# Université catholique de Louvain 



## Lifting of valid inequalities revisited

## Quentin Louveaux and Laurence Wolsey, C.O.R.E.

## Outline

## 1. Introduction on lifting

2. Basic theory
3. Superadditive lifting
4. Conclusion

## Introduction

## Valid inequalities from subsets and supersets

$$
\begin{aligned}
& X=\left\{z \in \mathbb{R}_{+}^{n_{1}} \times \mathbb{Z}_{+}^{n_{2}}: A z \leq b\right\} \quad Y=X \cap\{z: \\
& C z=e\}
\end{aligned}
$$

- One can find facets of $Y$ from facets of $X$. If $C z \leq e$ is true for all $z \in X, \operatorname{conv}(Y)=$ $\operatorname{conv}(X) \cap\{z: C z=e\}$.
- Finding facets of $X$ from facets of $Y$ : The lifting problem.
$\pi_{1} z \leq \pi_{0}$ valid for $Y$. Does there exist $\pi_{2}$ such that

$$
\pi_{1} z+\pi_{2}(e-C z) \leq \pi_{0}
$$

is valid for $X$ ?

## Always better when the smaller set is a face

- If $C z \leq e$ for all $z \in X$, it is always possible to find $\pi_{2}$ such that

$$
\pi_{1} z+\pi_{2}(e-C z) \leq \pi_{0} \text { is valid for } X
$$

- If $C z \not \leq e$, it can happen that no multipliers $\pi^{2}$ exist.

Ex: $X=\left\{y \in \mathbb{Z}_{+}^{2}: 3 y_{1}+5 y_{2} \leq 21, y_{2} \leq 4\right\}$
and $Y=X \cap\left\{y_{2}=2\right\}$.
Valid inequality for $Y: y_{1} \leq 3$.
$\pi_{2}$ ? such that $y_{1}+\pi_{2}\left(y_{2}-2\right) \leq 3$ is valid for $X$ ?
$(7,0)$ is valid $\Rightarrow \pi_{2} \geq 2$
$(0,4)$ is valid $\Rightarrow \pi_{2} \leq 3 / 2$


## Lifting: Basic Theory

We consider a mixed-integer set of the form

$$
Z(b)=\begin{gathered}
A^{1} z^{1}+A^{2} z^{2} \leq b+s \\
z^{1} \in X^{1}, z^{2} \in X^{2}, s \in \mathbb{R}_{+}^{m}
\end{gathered}
$$

- Hypothesis: $0 \in X^{1}, 0 \in X^{2}$.
- General idea: Fix $z^{2}=0$, find a valid inequality, lift it to a valid inequality for $Z(b)$.
- Not restrictive to fix $z^{2}=0$, by choosing the right representation.
Example: For fixing $z^{2}=2$, write $\bar{z}^{2}=$ $z^{2}-2$.
For fixing $x=a y$, write $\hat{z}=x-a y$.


## The approach

1. $\operatorname{Fix} z^{2}=0$.
2. Find the valid inequality $\pi^{1} z^{1} \leq \pi_{0}+\nu s$ for $Z^{1}(b)$.
3. Lift the variables $z^{2}$ and find $\pi^{2}$ such that

$$
\pi^{1} z^{1}+\pi^{2} z^{2} \leq \pi_{0}+\nu s
$$

is valid or determine that no such $\pi^{2}$ exists.

## The lifting function

Definition 1 The lifting function $\phi^{1}: \mathbb{R}^{m} \rightarrow$ $\mathbb{R}^{1}$ is
$\phi^{1}(u)=\min \left\{\pi_{0}+\nu s-\pi^{1} z^{1}:\left(z^{1}, s\right) \in Z^{1}(b-u)\right\}$.

When the variables sum up to $u$ in the constraints, what happens in the valid inequality?

## Definition 2

$$
\Pi^{2}=\left\{\pi: \pi t \leq \phi^{1}\left(A^{2} t\right) \text { for all } t \in X^{2}\right\} .
$$

## Proposition 3

$\pi^{1} z^{1}+\pi^{2} z^{2} \leq \pi_{0}+\nu$ s is valid for $Z(b)$ iff $\pi_{2} \in \Pi^{2}$.

## Lifting: A first example

Consider the set
$X=\left\{(x, s) \in\{0,1\}^{4} \times \mathbb{R}_{+}: 2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} \leq 6+\right.$
If we fix $x_{1}=x_{2}=x_{3}=0$, we obtain

$$
Y=\left\{(x, s) \in\{0,1\} \times \mathbb{R}_{+}: 5 x_{4} \leq 6+s\right\}
$$

MIR procedure: valid inequality for $Y: 4 x_{4} \leq$ $4+s$.
The lifting function:

$$
\phi(u)=\min \left\{4-4 x_{4}+s: 5 x_{4} \leq 6+s-u\right\}
$$

Ex: $3 x_{3}+4 x_{4} \leq 4+s$ $x_{1}+2 x_{2}+4 x_{4} \leq 4+s$ valid for $X$.

## How to compute $\pi^{2}$ in general?

In some cases, computing $\pi^{2}$ is not obvious. However, we have this result.

Proposition 4 If $X^{1}$ and $X^{2}$ are bounded mixedinteger sets, $\Pi^{2}$ is a polyhedron.

Usually, $\Pi^{2}$ is described by inequalities found at "singular points" of $\phi$ and "discontinuity points" of the domain.

## Second example:

$$
\begin{gathered}
5 y_{1}+5 y_{2}+5 y_{3}+x_{4}+2 y_{4} \leq 12+s \\
y_{4} \leq x_{4} \leq 3 y_{4} \\
y_{1}, y_{2}, y_{3} \in\{0,1\}, y_{4} \in\{0,1,2\}, x_{4} \in \mathbb{R}_{+}
\end{gathered}
$$

Fix $x_{4}=y_{4}=0$, valid inequality: $3 y_{1}+3 y_{2}+$ $3 y_{3} \leq 6+s$.
$\lambda+\mu \leq \phi(3)=1$
$3 \lambda+\mu \leq \phi(5)=3$
$\lambda+2 \mu \leq \phi(5)=3$

$3 \lambda+2 \mu \leq \phi(7)=3$
$6 \lambda+2 \mu \leq \phi(10)=6$

## An issue: computing the new lifting function

## Proposition 5

$$
\phi^{2}(u)=\min _{t \in X^{2}}\left[\phi^{1}\left(u+A^{2} t\right)-\pi^{2} t\right]
$$

When the lifting function is superadditive, the situation simplifies.

Definition 6 A function $F: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is superadditive on $D \subseteq \mathbb{R}^{m}$ if $F(0)=0$ and

$$
F(u)+F(v) \leq F(u+v)
$$

Proposition 7 If $\phi^{1}$ is superadditive, $\phi^{2}=\phi^{1}$.

## Sequence independent lifting

Even if $\phi^{1}$ is not superadditive, a function $\hat{\phi} \leq$ $\phi^{1}$ that is superadditive and close to $\phi^{1}$ can be useful.

Proposition 8 If $\hat{\phi} \leq \phi^{1}$ and $\hat{\phi}$ is superadditive and nondecreasing, $\hat{\phi}$ can be used for lifting, and $\phi^{1} \geq \phi^{2} \geq \widehat{\phi}$.

In that case, the ordering of the variables lifted is irrelevant which is not true in the general case.

## Conclusion

- By fixing all variables to 0 , we avoid the use of 2 lifting functions.
- No loss of generality by this restriction.
- Keeping a continuous variable $s$ simplifies the theory ( $\phi$ always exists and is continuous).
- Computing of superadditive lower bounds is an important issue.
- No real clue on how to do it efficiently.

