Polyhedral properties for the intersection of two knapsacks

Quentin Louveaux and Robert Weismantel

Otto-von-Guericke Universität Magdeburg

Outline

• Introduction

Forbidden minors for the intersection of two knapsacks

• Incomplete Set Inequalities

• Strength

Compared to the intersection of the convex hulls of the single knapsacks

• The mixed case

Introduction

- Generation of valid inequalities: focus on one constraint. Example: Gomory cuts, MIR, cover inequalities.
- No general work done on several constraints at a time. Commercial softwares only generate inequalities from one constraint.
- Missing knowledge: when is it enough to consider one and when do we need to consider more constraints?
- Starting point: The intersection of two $\{0,1\}$ -knapsacks.

Combinatorial valid inequalities for the intersection of two knapsacks

Problem:

$$X_{1} = \{x \in \{0, 1\}^{n} : \sum_{i \in N} a_{i}x_{i} \le a_{0}\}$$
$$X_{2} = \{x \in \{0, 1\}^{n} : \sum_{i \in N} b_{i}x_{i} \le b_{0}\}$$
$$X = \{x \in \{0, 1\}^{n} : x \in X_{1} \cap X_{2}\}$$

Central question: How to derive valid inequalities of the type

$$\sum_{i \in C} x_i \le |C| - 1 \tag{1}$$

for X?

First Case: inequality valid for one single knapsack

Example:

$$X_1 = \{x \in \{0, 1\}^3 : 2x_1 + 3x_2 + 4x_3 \le 4\}$$

$$X_2 = \{x \in \{0, 1\}^3 : 3x_1 + 5x_2 + 6x_3 \le 8\}.$$

 $x_1 + x_2 \le 1$

valid for X_1 and hence for $X = X_1 \cap X_2$.

Observation 1 If $a_i, b_i \ge 0$ and (1) is valid for X, then (1) is either valid for X_1 or for X_2 .

Canonical form for an intersection

In the following: both positive and negative signs are present!

Canonical form:

$$X_{1} = \{x \in \{0, 1\}^{n} : \sum_{i \in N_{+}} a_{i}x_{i} + \sum_{i \in N_{-}} a_{i}x_{i} \le a_{0}\}$$
$$X_{2} = \{x \in \{0, 1\}^{n} : \sum_{i \in N_{+}} b_{i}x_{i} + \sum_{i \in N_{-}} b_{i}x_{i} \le b_{0}\}$$
$$X = \{x \in \{0, 1\}^{n} : x \in X_{1} \cap X_{2}\},$$

with

$$N_{+} = \{i \in N : a_i \ge 0, b_i \ge 0\}$$
 and $N_{-} = \{i \in N : a_i \ge 0, b_i < 0\}.$

Second Case: Valid for an aggregation of the constraints

Example:

$$X_1 = \{x \in \{0, 1\}^4 : 7x_1 + 10x_2 + 13x_3 + 12x_4 \le 25\}$$
(2)

$$X_2 = \{x \in \{0, 1\}^4 : x_1 + 2x_2 - 2x_3 - x_4 \le 1\}.$$
 (3)

$x_1 + x_2 \le 1$

valid for X but neither valid for X_1 nor for X_2 .

Derivation: (2)+5(3) yields $12x_1 + 20x_2 + 3x_3 + 7x_4 \le 30.$ {1,2} is a cover!

Simple second constraint =

Derivation always possible by aggregation

Theorem 1 Let

$$X = \{x \in \{0, 1\}^{n} : \sum_{i \in N_{+}} a_{i}x_{i} + \sum_{j \in N_{-}} a_{j}x_{j} \le a_{0}$$

$$\sum_{i \in N_{+}} x_{i} - \sum_{j \in N_{-}} x_{j} \le l$$

$$\{0, 1\}^{n} : \sum_{i \in N_{+}} a_{i}x_{i} + \sum_{j \in N_{-}} a_{j}x_{j} \le l$$

$$\{0, 1\}^{n} : \sum_{i \in N_{+}} a_{i}x_{i} + \sum_{j \in N_{-}} a_{j}x_{j} \le l$$

$$\{0, 1\}^{n} : \sum_{i \in N_{+}} a_{i}x_{i} + \sum_{j \in N_{-}} a_{j}x_{j} \le a_{0}$$

$$(4)$$

Let the inequality

$$\sum_{j \in J} x_j \le |J| - 1 \tag{6}$$

be valid for X. There exist conic multipliers $u, v \ge 0$ such that (6) is valid for

$$X(u,v) = \{x \in \{0,1\}^n : x \text{ satisfies } u(4) + v(5)\}.$$

Third Case: Valid for no aggregation

Theorem 2 There exist valid inequalities $\sum_J x_j \le |J| - 1$ which are not valid for any conic combination of the constraints.

Example:

$$X_1 = \{x \in \{0, 1\}^4 : 4x_1 + 5x_2 + 6x_3 + 8x_4 \le 14\}$$

$$X_2 = \{x \in \{0, 1\}^4 : -2x_1 - 2x_2 - 3x_3 - 4x_4 \le -6\}.$$

 $x_1 + x_2 \le 1$

is valid for X, neither for X_1 nor for X_2 .

We prove that for all $u, v \ge 0$, there exists a solution $x \in X(u, v)$ with $x_1 = x_2 = 1$.

Outline

$$\sum_{i \in J} x_i \le |J| - 1 \text{ valid for } X = X_1 \cap X_2.$$

- 1. Inequalities from X_1 or X_2 alone \rightarrow If $a_i, b_i \ge 0$, all inequalities fall in this category.
- 2. Inequalities from a combination of X_1 and X_2 \rightarrow If $\{+1, -1\}$ -coefficients in second constraint, all inequalities fall in this category.
- 3. Inequalities for the intersection only
 - \rightarrow For general problems.

Incomplete Set Inequalities

Notation: $a(T) = \sum_{i \in T} a_i, \ b(T) = \sum_{i \in T} b_i.$

Definition 1 I is an incomplete set if

$$r(I) = a_0 - a(I) > 0$$
 and $e(I) = b(I) - b_0 > 0$,

called the residue and the excess.

Idea: What happens if $x_i = 1$ for all $i \in I$?

$$P_I = \{x \in \{0, 1\}^{|N_- \setminus I|} : \sum_{j \in N_- \setminus I} a_j x_j \le r(I)$$

 $\sum_{j \in N_- \setminus I} -b_j x_j \ge e(I) \}.$

Theorem 3 Let I be an incomplete set and I^C be a covering of the solutions of P_I , then

$$\sum_{i \in I} x_i - \sum_{j \in I^C} x_j \le |I| - 1$$

is valid for X.

Example:

$$X_{1} = \{x \in \{0, 1\}^{5} : 3x_{1} + 2x_{2} + 4x_{3} + 7x_{4} + 12x_{5} \le 20\}$$
$$X_{2} = \{x \in \{0, 1\}^{5} : -7x_{1} - 2x_{2} - 3x_{3} - 8x_{4} + 9x_{5} \le 0\}$$
$$I = \{5\}, \ r(I) = 8, \ e(I) = 9.$$

$$P_{I} = \{x \in \{0, 1\}^{4} : 3x_{1} + 2x_{2} + 4x_{3} + 7x_{4} \le 8$$
$$7x_{1} + 2x_{2} + 3x_{3} + 8x_{4} \ge 9 \}.$$
$$\{(1, 1, 0, 0), (1, 0, 1, 0)\}$$

 $P_I = \{(1, 1, 0, 0), (1, 0, 1, 0)\}.$

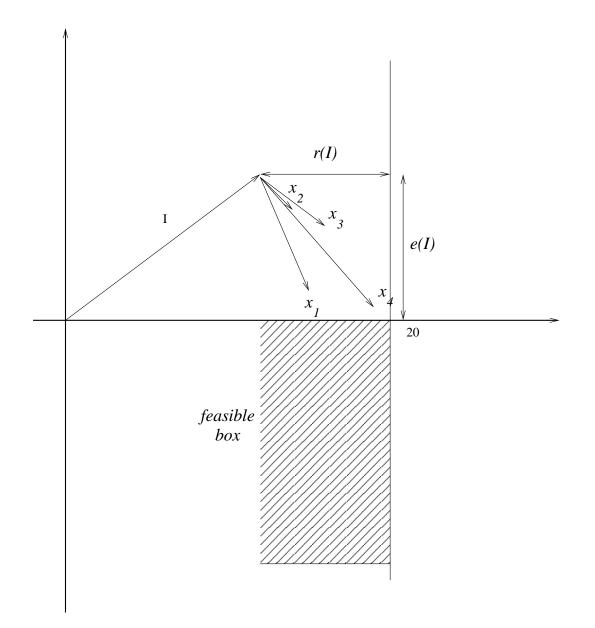
Example (continued): $P_I = \{(1, 1, 0, 0), (1, 0, 1, 0)\}.$ Minimal coverings of P_I : $\{1\}, \{2, 3\}.$

$$x_5 - x_1 \le 0$$

 $x_5 - x_2 - x_3 \le 0$

Why *incomplete sets*?

- Start with an infeasible set. Which conditions to complete it into a feasible set?



The strength of an incomplete set inequality

$$\sum_{i \in I} x_i - \sum_{i \in I^C} x_i \le |I| - 1$$

Question: Suppose we have the full convex hull description of both single knapsacks, is the inequality still useful?

Relevant problem:

$$z^{s} = \max \sum_{i \in I} x_{i} - \sum_{i \in I^{C}} x_{i}$$

s.t. $x \in \operatorname{conv}(X_{1}) \cap \operatorname{conv}(X_{2}).$

Definition 2 The strength $s(I, I^C) = z^s - (|I| - 1)$.

Remarks:

- $0 \leq s(I, I^C) \leq 1$
- If inequality valid for X_1 or X_2 , $s(I, I^C) = 0$.

Definition 3 Let $F \subseteq N_- \setminus (I \cup I^C)$ such that $I \cup F \in X_2 \setminus X_1$.

Theorem 4 If

(i) $I \cup F$ is a minimal cover for X_1

(ii) there exists $G \subset F$ and $i_0 \in I$ such that $b(i_0) + b(G) \ge b(I \cup F) - b_0$,

then $s(I, I^C) \ge \frac{|G|}{|G|+1}$.

Example:

$X_1 = \{x \in \{0, 1\}^5 : 3x_1 + 2x_2 + 4x_3 + 7x_4 + 12x_5 \le 20\}$		
$X_2 = \{x \in \{0, 1\}^5 : -7x_1 - 2x_2 - 3x_3 - 8x_4 + 9x_5 \le 0\}.$		
$I = \{5\}$ $x_5 - x_1 \le 0$ and $x_5 - x_2 - x_3 \le 0$		
	$x_5 - x_1 \le 0$	$x_5 - x_2 - x_3 \le 0$
F	$\{2, 4\}$	$\{1, 4\}$
$a(I\cup F)$	21	22
$b(I \cup F) - b_0$	-1	-6
Minimal Cover?	yes	yes
G	$\{2, 4\}$	$\{1, 4\}$
$b(i_0) + b(G)$	9 - 10 = -1	9 - 15 = -6
G /(G +1)	2/3	2/3
$s(x_5-x_1\leq 0)\geq \frac{2}{3}, \qquad s(x_5-x_2-x_3\leq 0)\geq \frac{2}{3}.$		

Some additional remarks about the strength

- In practice, $s(I, I^C) \ge 1/2$ often.
- Shows the use of considering several constraints at a time.
- A more general theorem to compute the strength is available.

The mixed Case

The models:

$$X_{1} = \{(x, s, t) \in \{0, 1\}^{n} \times \mathbb{R}^{2}_{+} : \sum_{i=1}^{n} a_{i}x_{i} \leq a_{0} + s\},\$$
$$X_{2} = \{(x, s, t) \in \{0, 1\}^{n} \times \mathbb{R}^{2}_{+} : \sum_{i=1}^{n} b_{i}x_{i} \leq b_{0} + t\},\$$
$$X = \{(x, s, t) \in \{0, 1\}^{n} \times \mathbb{R}^{2}_{+} : (x, s, t) \in X_{1} \cap X_{2}\}.$$

The method:

- $Fix \ s = t = 0$, obtain X_1^r, X_2^r, X^r .
- Generate an incomplete set inequality for X^r .
- Lift simultaneously the variables s and t in the inequality.

Possible to use in an arbitrary tableau

$$\begin{array}{rcl} x_{B1} & & +\bar{a}_{11}x_{N1} & +\cdots + & \bar{a}_{1k}x_{Nk} & +\bar{f}_{11}s_1 & +\cdots + & \bar{f}_{1l}s_l & = & \bar{b}_1 \\ & & \ddots & & \vdots & & \vdots & & \vdots \\ & & & x_{Bl} & +\bar{a}_{l1}x_{N1} & +\cdots + & \bar{a}_{lk}x_{Nk} & +\bar{f}_{l1}s_1 & +\cdots + & \bar{f}_{ll}s_l & = & \bar{b}_l \end{array}$$
In each row *i*: relax s_j if $\bar{f}_{ij} > 0$ and aggregate

$$t_i = \sum_{j: \bar{f}_{ij} < 0} \bar{f}_{ij} s_j.$$

Choose two rows and generate a lifted incomplete set inequality.

Conclusion

- Useful but hard to compute inequalities. \rightarrow Need of good heuristics to find them.
- Very general use possible in a simplex tableau.
- Mixed case to be studied more deeply.
 - \rightarrow approximate lifting, lift the variables in a different order.
- Extension to several constraints.