Outline

- Introduction: The Group Problem and Corner Polyhedra
- Four Extended Formulations of Corner Polyhedra
- Disaggregated
- Aggregated
- Advanced aggregation
- Path
- Computational Results and Conclusion

Introduction: The Group Problem

$$
\begin{array}{ll}
\max & c^{T} x \\
\text { s.t. } & A x=b \\
& x \in \mathbb{Z}_{+}^{n}
\end{array}
$$

Vertex with basic variables x_{B} and non basic x_{N},

$$
\begin{align*}
\max & \bar{c}_{N}^{\top} x_{N} \\
\text { s.t. } & x_{B}+\bar{A}_{N} x_{N}=\bar{b} \tag{1}\\
& x \in \mathbb{Z}_{+}^{n}
\end{align*}
$$

Relax nonnegativity on x_{B} in (1). New problem:

$$
\begin{align*}
& \bar{A}_{N} x_{N} \equiv \bar{b}(\bmod 1) \tag{2}\\
& x_{N} \in \mathbb{Z}_{+}^{|N|}
\end{align*}
$$

Convex hull of (2) is called a Corner Polyhedron.

Example:

$$
\begin{array}{rlrl}
\max 2 x_{1}+3 x_{2} & & \\
\text { s.t. } 5 x_{1}+9 x_{2}+s_{1} & =35 \\
11 x_{1}+4 x_{2}+s_{2} & =45 \\
x_{1}+x_{2} & +s_{3} & =5 \\
x_{1}, \quad x_{2}, & s_{1}, & s_{2}, & s_{3}
\end{array} \in \mathbb{Z}_{+} .
$$

The optimal - fractional - tableau is

$$
\begin{array}{lll}
\max & -\frac{1}{4} s_{1} & -\frac{3}{4} s_{3} \\
\text { s.t. } x_{1}-\frac{1}{4} s_{1} & +\frac{9}{4} s_{3} & =\frac{10}{4} \\
x_{2}+\frac{1}{4} s_{1} & -\frac{5}{4} s_{3} & =\frac{10}{4} \\
\frac{7}{4} s_{1}+s_{2}-\frac{79}{4} s_{3} & =\frac{15}{2} \\
x_{1}, x_{2}, & s_{1}, & s_{2}, \\
s_{3} & \in \mathbb{Z}_{+} .
\end{array}
$$

Corner Polyhedron is $\left\{s_{1}, s_{3} \in \mathbb{Z}_{+}: 3 s_{1}+s_{3} \equiv 2(\bmod 4)\right\}$.

The work of Gomory

- For a facet description, it is enough to study the master problem

$$
x_{1}+2 x_{2}+3 x_{3}+\cdots+(d-1) x_{d-1} \equiv b(\bmod d)
$$

- Gomory gives a complete description of the facets as extreme rays of a polyhedron.
- Computionally limited because of the sizes of the groups

First reformulation based on irreducibles

Definition

A vector $y \in \mathbb{Z}_{+}^{n}$ is an irreducible solution of $A x=b$ if every nonzero solution $z \in \mathbb{Z}_{+}^{n}$ of $A x=b$ is such that $z \notin y$.

- Inhomogeneous irreducibles: solutions of $A x=b \rightarrow C$
- Homogeneous irreducibles: solutions of $A x=0 \rightarrow D$

Proposition

Every solution $y \in \mathbb{Z}_{+}^{n}$ of $A x=b$ can be written

$$
\begin{aligned}
& y=C \lambda+D \mu \\
& 1 \cdot \lambda=1 \\
& \lambda \in \mathbb{Z}_{+}^{s}, \mu \in \mathbb{Z}_{+}^{t}
\end{aligned}
$$

A first reformulation of a group problem

Basic: single-row group problem

$$
\begin{equation*}
Y(f)=\left\{x \in \mathbb{Z}_{+}^{n}: b x \equiv f(\bmod d)\right\} \tag{3}
\end{equation*}
$$

Computation of 2 matrices:

- C: inhomogeneous irreducible solutions
- D: homogeneous irreducible solutions

Proposition
$Y(f)=\left\{x \in \mathbb{R}_{+}^{n}: x=C \lambda+D \mu, 1 \cdot \lambda=1, \lambda \in \mathbb{Z}_{+}^{s}, \mu \in \mathbb{Z}_{+}^{t}\right\}$
which leads to a valid extended formulation of (3).

Example:

$$
Y(2)=\left\{3 x_{1}+3 x_{2}+x_{3} \equiv 2(\bmod 4)\right\}
$$

Irreducibles:

$$
C=\left(\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right), D=\left(\begin{array}{llllllll}
1 & 0 & 4 & 3 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 2 & 3 & 4 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 4
\end{array}\right)
$$

Valid reformulation:

$$
\begin{aligned}
Y(2)= & \left\{x \in \mathbb{Z}_{+}^{3}:\right. \\
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)= & \left(\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{4}
\end{array}\right)+\left(\begin{array}{llllllll}
1 & 0 & 4 & 3 & 2 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 2 & 3 & 4 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 4
\end{array}\right)\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{\varnothing} \\
\\
\\
\\
\left.\lambda_{1}, \ldots,+\lambda_{4} \in\{0,1\}, \mu_{1}, \ldots, \mu_{8} \in \mathbb{Z}_{+} \quad\right\} .
\end{array}\right.
\end{aligned}
$$

The convex hull property is satisfied

Notation: P_{Y}^{1} is the polyhedron obtained by relaxing the integrality requirements in the reformulation.
Proposition
$P_{Y}^{1}=\operatorname{conv}(Y(f))$.
Proof: The extreme points are inhomogeneous irreducible solutions and the extreme rays are parallel to some homogeneous irreducible solutions.

Conclusion: Reformulating is, in LP terms, as strong as adding the facets.

Drawback: There can be many irreducibles.

Second reformulation: aggregate variables

Many irreducibles come from variables with identical coefficients.
Idea: Aggregate variables with the same coefficient.
$w_{\alpha}=\sum_{j: b_{j} \equiv \alpha} x_{j}$
$W(f)=\left\{w \in \mathbb{Z}_{+}^{d}: \sum_{\alpha=0}^{d-1} \alpha w_{\alpha} \equiv f(\bmod d)\right\}$

- \tilde{C} : inhomogeneous irreducible solutions for $W(f)$
- \tilde{D} : homogeneous irreducible solutions for $W(f)$

Proposition

$$
\begin{gathered}
Y(f)=\left\{x \in \mathbb{Z}_{+}^{n}: w=\tilde{C} \lambda+\tilde{D} \mu, 1 \lambda=1, \lambda \in \mathbb{Z}_{+}^{\tilde{s}}, \mu \in \mathbb{Z}_{+}^{\tilde{q}},\right. \\
\left.w_{\alpha}=\sum_{j: b_{j} \equiv \alpha} x_{j}, w \in \mathbb{Z}_{+}^{d}\right\} .
\end{gathered}
$$

which leads to a valid extended formulation called aggregated formulation.

Example:

$$
Y(2)=\left\{x \in \mathbb{Z}_{+}^{3}: 3 x_{1}+3 x_{2}+x_{3} \equiv 2(\bmod 4)\right\}
$$

Aggregation: $w=x_{1}+x_{2}$

$$
W(2)=\left\{w, x_{3} \in \mathbb{Z}_{+}: 3 w+x_{3} \equiv 2(\bmod 4)\right\}
$$

Irreducibles:

$$
\tilde{C}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right), \quad \tilde{D}=\left(\begin{array}{lll}
1 & 4 & 0 \\
1 & 0 & 4
\end{array}\right)
$$

Valid reformulation:

$$
\begin{aligned}
Y(2)=\left\{x \in \mathbb{Z}_{+}^{3}: x_{1}+x_{2}\right. & =w \\
\binom{w}{x_{3}} & =\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\binom{\lambda_{1}}{\lambda_{2}}+\left(\begin{array}{lll}
1 & 4 & 0 \\
1 & 0 & 4
\end{array}\right) \\
\lambda_{1}+\lambda_{2} & \left.=1, \lambda \in \mathbb{Z}_{+}^{2}, \mu \in \mathbb{Z}_{+}^{3}, w \in \mathbb{Z}_{+}\right\} .
\end{aligned}
$$

Properties

Notation: P_{Y}^{2} is the polyhedron obtained from relaxing the integrality constraints in the aggregated formulation.
Proposition
$P_{Y}^{2}=\operatorname{conv}(Y(f))$

- Reduce the number of irreducibles
- A much more compact reformulation with the same LP bound

Advanced aggregation

- Idea: Aggregate variables with different coefficients. Example: $w=x_{1}+3 x_{3}$
- Reformulation with irreducibles valid Convex hull property does not hold anymore.
- Interesting to study the polyhedron coming from the constraints

$$
\begin{gathered}
x_{1}+h x_{2}=\sum_{i} c_{i} \lambda_{i}+\sum_{j} d_{j} \mu_{j} \\
\sum_{i} \lambda_{i}=1
\end{gathered}
$$

Path reformulation

- Corresponds to the path structure of the group problem
- One node for each group element Arcs $\left(\alpha, \alpha+b_{j}(\bmod d)\right)$ for each α and each variable j
- A solution is a path from 0 to f

An interesting question: how to compute the irreducibles

- Use of Buchberger-type algorithm or lexicographic enumeration: exponential methods not suited for use in an iterative algorithm
- Possible to precompute the irreducibles once and store them in a table
\rightarrow Reading the table is fast
- One can use group automorphisms to reduce the size of the table

Sizes of the reformulations

Example:

$$
3 x_{1}+3 x_{2}+3 x_{3}+6 x_{4}+5 x_{5}+10 x_{6}+7 x_{7} \equiv 1(\bmod 11)
$$

Formulation	Homogeneous Irreducibles	Inhomogeneous Irreducibles	Variables
Disaggregated	378	76	454
Aggregated	54	26	80
Advanced aggregation	13	8	21
Path			77

The group reformulation in a primal setting

Starting point: a primal integer tableau

$$
\begin{array}{ll}
\max & \bar{c}_{N}^{T} x_{N} \\
\text { s.t. } & x_{B}+\bar{A}_{N} x_{N}=\bar{b} \\
& x \in \mathbb{Z}_{+}^{n} .
\end{array}
$$

Method

- Select a row
- Consider it as a modulo row and generate a group reformulation
- Recover a primal feasible integer tableau
- Possibly find augmentation vectors in the new variables

The use of aggregated reformulation is not easy!

Group reformulation also provides augmentation vectors
Integral Basis Method (Haus, Köppe and Weismantel)

| Problem Name: Iseu (Optimal value : 1120) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Objective | Row | Modulus | Result | New Obj | GAP clos |
| 1660 | R123 | mod 10 | augmentation | 1472 | 35% |
| 1472 | R123 | mod 10 | augmentation | 1303 | 66% |
| No augmentation found by group! | | | | | |

Problem Name: p0282 (Optimal value: 258411)					
Objective	Row	Modulus	Result	New Obj	GAP clo
366777	R1026	mod 5	augmentation	329640	34%
329640	R1026	$\bmod 5$	augmentation	325655	38%
325655	R1056	mod 5	augmentation	322538	41%
No augmentation found by group!					

Conclusion

- Operation of reformulating is as strong as adding facets. In both cases, the master problem is enough.
- Possibility of finding augmenting vectors in a reformulation.
Aggregating makes the task more complicated.
- Hope: primal-dual algorithm with fractional pivots.

