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Relaxation of MIP

Simplex Tableau

Columns Corresponding to Columns Corresponding to
Basic Variable rhs Integer Non-Basic Variable Continuous Non-Basic Variable
xB1

= f1 + r1,1x1 · · ·+ r1,k xk + r1,k+1sk+1 · · ·+ r1,nsn

.

.

.
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. . .
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.

.

.
xBm = fm + rm,1x1 · · ·+ rm,k xk + rm,k+1sk+1 · · ·+ rm,nsn
sBm+1

= fm+1 + rm+1,1x1 · · ·+ rm+1,k xk + rm+1,k+1sk+1 · · ·+ rm+1,nsn

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.
sBp = fp + rp,1x1 · · ·+ rp,k xk + rp,k+1sk+1 · · ·+ rpnsn

1 xB1
, ..., xBm ∈ Z+

2 sBm+1
, ..., sBp ∈ R+

3 x1, ..., xk ∈ Z+

4 sk+1, ..., sn ∈ R+

Solution is ‘fractional’, i.e. f1, ..., fm are not all integer.
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Relaxation of MIP

Relaxation Step 1 : Drop Some Constraints

Columns Corresponding to Columns Corresponding to
Basic Variable rhs Integer Non-Basic Variable Continuous Non-Basic Variable
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Relaxation of MIP

Relaxation of Simplex Tableau

Columns Corresponding to Columns Corres ponding to
Basic Variable rhs Integer Non-Basic Variable Continuous Non-Basic Variable
xB1

= f1 + r1,1x1 · · ·+ r1,k xk + r1,k+1sk+1 · · ·+ r1,nsn
xB2

= f2 + r2,1x1 · · ·+ r2,k xk + r2,k+1sk+1 · · ·+ r2,nsn

1 xB1
, xB2

∈ Z+

2 x1, ..., xk ∈ Z+

3 sk+1, ..., sn ∈ R+

(f1, f2) /∈ Z2.
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Relaxation of MIP

Relaxation Step 2 : Drop Integrality Requirement

Columns Corresponding to Columns Corresponding to
Basic Variable rhs Integer Non-Basic Variable Continuous Non-Basic Variable
xB1

= f1 + r1,1x1 · · ·+ r1,k xk + r1,k+1sk+1 · · ·+ r1,nsn
xB2

= f2 + r2,1x1 · · ·+ r2,k xk + r2,k+1sk+1 · · ·+ r2,nsn

1 xB1
, xB2

∈ Z+

2 x1, ..., xk ∈ Z+
Relaxation
→ x1, ..., xk ∈ R+

3 sk+1, ..., sn ∈ R+

(f1, f2) /∈ Z2.
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Relaxation of MIP

Relaxation Step 2 : Drop Integrality Requirement

Columns Corresponding to
Basic Variable rhs Continous Variables
xB1

= f1 + r1,1s1 · · ·+ r1,k sk + r1,k+1sk+1 · · ·+ r1,nsn
xB2

= f2 + r2,1s1 · · ·+ r2,k sk + r2,k+1sk+1 · · ·+ r2,nsn

1 xB1
, xB2

∈ Z+

2 s1, ..., sk , sk+1, ..., sn ∈ R+

(f1, f2) /∈ Z2.
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Continuous Group Relaxation

Continuous Group Relaxation

Basic Variable rhs Columns With Continous Variables
xB1

= f1 + r1,1s1 · · ·+ r1,k sk + r1,k+1sk+1 · · ·+ r1,nsn
xB2

= f2 + r2,1s1 · · ·+ r2,k sk + r2,k+1sk+1 · · ·+ r2,nsn

1 xB1
, xB2

∈ Z+
Relaxation
→ xB1

, xB2
∈ Z

2 s1, ..., sk , sk+1, ..., sn ∈ R+

(f1, f2) /∈ Z2.

The valid inequalities for the above are valid for the original MIp

Model studied in Andersen, Louveaux, Weismantel, Wolsey, IPCO2007 (for the finite case),
Cornuéjols and Margot, 2009.

Related to Group Relaxation of Gomory and Johnson (1972), Johnson (1974).
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The 2 row-model

The model x = f + Rs

„
x1

x2

«
=

„
f1

f2

«
+

kX
j=1

„
r j

1

r j
2

«
sj , x1, x2 ∈ Z, sj ∈ R+
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Sparsity of the cuts

The initial model

„
x1

x2

«
=

„
f1

f2

«
+

kX
j=1

„
r j

1

r j
2

«
sj ,

x1, x2 ∈ Z, sj ∈ R+

Most variables get a nonzero coeff in the cut !
At most one direction gets a 0 coefficient
(⇒ Split).

1r

r

r

r

2

3

4

5

f

x 1

x
2

r

The cuts generated from the plain model are not sparse.
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Selecting the two rows (I)

A way to select the two rows is to create cuts as sparse as possible.

x1 + ā11s1 + · · ·+ ā1ksk = b̄1

. . .
...

. . .
...

xm+ām1s1 + · · ·+āmksk = b̄m

Out of k nonbasic variables, one can choose a priori m − p columns (of rank m − p)
to be set to 0

We must consider the lattice

L = {u ∈ Zm |ā11u1 + · · ·+ ām1um = 0

...

ā1,m−pu1 + · · ·+ ām,m−pum = 0 }

and obtain p rows that have m − p additional zeros.

Minor detail : we must do the computation in rationals
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Selecting the two rows (I)
A way to compute a solution to the system is to find a short vector in the lattice.
We use the method of Aardal, Hurkens, Lenstra by computing an LLL reduced basis
of the lattice 0BBBBBBBB@

1
. . .

1
Mā11 · · · Mām1

...
...

Mā1,m−p · · · Mām,m−p

1CCCCCCCCA
Short vectors of this lattice have 0’s in the last m − p entries and therefore provide
an element of the lattice L.
We can include more columns (if not all) and let LLL find the k variables set to 0.0BBBBBBBB@

1
. . .

1
Mā11 · · · Mām1

...
...

Mā1,k · · · Mām,k

1CCCCCCCCA
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The separation problem for the 2-row model

In the following, we fix the model from which we want to generate a cutting plane.

PI =

(
x1, x2 ∈ Z, s ∈ Rk

+

˛̨̨̨
˛
„

x1

x2

«
=

„
f1

f2

«
+

kX
j=1

„
r j

1

r j
2

«
sj

)
.

Given a point (x̂ , ŝ) ∈ R2 × Rk , we want to

either state that (x̂ , ŝ) ∈ conv(PI )

or find the valid inequality for conv(PI ) that is most violated by (x̂ , ŝ).
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The polar system for the 2-row model

The polar of a polyhedron

Let P ⊆ Rn be a polyhedron and Q ⊆ Rn its polar.
There is a correspondence between

Extreme point x ∈ P and Facet of Q of the type xTa ≥ 1
Extreme ray x ∈ P and Facet of Q of the type xTa ≥ 0

Facet of P of the type aT x ≥ 1 and Extreme point a ∈ Q
Facet of P of the type aT x ≥ 0 and Extreme ray a ∈ Q
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The polar system for the 2-row model

1r

r

r

r

2

3

4

5

f

x 1

x
2

r

What are extreme points of conv(PI ) ?

x = f + RS

They correspond to points (x , s) ∈ Z2×Rk
+

such that support(s) ≤ 2.
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The polar system for the 2-row model
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The polar system for the 2-row model
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The polar system for the 2-row model
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Complexity of writing the polar

For each cone, compute the integer hull.

For each integer point in each integer hull, compute the representation in the given
cone and generate one inequality for the polar

Quadratic complexity in the number of rays for the number of cones

Polynomial number of integer vertices in each cone (but may be large if the numbers
involved are large)

The rays must be available in rationals

The complexity is still too large for a cut generating LP.
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Reducing the complexity of the number of cones to consider

Ordering the cones

Let C be the set of cones f + cone{r i , r j}. In 2D, we can order the cones by

considering only the cones that have no proper subcones.

ordering the rays anti-clockwise (for example) r 1, . . . , r k .
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Reducing the complexity of the number of cones to consider

Theorem

For each i , j , let Xi,j be the set of vertices of conv((f + cone(r i , r j) ∩ Z2).
Consider the polar

Q = {α ∈ Rk
+ | ∀i , j , ∀x ∈ Xi,j s.t. x = f + si r

i + sj r
j , si , sj ≥ 0

siαi + sjαj ≥ 1 }

Consider the set

Q̄ = {α ∈ Rk
+ | ∀i , ∀x ∈ Xi,i+1 s.t. x = f + si r

i + si+1r
i+1, si , si+1 ≥ 0

siαi + si+1αi+1 ≥ 1

∀i s.t. r i = λr i−1 + µr i+1, λ, µ ≥ 0

αi ≤ λαi−1 + µαi+1 }

An optimal solution to
min cTα
s.t. α ∈ Q̄

is an optimal solution to
min cTα
s.t. α ∈ Q
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Reducing the number of integer points to generate

A facet of the 2-row problem is tight at at most four integer points.
Is it necessary to generate all vertices of all cones ?

Sketch of the algorithm

Generate a few trivial integer points
I All four rounded values of f
I One potential integer point on each ray f + λr i

I For each integer point, determine the cone in which it lies and write the corresponding
constraint

Determine an optimal solution α of this incomplete polar

Check geometrically whether α is valid

If yes, done !

If not, determine an integer point that violates α
Determine the corresponding cone, generate the corresponding inequality in the
polar and start again.
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How to check the validity of an inequality ?
Tight integer points : It could be that the inequality is tight at more than four
integer points
⇒ there must be an integer point in the interior
If the inequality is tight at three integer points
there could be an integer point in the interior of the convex hull of the three integer
points.
→ easily checked through the determinant of the underlying triangle
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Quentin Louveaux (University of Liège - Montefiore Institute) Separation for the two-row problem July 2010 21 / 26



How to check the validity of an inequality ?
Tight integer points : It could be that the inequality is tight at more than four
integer points
⇒ there must be an integer point in the interior
If the inequality is tight at three integer points
there could be an integer point in the interior of the convex hull of the three integer
points.
→ easily checked through the determinant of the underlying triangle

x 1

x
2
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How to check the validity of an inequality ?

Assume that the underlying triangle or quadrilateral is unimodular.
There could still be some integer point in the interior of the inequality.

Lemma

If the underlying triangle is unimodular, there are only three points to be checked to
ensure validity.
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Summary of the algorithm

(1) In the polar, generate an inequality for each initial integer point considered

(2) Generate an inequality αi ≤ λαi−1 + µαi+1 for each ray

(3) Solve the incomplete polar

(4) Search for the tight integer points x1, . . . , xn

(5) Check whether conv{x1, . . . , xn} contains other integer points

(6) Check whether α is valid
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Preliminary computational results

Name Gap closed (%) Time (s) N cuts N iter
10teams 28.57 153.11 18 18
bell3a 64.15 1.62 24 34
bell5 73.16 1.08 39 79
blend2 18.34 0.73 2 4
dcmulti 55.67 31.51 33 34
egout 24.35 0.04 25 25
fiber 0.59 0.04 9 11
fixnet6 7.71 9.86 11 13
gen 14.83 0.61 33 38
gesa2 30.44 0.32 47 47
gesa3 24.9 0.03 14 15
gt2 14.05 0.17 44 52
harp2 3.66 0.75 10 13
khb05250 88.53 0.89 46 51
lseu 39.15 1.12 42 49
markshare1 0 107.61 130 145
misc07 0.6 701.67 20 33

Selection of the rows (II) : heurisitic that considers sparsity and avoiding numerically
instable cuts.
Remark : 98% of the time is spent in solving the rational LP (the polar)
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Using LLL to generate pairs of sparse rows

Name Initial heur. Using LLL
N cuts Gap cl. N cuts Gap cl.

bell3a 24 64.15 12 70.74
bell5 39 73.16 32 48.49
egout 25 24.35 72 96.15
lseu 42 39.15 20 45.47

In general, the cuts are numerically more stable.
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Conclusions and future work

Conclusions

It is extremely fast to separate once the model is fixed

The gap closed by the 2-row model is not negligible but most of it is achieved by
split cuts (i.e. 1-row cuts). There is a need to strenghten the cuts (with lifting for
example).

There should be more in the n-row models but the row selection is hard.

Future work

Extension to m rows, m ≥ 3
I Consider the cones that have no proper subcones
I No ordering of the cones, complexity is not reduced
I Checking validity or finding a violated point is trickier

Go beyond the Kelley scheme

Choice of the basis and of the rows should be included in a type of CGLP

Avoid rational computation
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