Université catholique de Louvain

Lifting of valid inequalities revisited

Quentin Louveaux and Laurence Wolsey, C.O.R.E.

Outline

- 1. Introduction on lifting
- 2. Basic theory
- 3. Superadditive lifting
- 4. Conclusion

Introduction

Valid inequalities from subsets and supersets

 $X = \{z \in \mathbb{R}^{n_1}_+ \times \mathbb{Z}^{n_2}_+ : Az \le b\} \qquad Y = X \cap \{z : Cz = e\}$

- One can find facets of Y from facets of X.
 If Cz ≤ e is true for all z ∈ X, conv(Y) = conv(X) ∩ {z : Cz = e}.
- Finding facets of X from facets of Y: The **lifting** problem.

 $\pi_1 z \leq \pi_0$ valid for Y. Does there exist π_2 such that

$$\pi_1 z + \pi_2 (e - Cz) \le \pi_0$$

is valid for X?

Always better when the smaller set is a face

• If $Cz \leq e$ for all $z \in X$, it is always possible to find π_2 such that

 $\pi_1 z + \pi_2 (e - Cz) \leq \pi_0$ is valid for X.

• If $Cz \not\leq e$, it can happen that no multipliers π^2 exist.

Ex: $X = \{y \in \mathbb{Z}_{+}^{2} : 3y_{1} + 5y_{2} \le 21, y_{2} \le 4\}$ and $Y = X \cap \{y_{2} = 2\}$. Valid inequality for Y: $y_{1} \le 3$. π_{2} ? such that $y_{1} + \pi_{2}(y_{2} - 2) \le 3$ is valid for X? (7,0) is valid $\Rightarrow \pi_{2} \ge 2$ (0,4) is valid $\Rightarrow \pi_{2} \le 3/2$

Lifting: Basic Theory

We consider a mixed-integer set of the form

$$Z(b) = \begin{array}{c} A^{1}z^{1} + A^{2}z^{2} \leq b + s \\ z^{1} \in X^{1}, z^{2} \in X^{2}, s \in \mathbb{R}^{m}_{+}. \end{array}$$

- Hypothesis: $0 \in X^1, 0 \in X^2$.
- General idea: Fix $z^2 = 0$, find a valid inequality, lift it to a valid inequality for Z(b).
- Not restrictive to fix z² = 0, by choosing the right representation. *Example:* For fixing z² = 2, write z² = z² 2.
 For fixing x = ay, write z = x ay.

The approach

- 1. Fix $z^2 = 0$.
- 2. Find the valid inequality $\pi^1 z^1 \leq \pi_0 + \nu s$ for $Z^1(b)$.
- 3. Lift the variables z^2 and find π^2 such that $\pi^1 z^1 + \pi^2 z^2 \le \pi_0 + \nu s$

is valid or determine that no such π^2 exists.

The lifting function

Definition 1 The lifting function ϕ^1 : $\mathbb{R}^m \to \mathbb{R}^1$ is

 $\phi^{1}(u) = \min\{\pi_{0} + \nu s - \pi^{1} z^{1} : (z^{1}, s) \in Z^{1}(b - u)\}.$

When the variables sum up to u in the constraints, what happens in the valid inequality?

Definition 2

 $\Pi^{2} = \{ \pi : \pi t \le \phi^{1}(A^{2}t) \text{ for all } t \in X^{2} \}.$

Proposition 3

 $\pi^{1}z^{1} + \pi^{2}z^{2} \leq \pi_{0} + \nu s$ is valid for Z(b) iff $\pi_{2} \in \Pi^{2}$.

Lifting: A first example

Consider the set

 $X = \{(x,s) \in \{0,1\}^4 \times \mathbb{R}_+ : 2x_1 + 3x_2 + 4x_3 + 5x_4 \le 6 +$ If we fix $x_1 = x_2 = x_3 = 0$, we obtain

$$Y = \{(x,s) \in \{0,1\} \times \mathbb{R}_+ : 5x_4 \le 6+s\}.$$

MIR procedure: valid inequality for Y: $4x_4 \le 4 + s$.

The lifting function:

$$\phi(u) = \min\{4 - 4x_4 + s : 5x_4 \le 6 + s - u\}$$

Ex: $3x_3 + 4x_4 \le 4 + s$ $x_1 + 2x_2 + 4x_4 \le 4 + s$ valid for X.

How to compute π^2 in general?

In some cases, computing π^2 is not obvious. However, we have this result.

Proposition 4 If X^1 and X^2 are bounded mixedinteger sets, Π^2 is a polyhedron.

Usually, Π^2 is described by inequalities found at "singular points" of ϕ and "discontinuity points" of the domain.

Second example:

 $\begin{array}{l}5y_1 + 5y_2 + 5y_3 + x_4 + 2y_4 \leq 12 + s\\y_4 \leq x_4 \leq 3y_4\\y_1, y_2, y_3 \in \{0, 1\}, y_4 \in \{0, 1, 2\}, x_4 \in \mathbb{R}_+\\\end{array}$ Fix $x_4 = y_4 = 0$, valid inequality: $3y_1 + 3y_2 + 3y_4 = 0$

 $3y_3 \le 6 + s.$

An issue: computing the new lifting function

Proposition 5

$$\phi^{2}(u) = \min_{t \in X^{2}} [\phi^{1}(u + A^{2}t) - \pi^{2}t].$$

When the lifting function is superadditive, the situation simplifies.

Definition 6 A function $F : \mathbb{R}^m \to \mathbb{R}$ is superadditive on $D \subseteq \mathbb{R}^m$ if F(0) = 0 and

$$F(u) + F(v) \le F(u+v).$$

Proposition 7 If ϕ^1 is superadditive, $\phi^2 = \phi^1$.

Sequence independent lifting

Even if ϕ^1 is not superadditive, a function $\hat{\phi} \leq \phi^1$ that is superadditive and close to ϕ^1 can be useful.

Proposition 8 If $\hat{\phi} \leq \phi^1$ and $\hat{\phi}$ is superadditive and nondecreasing, $\hat{\phi}$ can be used for lifting, and $\phi^1 \geq \phi^2 \geq \hat{\phi}$.

In that case, the ordering of the variables lifted is irrelevant which is not true in the general case.

Conclusion

- By fixing all variables to 0, we avoid the use of 2 lifting functions.
- No loss of generality by this restriction.
- Keeping a continuous variable s simplifies the theory (ϕ always exists and is continuous).
- Computing of superadditive lower bounds is an important issue.
- No real clue on how to do it efficiently.