance (IST-1999-29082).
A preliminary version of this paper appeared as [Boigelot et al. 2001].

† Research Fellow (“Aspirant”) for the National Fund for Scientific Research (Belgium).

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 1529-3785/20YY/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY, Pages 1–20.



2 · B. Boigelot, S. Jodogne, and P. Wolper

are the use of automata for obtaining decision and model-checking procedures for
temporal and modal logics [Vardi and Wolper 1986a; 1986b; 1994; Kupferman et al.
2000]. In this last setting, automata-based procedures have the advantage of mov-
ing the combinatorial aspects of the procedures to the context of automata, which
are simple graph-like structures well adapted to algorithmic developments. This
separation of concerns between the logical and the algorithmic has been quite fruit-
ful for instance in the implementation of model checkers for linear-time temporal
logic [Courcoubetis et al. 1990; Holzmann 1997].

As already noticed by Büchi [Büchi 1962; 1960], automata-based approaches are
not limited to sequential and modal logics, but can also be used for Presburger
arithmetic. To achieve this, one adopts the usual encoding of integers in a base
r ≥ 2, thus representing an integer as a word over the alphabet {0, . . . , r − 1}. By
extension, n-component integer vectors are represented by words over the alphabet
{0, . . . , r−1}n and a finite automaton operating over this alphabet represents a set
of integer vectors. Given that addition and order are easily represented by finite
automata and that these automata are closed under Boolean operations as well
as projection, one easily obtains a decision procedure for Presburger arithmetic.
This idea was first explored at the theoretical level, yielding for instance the very
nice result that base-independent finite-automaton representable sets are exactly
the Presburger sets [Cobham 1969; Semenov 1977; Bruyère et al. 1994]. Later, it
has been proposed as a practical means of deciding and manipulating Presburger
formulas [Boudet and Comon 1996; Boigelot 1998; Shiple et al. 1998; Wolper and
Boigelot 2000]. The intuition behind this applied use of automata for Presburger
arithmetic is that finite automata play with respect to Presburger arithmetic a role
similar to the one of Binary Decision Diagrams (BDD) with respect to Boolean
logic. These ideas have been implemented in the LASH tool [LASH ], which has
been used successfully in the context of verifying systems with unbounded integer
variables.

It almost immediately comes to mind that if a finite word over the alphabet
{0, . . . , r− 1} can represent an integer, an infinite word over the same alphabet ex-
tended with a fractional part separator (the usual dot) can represent a real number.
Finite automata on infinite words can thus represent sets of real vectors, and serve
as a means of obtaining a decision procedure for real additive arithmetic. Further-
more, since numbers with fractional parts equal to zero can easily be recognized by
automata, the same technique can be used to obtain a decision procedure for a the-
ory combining the integers and the reals. This was not previously handled by any
tool, but can be of practical use, for instance in the verification of timed systems
using integer variables [Boigelot et al. 1997]. However, turning this into an effec-
tive implemented system is not as easy as it might first seem. Indeed, projecting
and complementing finite automata on infinite words is significantly more difficult
than for automata on finite words. Projection yields nondeterministic automata
and complementing or determinizing infinite-word automata is a notoriously diffi-
cult problem. A number of algorithms have been proposed for this [Büchi 1962;
Sistla et al. 1987; Safra 1988; Klarlund 1991; Kupferman and Vardi 1997], but even
though their theoretical complexity remains simply exponential as in the finite-word
case, it moves up from 2O(n) to 2O(n logn) and none of the proposed algorithms are

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



An Effective Decision Procedure for Linear Arithmetic over the Integers and Reals · 3

as easy to implement and fine-tune as the simple Rabin-Scott subset construction
used in the finite-word case.
However, it is intuitively surprising that handling reals is so much more difficult

than handling integers, especially in light of the fact that the usual polyhedra-
based approach to handling arithmetic is both of lower complexity and easier to
implement for the reals than for the integers [Ferrante and Rackoff 1979]. One
would expect that handling reals with automata should be no more difficult than
handling integers1. The conclusion that comes out of these observations is that
infinite-word automata constructed from linear arithmetic formulas must have a
special structure that makes them easier to manipulate than general automata on
infinite words. That this special structure exists and that it can exploited to obtain
simpler algorithms is precisely the subject of this paper.
As a starting point, let us look at the topological characterization of the sets

definable by linear arithmetic formulas. Let us first consider a formula involving
solely real variables. If the formula is quantifier free, it is a Boolean combination
of linear constraints and thus defines a set which is a finite Boolean combination
of open and closed sets. Now, since real linear arithmetic admits quantifier elim-
ination, the same property also holds for quantified formulas. Then, looking at
classes of automata on infinite words, one notices that the most restricted one that
can accept Boolean combinations of open and closed sets is the class of determin-
istic weak automata [Staiger and Wagner 1974; Staiger 1983]. These accept all
ω-regular sets in the Borel class Fσ ∩ Gδ and hence also finite Boolean combina-
tions of open and closed sets. So, with some care about moving from the topology
on vectors to the topology on their encoding as words, one can conclude that the
sets representable by arithmetic formulas involving only real variables can always
be accepted by deterministic weak automata on infinite words. If integers are also
involved in the formula, a similar argument can be used, invoking a recently pub-
lished quantifier elimination result for the combined theory [Weispfenning 1999].
However, initially unaware of this result, we developed a different argument to
prove that sets definable by quantified linear arithmetic formulas involving both
real and integer variables are within Fσ ∩ Gδ and thus are representable by weak
deterministic automata. This proof relies on separating the integer and fractional
parts of variables and on topological properties of Fσ ∩Gδ. It has the advantage of
being much more direct than a proof relying on a quantifier elimination result.
The problematic part of the operations on automata used for deciding a first-order

theory is the sequence of projections and complementations needed to eliminate a
string of quantifiers alternating between existential and universal ones. The second
result of this paper shows that for sets defined in linear arithmetic this can be done
with constructions that are simple adaptations of the ones used for automata on
finite words. Indeed, deterministic weak automata can be viewed as either Büchi or
co-Büchi automata. The interesting fact is that co-Büchi automata can be deter-
minized by the “breakpoint” construction [Miyano and Hayashi 1984; Kupferman
and Vardi 1997], which basically amounts to a product of subset constructions.

1Note that one cannot expect reals to be easier to handle with automata than integers since,

by nature, this representation includes explicit information about the existence of integer values
satisfying the represented formula.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



4 · B. Boigelot, S. Jodogne, and P. Wolper

Thus, one has a simple construction to project and determinize a weak automaton,
yielding a deterministic co-Büchi automaton, which is easily complemented into a
deterministic Büchi automaton. In the general case, another round of projection
will lead to a nondeterministic Büchi automaton, for which a general determiniza-
tion procedure has to be used. However, we have the result that for automata
obtained from linear arithmetic formulas, the represented sets stay within those
accepted by deterministic weak automata. We prove that this implies that the
automata obtained after determinization will always be weak.
Note that this cannot be directly concluded from the fact that the represented

sets stay within those representable by deterministic weak automata. Indeed, even
though the represented sets can be accepted by deterministic weak automata, the
automata that are obtained by the determinization procedure might not have this
form. Fortunately, we can prove that this is impossible. For this, we go back to the
link between automata and the topology of the sets of infinite words they accept.
The argument is that ω-regular sets in Fσ ∩ Gδ have a topological property that
forces the automata accepting them to be inherently weak, i.e. not to have strongly
connected components containing both accepting and non accepting cycles.
Finally, an important additional benefit of working with weak deterministic au-

tomata is that they admit a canonical minimal normal form that can be obtained
efficiently [Maler and Staiger 1997; Löding 2001]. This brings us even closer to the
situation of working with finite-work automata, and is a property that is not avail-
able when working either with general infinite-word automata, or with formulas as
done in [Weispfenning 1999].
As a consequence of our results, we obtain a simple decision procedure for the

theory combining integer and real linear arithmetic. The fact that this theory is
decidable using automata-based methods was known [Boigelot et al. 1997], but
the results of this paper make it possible to implement a tool that can handle it
effectively.

2. AUTOMATA-THEORETIC AND TOPOLOGICAL BACKGROUND

In this section we recall some automata-theoretic and topological concepts that are
used in the paper.

2.1 Automata on Infinite Words

An infinite word (or ω-word) w over an alphabet Σ is a mapping w : N 7→ Σ from
the natural numbers to Σ. A Büchi automaton on infinite words is a five-tuple
A = (Q,Σ, δ, q0, F ), where

—Q is a finite set of states;

—Σ is the input alphabet;

—δ is the transition function and is of the form δ : Q×Σ 7→ 2Q if the automaton is
nondeterministic and of the form δ : Q×Σ 7→ Q if the automaton is deterministic;

—q0 is the initial state;

—F is a set of accepting states.

A run π of a Büchi automaton A = (Q,Σ, δ, q0, F ) on an ω-word w is a mapping
π : N 7→ Q that satisfies the following conditions :

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



An Effective Decision Procedure for Linear Arithmetic over the Integers and Reals · 5

—π(0) = q0, i.e. the run starts in the initial state;

—for all i ≥ 0, π(i + 1) ∈ δ(π(i), w(i)) (nondeterministic automata) or π(i +
1) = δ(π(i), w(i)) (deterministic automata), i.e. the run respects the transition
function.

Let inf (π) be the set of states that occur infinitely often in a run π. A run π
is said to be accepting if inf (π) ∩ F 6= ∅. An ω-word w is accepted by a Büchi
automaton if that automaton has some accepting run on w. The language Lω(A)
of infinite words defined by a Büchi automaton A is the set of ω-words it accepts.
The ω−regular languages are defined as the languages of infinite words that can be
accepted by a nondeterministic Büchi automaton.
A co-Büchi automaton is defined exactly as a Büchi automaton except that its

accepting runs are those for which inf (π) ∩ F = ∅.
We will also use the notion of weak automata [Muller et al. 1986]. For a Büchi

automaton A = (Q,Σ, δ, q0, F ) to be weak, there has to be a partition of its state
set Q into disjoint subsets Q1, . . . , Qm such that

—for each of the Qi either Qi ⊆ F or Qi ∩ F = ∅, and
—there is a partial order ≤ on the sets Q1, . . . , Qm such that for every q ∈ Qi and
q′ ∈ Qj for which, for some a ∈ Σ, q′ ∈ δ(q, a) (q′ = δ(q, a) in the deterministic
case), Qj ≤ Qi.

Note that, in order to comply with this definition, each Qi has to be a union
of strongly connected components. Thus, the strongly connected components of a
weak automaton consist solely of either accepting or rejecting states.
For more details, a survey of automata on infinite words can be found in [Thomas

1990].

2.2 Topology

Given a set S, a distance d(x, y) defined on this set induces a metric topology on
subsets of S. A neighborhood Nε(x) of a point x ∈ S with respect to ε ∈ R+ is the
set Nε(x) = {y | d(x, y) < ε}. A set C ⊆ S is said to be open if for all x ∈ C, there
exists ε > 0 such that the neighborhood Nε(x) is contained in C. A closed set is a
set whose complement with respect to S is open. We will be referring to the first
few levels of the Borel hierarchy which are shown in Figure 1. The notations used
are the following :

—F are the closed sets,

—G are the open sets,

—Fσ is the class of countable unions of closed sets,

—Gδ is the class of countable intersections of open sets,

—Fσδ is the class of countable intersections of Fσ sets,

—Gδσ is the class of countable unions of Gδ sets,

—B(X) represents the finite Boolean combinations of sets in X.

An arrow between classes indicates proper inclusion.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



6 · B. Boigelot, S. Jodogne, and P. Wolper

F ∩G

GF

B(F ) = B(G)

Fσ ∩Gδ

Gδ

B(Fσ) = B(Gδ)

Fσδ ∩Gδσ

Fσ

Fσδ Gδσ

..

.

Fig. 1. The first few levels of the Borel hierarchy in a metric topology.

3. TOPOLOGICAL CHARACTERIZATION OF ARITHMETIC SETS

We consider the theory 〈R,Z,+,≤〉, where + represents the predicate x + y = z.
Since any linear equality or order constraint can be encoded into this theory, we
refer to it as additive or linear arithmetic over the reals and integers. It is the
extension of Presburger arithmetic that includes both real and integer variables.
We provide the space Rn (n ≥ 0) with the classical Euclidean distance between
vectors defined by

d(~x, ~y) =

(
n∑

i=1

(xi − yi)
2

)1/2

.

The topology induced by this metric will be referred to as the natural topology of
Rn.
In this section, we prove that the sets representable in the additive linear arith-

metic over the reals and integers belong to the topological class Fσ∩Gδ. This result
is formalized by the following theorem.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



An Effective Decision Procedure for Linear Arithmetic over the Integers and Reals · 7

Theorem 3.1. Let S ⊆ Rn, with n > 0, be a set defined in the theory 〈R,Z,+,
≤〉. This set belongs to the class Fσ ∩Gδ of the natural topology of Rn.

Proof. Since 〈R,Z,+,≤〉 is closed under negation, it is actually sufficient to
show that each formula of this theory defines a set that belongs to Fσ, i.e., a set
that can be expressed as a countable union of closed sets.
Let ϕ be a formula of 〈R,Z,+,≤〉. To simplify our argument, we will assume

that all free variables of ϕ are reals. This can be done without loss of generality
since quantified variables can range over both R and Z. We introduce u < v as a
shorthand for u ≤ v ∧ ¬(u = v).
The first step of our proof consists of modifying ϕ in the following way. We

replace each variable x that appears in ϕ by two variables xI and xF representing
respectively the integer and the fractional part of x. Formally, this operation re-
places each occurrence in ϕ of a free variable x by the sum xI + xF while adding
to ϕ the constraints 0 ≤ xF and xF < 1, and transforms the quantified variables of
ϕ according to the following rules :

(∃x ∈ R)φ −→ (∃xI ∈ Z)(∃xF ∈ R)(0 ≤ xF ∧ xF < 1 ∧ φ[x/xI + xF ])

(∀x ∈ R)φ −→ (∀xI ∈ Z)(∀xF ∈ R)(xF < 0 ∨ 1 ≤ xF ∨ φ[x/xI + xF ])

(Qx ∈ Z)φ −→ (QxI ∈ Z)φ[x/xI ],

where Q ∈ {∃,∀}, φ is a subformula, and φ[x/y] denotes the result of replacing
by y each occurrence of x in φ. The transformation has no influence on the set
represented by ϕ, except that the integer and fractional parts of each value are now
represented by two distinct variables.
Now, the atomic formulas of ϕ are of the form p = q+r, p = q or p ≤ q, where p, q

and r are either integer variables, sums of an integer and of a fractional variable, or
integer constants. The second step consists of expanding these atomic formulas so
as to send into distinct atoms the occurrences of the integer and of the fractional
variables. This is easily done with the help of simple arithmetic rules, for the truth
value of the atomic formulas that involve both types of variables has only to be
preserved for values of the fractional variables that belong to the interval [0, 1).
The set of expansion rules2 (up to commutability of members and terms) is given
in Figure 2.
After the transformation, each atomic formula of ϕ is either a formula φI in-

volving only integer variables or a formula φF over fractional variables. We now
distribute existential (resp. universal) quantifiers over disjunctions (resp. conjunc-
tions), after rewriting their argument into disjunctive (resp. conjunctive) normal
form, and then apply the simplification rules

(QxI ∈ Z)(φI αφF ) −→ (QxI ∈ Z)(φI) α φF

(QxF ∈ R)(φI αφF ) −→ φI α (QxF ∈ R)(φF ),

where Q ∈ {∃,∀} and α ∈ {∨,∧}.
Repeating this operation, we eventually get a formula ϕ′ equivalent to ϕ that

2In these rules, the expression p = q + r + s is introduced as a shorthand for (∃u ∈ R)(u =
q + r ∧ p = u+ s).

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



8 · B. Boigelot, S. Jodogne, and P. Wolper

xI = (yI + yF ) −→ xI = yI ∧ yF = 0
(xI + xF ) = (yI + yF ) −→ xI = yI ∧ xF = yF

xI = yI + (zI + zF ) −→ xI = yI + zI ∧ zF = 0
xI = (yI + yF ) + (zI + zF ) −→ (xI = yI + zI ∧ yF + zF = 0) ∨

(xI = yI + zI + 1 ∧ yF + zF = 1)
(xI + xF ) = yI + zI −→ xI = yI + zI ∧ xF = 0

(xI + xF ) = yI + (zI + zF ) −→ xI = yI + zI ∧ xF = zF
(xI + xF ) = (yI + yF ) + (zI + zF ) −→ (xI = yI + zI ∧ xF = yF + zF ) ∨

(xI = yI + zI + 1 ∧ xF = yF + zF − 1)
xI ≤ (yI + yF ) −→ xI ≤ yI
(xI + xF ) ≤ yI −→ xI < yI ∨ (xI = yI ∧ xF = 0)

(xI + xF ) ≤ (yI + yF ) −→ xI < yI ∨ (xI = yI ∧ xF ≤ yF )

Fig. 2. Expansion rules.

takes the form of a finite Boolean combination

B(φ(1)
I , φ

(2)
I , . . . , φ

(m)
I , φ

(1)
F , φ

(2)
F , . . . , φ

(m′)
F )

of subformulas φ
(i)
I and φ

(i)
F that involve respectively only integer and fractional

variables.
Let x

(1)
I , x

(2)
I , . . . , x

(k)
I be the free integer variables of ϕ′ (k ≤ m). For each

assignment of values to these variables, the subformulas φ
(i)
I are each identically

true or false, hence we have

ϕ ≡
∨

(a1,...,ak)∈Zk

(
(x

(1)
I , . . . , x

(k)
I ) = (a1, . . . , ak) ∧ B(a1,...,ak)(φ

(1)
F , . . . , φ

(m′)
F )

)
.

Each subformula φ
(i)
F belongs to the theory 〈R,+,≤, 1〉, which admits the elimina-

tion of quantifiers [Ferrante and Rackoff 1979]. The sets of real vectors satisfying
these formulas are thus finite Boolean combinations of linear constraints with open
or closed boundaries. It follows that, for each (a1, . . . , ak) ∈ Zk, the set described
by B(a1,...,ak) is a finite Boolean combination of open and closed sets, that is a set
belonging to the topological class B(F ) = B(G). Since, according to properties of
the Borel hierarchy, this class forms a subset of Fσ, the set described by ϕ is a
countable union of countable unions of closed sets and also lies within Fσ.

4. REPRESENTING SETS OF INTEGERS AND REALS WITH FINITE AUTOMATA

In this section, we recall the finite-state representation of sets of real vectors as
introduced in [Boigelot et al. 1997]. A similar approach for representing vectors in
the unit cube is also pursued in [Jürgensen and Staiger 2001].
In order to make a finite automaton recognize numbers, one needs to establish

a mapping between these and words. Our encoding scheme corresponds to the
usual notation for reals and relies on an arbitrary integer base r > 1. We encode
a number x in base r, most significant digit first, by words of the form wI ? wF ,
where wI encodes the integer part xI of x as a finite word over {0, . . . , r − 1}, the
special symbol “?” is a separator, and wF encodes the fractional part xF of x as
an infinite word over {0, . . . , r− 1}. Negative numbers are represented by their r’s

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



An Effective Decision Procedure for Linear Arithmetic over the Integers and Reals · 9

complement. The length p of |wI |, which we refer to as the integer-part length of
w, is not fixed but must be large enough for −rp−1 ≤ xI < rp−1 to hold.
According to this scheme, each number has an infinite number of encodings, since

their integer-part length can be increased unboundedly. In addition, the rational
numbers whose denominator has only prime factors that are also factors of r have
two distinct encodings with the same integer-part length. For example, in base
10, the number 11/2 has the encodings 005 ? 5(0)ω and 005 ? 4(9)ω, “ ω” denoting
infinite repetition.
To encode a vector of real numbers, we represent each of its components by words

of identical integer-part length. This length can be chosen arbitrarily, provided that
it is sufficient for encoding the vector component with the highest magnitude. An
encoding of a vector ~x ∈ Rn can indifferently be viewed either as a n-tuple of words
of identical integer-part length over the alphabet {0, . . . , r − 1, ?}, or as a single
word w over the alphabet {0, . . . , r − 1}n ∪ {?}.
Since a real vector has an infinite number of possible encodings, we have to

choose which of these the automata will recognize. A natural choice is to accept all
encodings. This leads to the following definition.

Definition 4.1. Let n > 0 and r > 1 be integers. A Real Vector Automaton
(RVA) A in base r for vectors in Rn is a Büchi automaton over the alphabet
{0, . . . , r − 1}n ∪ {?}, such that

—every word accepted by A is an encoding in base r of a vector in Rn, and

—for every vector ~x ∈ Rn, A accepts either all the encodings of ~x in base r, or none
of them.

An RVA is said to represent the set of vectors encoded by the words that belong
to its accepted language.
Efficient algorithms have been developed for constructing RVA representing the

sets of solutions of systems of linear equations and inequations [Boigelot et al. 1998].
Boolean operations can easily be achieved on RVA by applying the corresponding
existing algorithms for infinite-word automata.
Furthermore, a set represented as an RVA can be quantified existentially with

respect to its i−th vector component over the real domain, by replacing each symbol
in {0, . . . , r−1}n read by the automaton with the same symbol out of which the i−th
component has been removed. This produces a nondeterministic automaton that
may only accept some encodings of each vector in the quantified set, but generally
not all of them. Such a situation can arise if the component of highest magnitude
for some vectors in the set is projected out3. The second step consists thus of
modifying the automaton so as to make it accept every encoding of each vector
that it recognizes. Algorithms have been developed for this purpose in the case of
finite-word automata [Boigelot 1998; Boigelot and Latour 2001]. These algorithms
also apply to RVA, since the behavior of the underlying Büchi automaton before
reading the separator “?” is identical to that of a finite-word automaton recognizing
the integer part of the vectors in the represented set.

3For instance, projecting out the first component of the set {(8, 1)} in binary would produce an
automaton that does not accept encodings of 1 having less than five bits in their integer part.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



10 · B. Boigelot, S. Jodogne, and P. Wolper

Finally, since it is immediate to constrain a number to be an integer with an RVA
by imposing its fractional part to be either 0ω or (r − 1)ω (i.e. by intersecting its
accepted language with {0, r− 1}n · ({0, . . . , r− 1}n)∗ · {?} · {0, r− 1}n), it follows
that one can construct an RVA for any formula of the arithmetic theory we are
considering.

5. WEAK AUTOMATA AND THEIR PROPERTIES

If one examines the constructions given in [Boigelot et al. 1998] to build RVA for
linear equations and inequations, one notices that they have the property that all
states within the same strongly connected component are either accepting or non
accepting. This implies that these automata are weak in the sense of [Muller et al.
1986] (see Section 2.1).

5.1 Determinizing Weak Automata

Weak automata have a number of interesting properties. A first one is that they
can be represented both as Büchi and co-Büchi. Indeed, a weak automaton A =
(Q,Σ, δ, q0, F ) is equivalent to the co-Büchi automaton A = (Q,Σ, δ, q0, Q \ F ),
since a run eventually remains within a single component Qi in which all states
have the same status with respect to being accepting. A consequence of this is that
weak automata can be determinized by the fairly simple “breakpoint” construc-
tion [Kupferman and Vardi 1997; Miyano and Hayashi 1984] that can be used for
co-Büchi automata. This construction is the following.
Let A = (Q,Σ, δ, q0, F ) be a nondeterministic co-Büchi automaton. The deter-

ministic co-Büchi automaton A′ = (Q′,Σ, δ′, q′0, F
′) defined as follows accepts the

same ω-language :

—Q′ = 2Q × 2Q, i.e. the states of A′ are pairs of sets of states of A.

—q′0 = ({q0}, ∅).
—For (S,R) ∈ Q′ and a ∈ Σ, the transition function is defined by

—if R = ∅, then δ((S,R), a) = (T, T \ F ) where T = {q | (∃p ∈ S) q ∈ δ(p, a)} :
T is obtained from S as in the classical subset construction, and the second
component of the pair of sets of states is obtained from T by eliminating states
in F ;

—if R 6= ∅, then δ((S,R), a) = (T,U \ F ) where T = {q | (∃p ∈ S) q ∈ δ(p, a)},
and U = {q | (∃p ∈ R) q ∈ δ(p, a)} : the subset construction set is now applied
to both S and R and the states in F are removed from U .

—F ′ = 2Q × {∅}.

When the automaton A′ is in a state (S,R), R represents the states of A that
can be reached by a run that has not gone through a state in F since the last
“breakpoint”, i.e. state of the form (S, ∅). So, for a given word, A has a run that
does not go infinitely often through a state in F if and only if A′ has a run that
does not go infinitely often through a state in F ′. Notice that the difficulty that
exists for determinizing Büchi automata, which is to make sure that the same run
repeatedly reaches an accepting state, disappears since, for co-Büchi automata, we
are just looking for a run that eventually avoids accepting states.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



An Effective Decision Procedure for Linear Arithmetic over the Integers and Reals · 11

It is interesting to notice that the construction implies that all reachable states
(S,R) of A′ satisfy R ⊆ S. The breakpoint construction can thus be implemented as
a subset construction in which the states in R are simply tagged, which implies that
the worst-case complexity of the construction is 2O(n). This makes the construction
behave in practice very similarly to the traditional subset construction for finite-
word automata.

5.2 Topological Characterization

Another property of weak automata that will be of particular interest to us is the
topological characterization of the sets of words that they can accept. We consider
the topology on the sets of infinite words over an alphabet Σ induced by the distance
on the ω−words

d(w,w′) =

{ 1
|common(w,w′)|+1 if w 6= w′

0 if w = w′,

where |common(w,w′)| denotes the length of the longest common prefix of w and
w′. The open sets in such a topological space are the sets of the form X · Σω,
where X ⊆ Σ+ is a language of finite words. Relations between this topology and
automata are well understood. For instance, it has been proved that the languages
of infinite words that can be accepted by a deterministic Büchi automaton are
exactly the ω−rational languages belonging to the class Gδ [Landweber 1969]. By
duality, deterministic co-Büchi automata accept exactly the ω-regular languages
that belong to Fσ.
As weak deterministic automata can be seen both as deterministic Büchi and

deterministic co-Büchi, they accept exactly the ω-regular languages that are in Fσ∩
Gδ. This follows from the results on the Staiger-Wagner class of automata [Staiger
and Wagner 1974; Staiger 1983], which coincides with the class of deterministic
weak automata, as can be inferred from [Staiger and Wagner 1974] and is shown
explicitly in [Maler and Staiger 1997].

5.3 Inherently Weak Automata

Given the result proved in Section 3, it is tempting to conclude that the encodings
of sets definable in the theory 〈R,Z,+,≤〉 can always be accepted by weak deter-
ministic automata. This conclusion is correct, but requires shifting the result from
the topology on numbers to the topology on words, which we will do in the next
section. In the meantime, we need one more result in order to be able to benefit
algorithmically from the fact that we are dealing with Fσ ∩ Gδ sets, i.e. that any
deterministic automaton accepting a Fσ ∩Gδ set is essentially a weak automaton.
Consider the following definition.

Definition 5.1. A Büchi automaton is inherently weak if none of the reachable
strongly connected components of its transition graph contains both accepting (in-
cluding at least one accepting state) and non accepting (not including any accepting
state) cycles.

Clearly, if an automaton is inherently weak, it can directly be transformed into
a weak automaton : the partition of the state set is its partition into strongly

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



12 · B. Boigelot, S. Jodogne, and P. Wolper

connected components and all the states of a component are made accepting or
not, depending on whether the cycles in that component are accepting or not.
The following theorem can be inferred from results in [Landweber 1969; Wagner

1979]. We give a direct proof.

Theorem 5.2. Any deterministic Büchi automaton that accepts a language in
Fσ ∩Gδ is inherently weak.

To prove this, we use the fact that the language accepted by an automaton that
is not inherently weak must have the following property.

Definition 5.3. A language L ⊆ Σω has the dense oscillating sequence prop-
erty if, w1, w2, w3, . . . being words and ε1, ε2, ε3, . . . being distances, one has that
∃w1∀ε1∃w2∀ε2 . . . such that d(wi, wi+1) ≤ εi for all i ≥ 1, wi ∈ L for all odd i, and
wi 6∈ L for all even i.

Showing that this infinitesimal oscillation is incompatible with the structure of weak
deterministic automata will allow us to conclude. The proof of Theorem 5.2 can
thus be split into the two following lemmas.

Lemma 5.4. Each ω−language accepted by an Büchi automaton that is not in-
herently weak has the dense oscillating sequence property.

Proof. Consider a reachable strongly component that contains both an accept-
ing and a non accepting cycle, and call p a finite word that allows to reach the first
state of the accepting cycle from the initial state of the automaton. Let cA (resp.
cN ) be the finite word that labels the accepting (resp. non accepting) cycle, and
tA (resp. tN ) a finite word that labels the path from the first state of the accepting
(resp. non accepting) cycle to the first state of the non accepting (resp. accepting)
cycle.
Given an infinite sequence of distances ε1, ε2, ε3, . . ., we are now ready to con-

struct a dense oscillating sequence for the language L accepted by the automaton.
If k2, k3, k4, . . . is a sequence of natural numbers, define u1 = p, and for all i > 1 :

ui =

{
ui−1 cki

N tN if i is odd

ui−1 cki

A tA if i is even.

wi (i ≥ 1) is then defined as follows :

wi =

{
ui c

ω
A if i is odd

ui c
ω
N if i is even.

Given i ≥ 1, it is always possible to find an integer ki+1 large enough for
d(wi, wi+1) < εi to hold. Indeed, the length of the common prefix between wi

and wi+1 increases with ki+1. Furthermore, wi loops either in an accepting cycle
if i is odd, or in a non accepting cycle if i is even, hence, wi ∈ L if and only if i is
odd. Thus, the sequence of wi’s is dense oscillating for the language accepted by
the automaton.

Lemma 5.5. An ω-regular language that has the dense oscillating sequence prop-
erty cannot be accepted by a weak deterministic automaton and hence is not in
Fσ ∩Gδ.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



An Effective Decision Procedure for Linear Arithmetic over the Integers and Reals · 13

Proof. We proceed by contradiction. Assume that a language L having the
dense oscillating sequence property is accepted by a weak deterministic automaton
A. Consider the first word w1 in a dense oscillating sequence for L. This word
eventually reaches an accepting component Qi1 of the partition of the state set
of A and will stay within this component. Since ε1 can be chosen freely, it can
be taken small enough for the run of A on w2 to also reach the component Qi1

before it starts to differ from w1. Since w2 is not in L, the run of A on w2 has to
eventually leave the component Qi1 and will eventually reach and stay within a non
accepting component Qi2 < Qi1 . Repeating a similar argument, one can conclude
that the run of A on w3 eventually reaches and stays within an accepting component
Qi3 < Qi2 . Carrying on with this line of reasoning, one concludes that the state set
of A must contain an infinite decreasing sequence of distinct components, which is
impossible given that it is finite.

5.4 Minimizing Weak Deterministic Automata

The breakpoint construction reduces much of the determinization of weak automata
to that of finite-word automata. The similarity can be carried on. Indeed, like finite-
word automata, weak deterministic automata admit a normal form unique up to
isomorphism [Staiger 1983; Maler and Staiger 1997].
This normal form can be obtained efficiently using an algorithm proposed in [Lö-

ding 2001]. The minimization algorithm consists in locating the strongly connected
components of the graph of the automaton that do not contain any cycle, then
attributing them a new accepting status, according to a rule involving strongly
connected components that are deeper in the graph. This operation does not affect
the language accepted by the automaton, since for any run π of the automaton,
π cannot loop in such strongly connected components, leaving inf (π) unchanged.
Hopcroft’s classical algorithm for minimizing finite-word automata [Hopcroft 1971]
can then be applied directly to the modified weak deterministic automaton in order
to get an equivalent minimal weak deterministic automaton.
When suitably implemented, this algorithm can be run in timeO(n log n), moving

us still closer to the case of automata on finite words.

6. DECIDING LINEAR ARITHMETIC WITH REAL AND INTEGER VARIABLES

Let us show that the result of Section 3 also applies to the sets of words that
encode sets defined in 〈R,Z,+,≤〉. In order to do so, we need to establish that
the topological class Fσ ∩ Gδ defined over sets of reals is mapped to its ω-word
counterpart by the encoding relation described in Section 4.

Theorem 6.1. Let n > 0 and r > 1 be integers, and let L(S) ⊆ ({0, . . . , r −
1}n ∪ {?})ω be the set of all the encodings in base r of the vectors belonging to the
set S ⊆ Rn. If the set S belongs to Fσ ∩ Gδ (with respect to Euclidean distance),
then the language L(S) belongs to Fσ ∩Gδ (with respect to ω-word distance).

Proof. Not all infinite words over the alphabet Σ = {0, . . . , r−1}n ∪ {?} encode
a real vector. Actually, every arbitrary small neighborhood of a word encoding
validly a vector of Rn contains words that are not valid encodings, namely the ones
containing multiple occurrences of the separator “?” that are far enough in the
word.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



14 · B. Boigelot, S. Jodogne, and P. Wolper

Let V be the set of all the valid encodings of vectors in base r. The mapping V →
Rn that transforms each word in V into the real vector it encodes is continuous,
i.e., for each open set (w.r.t. Euclidean distance) S ⊆ Rn, the language L(S) is
open (w.r.t. ω-word distance) in V . Equivalently, for each closed set S ⊆ Rn, the
language L(S) is closed in V . Hence, for each S ⊆ Rn that belongs to Fσ ∩Gδ, the
language L(S) belongs to Fσ ∩Gδ in V .
The language V can be expressed as the intersection of an open set (the language

of all the words starting with valid sign digits and containing at least one occurrence
of the separator “?”) and of a closed set (the language of all the words containing
less than two occurrences of the separator). Therefore, V belongs to Fσ ∩ Gδ in
Σω, hence each language that is Fσ ∩Gδ in V also belongs to Fσ ∩Gδ in Σω. Thus,
for each S ⊆ Rn that is Fσ ∩Gδ, the language L(S) belongs to Fσ ∩Gδ in Σω.

Knowing that the language of the encodings of any set definable in the theory
〈R,Z,+, ≤〉 belongs to Fσ ∩ Gδ, we use the results of Section 5 to conclude the
following.

Theorem 6.2. Every deterministic RVA representing a set definable in 〈R,Z,+,
≤〉 is inherently weak.

This property has the important consequence that the construction and the ma-
nipulation of RVA obtained from arithmetic formulas can be performed effectively
by algorithms operating on weak deterministic automata. Precisely, to obtain an
RVA for an arithmetic formula one can proceed as follows.
For equations and inequations, one uses the constructions given in [Boigelot et al.

1998] to build weak RVA. Computing the intersection, union, and Cartesian product
of sets represented by RVA simply reduces to performing similar operations with
the languages accepted by the underlying automata, which can be done by simple
product constructions. These operations preserve the weak nature of the automata.
To complement a weak RVA, one determinizes it using the breakpoint construction,
which is guaranteed to yield an inherently weak automaton (Theorem 6.2) that is
easily converted to a weak one. This deterministic weak RVA is then complemented
by inverting the accepting or non-accepting status of each of its components, and
then removing from its accepted language the words that do not encode validly a
vector (which is done by means of an intersection operation).
An existential quantifier can be applied to a set represented as an RVA by using

the construction detailed in Section 4. This operation does not affect the weak
nature of the automaton, which can then be determinized by the breakpoint con-
struction. The determinization algorithm has to produce an inherently weak RVA
easily converted to a weak automaton.
Thus, in order to decide whether a formula of 〈R,Z,+, ≤〉 is satisfiable, one

simply builds an RVA representing its set of solutions, and then check whether this
automaton accepts a nonempty language. This also makes it possible to check the
inclusion or the equivalence of sets represented by RVA. The main result of this
paper is that, at every point of the interpretation of a formula, the constructed au-
tomaton remains weak and thus only the simple breakpoint construction is needed
as a determinization procedure.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



An Effective Decision Procedure for Linear Arithmetic over the Integers and Reals · 15

y

1

1

x

Fig. 3. Periodic tiling with triangles.

Finally, as weak deterministic automata can be efficiently minimized, each con-
structed automaton can be reduced down to a normal form. This is particularly
useful from a practical point of view, since it speeds up the comparisons between
sets by reducing them to structural tests on the automata, and since it prevents
the representations from becoming unnecessarily large.

7. EXPERIMENTS

The decision procedure proposed in this paper has been implemented successfully
in the LASH toolset, a package based on finite-state automata for representing
infinite sets and exploring infinite state spaces [LASH ].
Various experiments have been achieved with the RVA package. For instance, it

is possible to represent the set of Figure 3, which combines discrete and continuous
features, by a weak RVA. Indeed, this set is defined by the following formula of the
additive theory over the reals and integers :

{(x1, x2) ∈ R2 | (∃x3, x4 ∈ R)(∃x5, x6 ∈ Z)
(x1 = x3 + 2x5 ∧ x2 = x4 + 2x6 ∧ x3 ≥ 0 ∧ x4 ≤ 1 ∧ x4 ≥ x3)}.

This set admits the compact minimal representation of Figure 4.
One might fear that the exponential worst-case complexity of the breakpoint

determinization algorithm makes our decision procedure unusable. Experimental
results however show that such a blow-up does not frequently occur in practical
applications. As an illustration, Figure 5 shows the cost of projecting and then de-
terminizing the finite-state representations of some periodic subsets of R3 obtained
by combining linear constraints with arbitrary coefficients, and then by inducing
a periodicity by means of an integer quantification. The interesting observation
is that the finite-state representations have always less states after the projection
than before, whereas an exponential blow-up could have been feared.
Another finite-state representation system, the NDD (Number Decision Dia-

gram) [Wolper and Boigelot 1995; Boigelot 1998], is based on finite-word automata

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



16 · B. Boigelot, S. Jodogne, and P. Wolper

6 (1,0)

10

(0,1)

13

(0,0)

1

(1,1)

7

*
(1,0)

(0,1)

(0,0)

(1,1)11

*

(1,0)

(0,1)

(0,0)

(1,1)

14

*

0

(1,0)

(0,1)

(0,0)

(1,1)

(1,0)

(0,1)

(0,0)

(1,1)

2

*

3

(1,1)

4

(1,0)

5

(0,0)

(1,1) (1,0) (0,0)

8

(1,0)
(1,1)

9

(0,1)

(1,0)
(1,1)

(0,1)

(0,1)12

(0,0)
(1,0)

(0,0)
(1,0)

(1,0)

(0,0)
(1,1)

15

(0,1)

(0,0)   (0,1)
(1,0)   (1,1)

Fig. 4. Weak RVA representing the periodic tiling in binary.

and is able to represent the subsets of Zn that can be expressed in an extension
of the first-order theory 〈Z,+,≤〉. Figure 6 compares the size of weak RVA with
that of NDD representing the same subsets of Z3 obtained by combining linear con-
straints with arbitrary coefficients. One notices that the behavior of RVA is very
similar to that of NDD, that are reputed to behave quite well in practice [Wolper
and Boigelot 2000].
These observations make one think that the pathological conditions that lead the

breakpoint construction to blow-up are seldom met in practice.

8. CONCLUSIONS

A probably unusual aspect of this paper is that it does not introduce new algo-
rithms, but rather shows that existing algorithms can be used in a situation where
a priori they could not be expected to operate correctly. To put it in other words,
the contribution is not the algorithm but the proof of its correctness.
The critical reader might be wondering if all this is really necessary. After all,

algorithms for complementing Büchi automata exist, either through determiniza-
tion [Safra 1988] or directly [Büchi 1962; Sistla et al. 1987; Kupferman and Vardi
1997; Klarlund 1991] and the more recent of these are even fairly simple and poten-
tially implementable. There are no perfectly objective grounds on which to evaluate
“simplicity” and “ease of implementation”, but it is not difficult to convince oneself

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



An Effective Decision Procedure for Linear Arithmetic over the Integers and Reals · 17

10

100

1000

10000

100000

10 100 1000 10000 100000

N
b.

 s
ta

te
s 

af
te

r 
pr

oj
ec

tio
n

Nb. states before projection

Fig. 5. The effect of projection-determinization on RVA.

10

100

1000

10000

10 100 1000 10000

N
b.

 s
ta

te
s 

af
te

r 
pr

oj
ec

tio
n

Nb. states before projection

NDD
RVA

Fig. 6. The effect of projection-determinization on NDD and RVA.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



18 · B. Boigelot, S. Jodogne, and P. Wolper

that the breakpoint construction for determinizing weak automata is simpler than
anything proposed for determinizing or complementing Büchi automata. Indeed,
it is but one step of the probably simplest complementation procedure proposed
so far, that of [Kupferman and Vardi 1997]. Furthermore, there is a complexity
improvement from 2O(n logn) to 2O(n), and being able to work with deterministic
weak automata allows minimization [Löding 2001], which leads to a normal form.
Those claims to simplicity and ease of implementation are substantiated by the
experimental results.
Our implementation makes it possible to represent possibly non convex periodic

sets containing both integers and reals, and to manipulate those sets using Boolean
operations and quantification, and to check relations existing between them. To the
best of our knowledge, doing this is beyond the scope of any other implemented tool.
The potential application field of RVA is wide and range from symbolic analysis
of linear hybrid systems [Alur et al. 1995] to temporal databases [Chomicki and
Imieliński 1988; Kabanza et al. 1990].

REFERENCES

Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P. H., Nicollin, X.,
Olivero, A., Sifakis, J., and Yovine, S. 1995. The algorithmic analysis of hybrid systems.

Theoretical Computer Science 138, 1 (February), 3–34.

Boigelot, B. 1998. Symbolic methods for exploring infinite state spaces. Ph.D. thesis, Université
de Liège.

Boigelot, B., Bronne, L., and Rassart, S. 1997. An improved reachability analysis method
for strongly linear hybrid systems. In Proceedings of the 9th International Conference on
Computer-Aided Verification. Lecture Notes in Computer Science, vol. 1254. Springer-Verlag,

Haifa, Israel, 167–177.

Boigelot, B., Jodogne, S., and Wolper, P. 2001. On the use of weak automata for deciding
linear arithmetic with integer and real variables. In Proc. International Joint Conference on
Automated Reasoning (IJCAR). Lecture Notes in Computer Science, vol. 2083. Springer-Verlag,
Siena, Italy, 611–625.

Boigelot, B. and Latour, L. 2001. Counting the solutions of Presburger equations without

enumerating them. In Proc. International Conference on Implementations and Applications of
Automata. Lecture Notes in Computer Science, vol. 2494. Springer-Verlag, Pretoria, 40–51.

Boigelot, B., Rassart, S., and Wolper, P. 1998. On the expressiveness of real and inte-
ger arithmetic automata. In Proc. 25th Colloq. on Automata, Programming, and Languages
(ICALP). Lecture Notes in Computer Science, vol. 1443. Springer-Verlag, Aalborg, 152–163.

Boudet, A. and Comon, H. 1996. Diophantine equations, Presburger arithmetic and finite

automata. In Proceedings of CAAP’96. Lecture Notes in Computer Science, vol. 1059. Springer-
Verlag, Linköping, Sweden, 30–43.

Bruyère, V., Hansel, G., Michaux, C., and Villemaire, R. 1994. Logic and p-recognizable
sets of integers. Bulletin of the Belgian Mathematical Society 1, 2 (March), 191–238.

Büchi, J. R. 1960. Weak second-order arithmetic and finite automata. Zeitschrift Math. Logik
und Grundlagen der Mathematik 6, 66–92.

Büchi, J. R. 1962. On a decision method in restricted second order arithmetic. In Proceedings of

the International Congress on Logic, Method, and Philosophy of Science. Stanford University
Press, Stanford, CA, USA, 1–12.

Chomicki, J. and Imieliński, T. 1988. Temporal deductive databases and infinite objects. In
Proceedings of the Seventh ACM Symposium on Principles of Database Systems. ACM Press,

Austin, Texas, 61–73.

Cobham, A. 1969. On the base-dependence of sets of numbers recognizable by finite automata.
Mathematical Systems Theory 3, 186–192.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



An Effective Decision Procedure for Linear Arithmetic over the Integers and Reals · 19

Courcoubetis, C., Vardi, M. Y., Wolper, P., and Yannakakis, M. 1990. Memory efficient
algorithms for the verification of temporal properties. In Proc. 2nd Workshop on Computer
Aided Verification. Lecture Notes in Computer Science, vol. 531. Springer-Verlag, Rutgers,

233–242.

Ferrante, J. and Rackoff, C. W. 1979. The Computational Complexity of Logical Theories.
Lecture Notes in Mathematics, vol. 718. Springer-Verlag, Berlin-Heidelberg-New York.

Holzmann, G. J. 1997. The model checker SPIN. IEEE Transactions on Software Engineer-
ing 23, 5 (May), 279–295. Special Issue: Formal Methods in Software Practice.

Hopcroft, J. E. 1971. An n logn algorithm for minimizing states in a finite automaton. Theory
of Machines and Computation, 189–196.

Jürgensen, H. and Staiger, L. 2001. Finite automata encoding geometric figures. In Proc. 4th

International Workshop on Implementing Automata (WIA’99), Revised Papers, O. Boldt and
H. Jürgensen, Eds. Lecture Notes in Computer Science, vol. 2214. Springer-Verlag, Potsdam,
Germany, 101–108.

Kabanza, F., Stévenne, J.-M., and Wolper, P. 1990. Handling infinite temporal data. In
Proc. of the 9th ACM Symposium on Principles of Database Systems. ACM Press, Nashville,
Tennessee, 392–403.

Klarlund, N. 1991. Progress measures for complementation of ω-automata with applications
to temporal logic. In Proceedings of the 32nd IEEE Symposium on Foundations of Computer
Science. IEEE Computer Society Press, San Juan, Puerto Rico, 358–367.

Kupferman, O. and Vardi, M. 1997. Weak alternating automata are not that weak. In Proc.
5th Israeli Symposium on Theory of Computing and Systems. IEEE Computer Society Press,
Ramat-Gan, Israel, 147–158.

Kupferman, O., Vardi, M. Y., and Wolper, P. 2000. An automata-theoretic approach to
branching-time model checking. Journal of the ACM 47, 2 (March), 312–360.

Landweber, L. H. 1969. Decision problems for ω-automata. Mathematical Systems Theory 3, 4,

376–384.

LASH. The Liège Automata-based Symbolic Handler (LASH). Available at :
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/.

Löding, C. 2001. Efficient minimization of deterministic weak ω−automata. Information Pro-
cessing Letters 79, 3, 105–109.

Maler, O. and Staiger, L. 1997. On syntactic congruences for ω-languages. Theoretical Com-
puter Science 183, 1, 93–112.

Miyano, S. and Hayashi, T. 1984. Alternating finite automata on ω-words. Theoretical Computer

Science 32, 321–330.

Muller, D. E., Saoudi, A., and Schupp, P. E. 1986. Alternating automata, the weak monadic
theory of the tree and its complexity. In Proc. 13th Int. Colloquium on Automata, Languages

and Programming. Springer-Verlag, Rennes, 275–283.

Rabin, M. O. 1969. Decidability of second order theories and automata on infinite trees. Trans-
action of the AMS 141, 1–35.

Safra, S. 1988. On the complexity of omega-automata. In Proceedings of the 29th IEEE Sym-
posium on Foundations of Computer Science. IEEE Computer Society Press, White Plains,

319–327.

Semenov, A. L. 1977. Presburgerness of predicates regular in two number systems. Siberian
Mathematical Journal 18, 289–299.

Shiple, T. R., Kukula, J. H., and Ranjan, R. K. 1998. A comparison of Presburger engines
for EFSM reachability. In Proceedings of the 10th Intl. Conf. on Computer-Aided Verification.
Lecture Notes in Computer Science, vol. 1427. Springer-Verlag, Vancouver, 280–292.

Sistla, A. P., Vardi, M. Y., and Wolper, P. 1987. The complementation problem for Büchi
automata with applications to temporal logic. Theoretical Computer Science 49, 217–237.

Staiger, L. 1983. Finite-state ω-languages. Journal of Computer and System Sciences 27, 3,
434–448.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



20 · B. Boigelot, S. Jodogne, and P. Wolper

Staiger, L. and Wagner, K. 1974. Automatentheoretische und automatenfreie charakterisierun-
gen topologischer klassen regulärer folgenmengen. Elektron. Informationsverarbeitung und Ky-
bernetik EIK 10, 379–392.

Thomas, W. 1990. Automata on infinite objects. In Handbook of Theoretical Computer Sci-
ence – Volume B: Formal Models and Semantics, J. Van Leeuwen, Ed. Elsevier, Amsterdam,

Chapter 4, 133–191.

Vardi, M. Y. and Wolper, P. 1986a. An automata-theoretic approach to automatic program
verification. In Proceedings of the First Symposium on Logic in Computer Science. IEEE
Computer Society Press, Cambridge, 322–331.

Vardi, M. Y. and Wolper, P. 1986b. Automata-theoretic techniques for modal logics of pro-
grams. Journal of Computer and System Science 32, 2 (April), 183–221.

Vardi, M. Y. and Wolper, P. 1994. Reasoning about infinite computations. Information and
Computation 115, 1 (November), 1–37.

Wagner, K. 1979. On omega-regular sets. Information and Control 43, 2 (November), 123–177.

Weispfenning, V. 1999. Mixed real-integer linear quantifier elimination. In ISSAC: Proceedings

of the ACM SIGSAM International Symposium on Symbolic and Algebraic Computation. ACM
Press, Vancouver, 129–136.

Wolper, P. and Boigelot, B. 1995. An automata-theoretic approach to Presburger arithmetic
constraints. In Proc. Static Analysis Symposium. Lecture Notes in Computer Science, vol. 983.
Springer-Verlag, Glasgow, 21–32.

Wolper, P. and Boigelot, B. 2000. On the construction of automata from linear arithmetic
constraints. In Proc. 6th International Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems. Lecture Notes in Computer Science, vol. 1785. Springer-Verlag,
Berlin, 1–19.

Received March 2003; revised February 2004; accepted February 2004

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.


