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Introduction

Valid inequalities from subsets and

supersets

X = {z ∈ R
n1
+ × Z

n2
+ : Az ≤ b} Y = X ∩ {z :

Cz = e}

• One can find facets of Y from facets of X.

If Cz ≤ e is true for all z ∈ X, conv(Y ) =

conv(X) ∩ {z : Cz = e}.

• Finding facets of X from facets of Y : The

lifting problem.

π1z ≤ π0 valid for Y . Does there exist π2
such that

π1z + π2(e− Cz) ≤ π0

is valid for X?



Always better when the smaller set is a

face

• If Cz ≤ e for all z ∈ X, it is always possible

to find π2 such that

π1z + π2(e− Cz) ≤ π0 is valid for X.

• If Cz 6≤ e, it can happen that no multipliers

π2 exist.

Ex: X = {y ∈ Z
2
+ : 3y1 + 5y2 ≤ 21, y2 ≤ 4}

and Y = X ∩ {y2 = 2}.

Valid inequality for Y : y1 ≤ 3.

π2? such that y1 + π2(y2 − 2) ≤ 3 is valid

for X?

(7,0) is valid ⇒ π2 ≥ 2

(0,4) is valid ⇒ π2 ≤ 3/2





Lifting: Basic Theory

We consider a mixed-integer set of the form

Z(b) =
A1z1 +A2z2 ≤ b+ s

z1 ∈ X1, z2 ∈ X2, s ∈ R
m
+.

• Hypothesis: 0 ∈ X1,0 ∈ X2.

• General idea: Fix z2 = 0, find a valid in-

equality, lift it to a valid inequality for Z(b).

• Not restrictive to fix z2 = 0, by choosing

the right representation.

Example: For fixing z2 = 2, write ẑ2 =

z2 − 2.

For fixing x = ay, write ẑ = x− ay.



The approach

1. Fix z2 = 0.

2. Find the valid inequality π1z1 ≤ π0 + νs for

Z1(b).

3. Lift the variables z2 and find π2 such that

π1z1 + π2z2 ≤ π0 + νs

is valid or determine that no such π2 exists.



The lifting function

Definition 1 The lifting function φ1 : R
m →

R
1 is

φ1(u) = min{π0+νs−π1z1 : (z1, s) ∈ Z1(b−u)}.

When the variables sum up to u in the con-

straints, what happens in the valid inequality?

Definition 2

Π2 = {π : πt ≤ φ1(A2t) for all t ∈ X2}.

Proposition 3

π1z1+π2z2 ≤ π0+νs is valid for Z(b) iff π2 ∈ Π2.



Lifting: A first example

Consider the set

X = {(x, s) ∈ {0,1}4×R+ : 2x1+3x2+4x3+5x4 ≤ 6+

If we fix x1 = x2 = x3 = 0, we obtain

Y = {(x, s) ∈ {0,1} × R+ : 5x4 ≤ 6+ s}.

MIR procedure: valid inequality for Y : 4x4 ≤

4+ s.

The lifting function:

φ(u) = min{4− 4x4 + s : 5x4 ≤ 6+ s− u}

Ex: 3x3+4x4 ≤ 4+s x1+2x2+4x4 ≤ 4+s

valid for X.



How to compute π2 in general?

In some cases, computing π2 is not obvious.

However, we have this result.

Proposition 4 If X1 and X2 are bounded mixed-

integer sets, Π2 is a polyhedron.

Usually, Π2 is described by inequalities found at

“singular points” of φ and “discontinuity points”

of the domain.



Second example:

5y1 +5y2 +5y3 + x4 +2y4 ≤ 12+ s
y4 ≤ x4 ≤ 3y4

y1, y2, y3 ∈ {0,1}, y4 ∈ {0,1,2}, x4 ∈ R+

Fix x4 = y4 = 0, valid inequality: 3y1 + 3y2 +

3y3 ≤ 6+ s.

λ+ µ ≤ φ(3) = 1
3λ+ µ ≤ φ(5) = 3
λ+2µ ≤ φ(5) = 3
3λ+2µ ≤ φ(7) = 3
6λ+2µ ≤ φ(10) = 6
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An issue: computing the new lifting

function

Proposition 5

φ2(u) = min
t∈X2

[φ1(u+A2t)− π2t].

When the lifting function is superadditive, the

situation simplifies.

Definition 6 A function F : Rm → R is super-

additive on D ⊆ R
m if F (0) = 0 and

F (u) + F (v) ≤ F (u+ v).

Proposition 7 If φ1 is superadditive, φ2 = φ1.



Sequence independent lifting

Even if φ1 is not superadditive, a function φ̂ ≤

φ1 that is superadditive and close to φ1 can be

useful.

Proposition 8 If φ̂ ≤ φ1 and φ̂ is superadditive

and nondecreasing, φ̂ can be used for lifting,

and φ1 ≥ φ2 ≥ φ̂.

In that case, the ordering of the variables lifted

is irrelevant which is not true in the general

case.



Conclusion

• By fixing all variables to 0, we avoid the

use of 2 lifting functions.

• No loss of generality by this restriction.

• Keeping a continuous variable s simplifies

the theory (φ always exists and is continu-

ous).

• Computing of superadditive lower bounds

is an important issue.

• No real clue on how to do it efficiently.


