Article de revue

Development of process control system for potential use of direct injection spraying technology

Revue Progress in Agricultural Engineering Sciences
Éditeur Akadémiai Kiadó
ISSN 1786-335X (Print) 1787-0321 (Online)
Sujet Agronomy
Numéro Volume 7, Number 1/January 2011
Pages 33-45
DOI 10.1556/Progress.7.2011.3
Subject Group Engineering
date de mise en ligne vendredi 27 janvier 2012

Auteurs

PDF (277,9 KB) First Page Preview

Ajouter aux articles marqués
Ajouter au panier de magasinage
Ajouter aux articles sauvegardés
Recommend this Article
A. Aissaoui¹, F. Lebeau², L. Bahir³, M.-F. Destain², K. Houmy⁴

¹INRA Laboratory of Agricultural Engineering, Dry Land Research Center P.O. Box 589
Settat 26000 Morocco
²University of Liege Unit of Mechanics and Construction, Gembloux Agro-Bio Tech
Gembloux 5030 Belgium
³National School of Applied Science Department of Electrical Engineering P.O. Box 575
Marrakech 40000 Morocco
⁴Institute of Agronomic and Veterinary Science Department of Agricultural Engineering P.O.
Box 6202 Rabat Morocco

Résumé

Small-scale farmers face to actual difficulties of applying pesticides accurately and safely on vegetables crops. They mainly use hand operated sprayers. As an issue, a small direct injection system based on a five meter’s parallel boom layout was designed to improve chemical application. The boom layout was optimized to obtain the same minimal time lag response for the ten nozzles. The dynamic of the system was modeled using Simulink TM as first order model with delay. Two control strategies were implemented using PID (Proportional Integral Derivative) feedback control loops to monitor tracer injection (fluorescing) proportionally to simulated forward speed (from 0.6 to 1.2 m/s) and to control the constant operating pressure (constant carrier flow strategy) or the variable operating pressure proportionally to the injected chemical amount (variable total flow strategy). Different forward speed changes were induced using steps up and down, ramps, sine waves and sweeps excitations to evaluate the control feedback. The system stability was tested for its ability to maintain the expected concentration and application rate. The results show that the time lag remains less than 3 s (dead time < 2 s, time constant < 1 s) and the system keeps stable for the maximal speed variation (ΔV) and acceleration (a) tested (ΔV = 200%, a = 0.48 m/s²) which induce less than 10% variation of application rate.

Mots-clé

feedback control, direct injection, variable rate application, simulation

Fulltext Preview (Small, Large)
Development of Process Control System for Potential Use of Direct Injection Spraying Technology

A. El Aissaoui¹, F. Lebeau², L. El Bahiri³, M. E. Destain⁴ and E. Hommy⁵

Small-scale farmers face actual difficulties of applying pesticides accurately and safely on vegetables. They mainly use hand operated sprayers. As an issue, a new direct injection system based on a five meters parallel boom layout was designed to improve chemical application. The boom layout was optimized to obtain the same reaction time lag response for the ten nozzles. The dynamic of the system was modeled using Simulink TM as first order model with delay. Two control strategies were implemented using PID (Proportional Integral Derivative) feedback control loop to monitor trace injection (fluoroscope) proportionally to simulated forward speed (from 0.6 to 1.2 m/s) and to control the constant operating pressure (constant carrier flow strategy) or the variable operating pressure proportionally to the injected chemical amount (variable total flow strategy). Different forward speed changes were induced using steps up and down ramps, sine waves and trapezoidal waves to evaluate the control feedback. The system stability was tested for its ability to maintain the expected concentration and application rate. The results show that the time lag remains less than 3 s (delay time < 2 s, time constant = 1 s) and the system keeps stable for the maximal speed variation (ΔV) and acceleration (Δa) tested (ΔV = 20%, Δa = 0.4 m/s²) which induce less than 10% variation of application rate.

Keywords: feedback control, direct injection, variable rate application, simulation.

1M.S., Laboratory of Agricultural Engineering, Dry Land Research Center, INRA, P.O. Box 380, Settat 70000, Morocco
2PhD, Unit of Mechanics and Construction, Gembloux Agro-Bio-Tech, University of Liege, Gembloux, 5030, Belgium
3PhD, Department of Electrical Engineering, National School of Applied Science, P.O. Box 575, Menzah 1, 40000, Morocco
4PhD, Department of Agricultural Engineering, Institute of Agronomic and Veterinary Science, P.O. Box 602, Rabat, Morocco
5Corresponding author: A. El Aissaoui, Ag. Engineer, E-mail: ab_elaisaou@gmail.com

17/365 23 © 2012 Akadémiai Kiadó, Budapest
Références


Landers, A. 1999. Modern technology to improving spraying efficiency, Cornell University, Department of Agricultural and Biological Engineering


