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Abstract

This document describes an algorithm for the shape coding of objects. A region is approx-
imated by an increasing family of subsets included in the region. Each approximation is
obtained by adding a subset to the previous approximation. The shape description results
in a list of (z,y, B) where (z,y) are the locations in the plane and B is the subset. For
coding purposes, we transform this description in order to take advantage of the progressive
filling of the plane. An efficiency comparison between our shape description and a classical
run-length contour coding is also provided.

1 Introduction

1.1 A complete object coding scheme

Many techniques based ~a information theory have been developed for the coding of pictures.
The most efficient ones use a D.C.T. or a subband transform. As an alternative to these
techniques, Kunt [3] has introduced the idea of describing a picture in terms of objects. Each
object is characterized by its borders (contours) and its aspect (texture); these entities seem
to be more natural in that they coincide with psychological concepts of vision.

The first need in an object coding approach consists in detecting the objects contained in
the picture. This operation is called segmentation. Figure 1 is the block diagram of a
complete object oriented coding scheme. After the segmentation step, contours and textures
are coded, transmitted and decoded in the receiver.

Finding a good code for contours and textures is difficult because interactions exist between
these two entities. In fact, they are not totally independent. We propose to solve the question
in injecting the contour information during the coding and the decoding of textures, hoping
to suppress redundancy in this way. As a result, the receiver has to process the decoded
contour information for interpreting the texture code correctly.

1.2 Our concern: the coding and the decoding of contours

This document is devoted to the coding and the decoding of contours.
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1gure 1: Block diagram of a complete object oriented coding scheme

A precise shape description deserves many applications; it is used in pattern recognition,
motion compensation, computer graphics, picture coding, image understanding, etc. As a
matter of fact, literature covers a plethora of shape descriptions.

The class of methods following the contour points are very popular. Pitas [4] called this cat-
egory of shape descriptions “the external representation category”. The principal drawback
is the inherent difficulty to introduce scale parameters because the data are one-dimensional.
There exists also a second class of contour representations: the “internal shape representa-
tion”. This time all the efforts are concentrated on coding the surface of each region, whose
borders form the contours.

Pitas described a morphological surface representation with a unique geometrical shape of
different sizes. Ronse and Macq [5] extended this idea in allowing geometrical overlapping
over regions already coded. In this way, a choice is made between regions so to code the
easiest region at every moment. Unfortunately, the lack in experiments does not permit to
conclude about the efficiency.

Our method completes this last research. We describe a global strategy for the coding of
contours. Section 2 is devoted to the description of the coding algorithm. Section 3 compares
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our method to a classical run-length technique in a simple case.

2 B.asic ideas

This first requirement for a consistent coding description is the synthesis of a region rep-
resentation. All the computer transformations are done on this representation; it acts as a
complete shape description and should include the significant details. The representation is
directly followed by a reconstruction operation, which combines the information contained
in the representation to reconstruct the region in its original context. Finally, the recon-
struction leads to an approzimation.

Mathematically speaking, if we write X for a region, the representation is a concept p(X)
which is not necessary in the same domain as X. The reconstruction 7(X) has p(X) as input
and the result is an image in the domain of X. This is very similar to applying a direct and
an inverse transform, because this case is a particular region description. The approximation
7(X) results form the cascading of p and 7: m(X) = 7.p(X). For example, let X be a square
of size c, whose location is (a,b) in the plane. A possible representation regroups the four
corner positions p(X) = {(a,b), (a+¢,b),(a,b+c),(a+c,b+c)}. The reconstruction interpret
this data in order to obtain the original square. The primal representation could be more
synthesized. It is easily replaced by p(X) = {[(a,b),c]} containing the upper left position
and the square size. We proceed in a similar way, beginning with a simple and naive object
representation, and transform it gradually into a more synthesized representation.

o Morphological representation of a unique region
The underlying idea in the construction of a shape description is straightforward: the
region is covered with a predefined finite family of templates in an optimal sense. Con-
sidering the region as a set of points, we use the theory of mathematical morphology
(see [2] for an introduction) to complete the modelization. In mathematical morphol-
ogy, a set called structuring element is translated through the plane and its interactions
with the region under study serves the result.

Without entering the difficult language of mathematical morphology, let us consider a
family B of m subsets: B = {B(1), B(2), ..., B(m)}. The representation we are looking
for is formed by B(j) subsets translated through the plane by p -this set is noted
B,(j)-, and included in the region X to represent; the subsets may overlap each other
but may not be included in another one. In conclusion, the representation p(X) of a
unique region is composed of positions and indications concerning the attached subsets.
For example, p(X) = {[5,(a,b)] | 1 < j <m,(a,b) is in the plane and Blay(j) €
X}. The corresponding approximation 7(X) is {Bag)(i) | ([, (a, )] € p(X )}. The
reconstruction can be made perfect if the subset family contains the single pixel subset.

o Representation of several regions
The procedure for X is used for the representation of n regions X1, Xz, ..., Xy, region
after region. In order to compress the representation, we permit the overlap of regions
previously coded. The receiver is able to decode the shape information and to detect
the overlap because there is an order in the representation.



The above exposed developments constitute the basis for the construction of an interesting
shape description. However for efficiency, we need to transform the representation and to
enrich its content. This is done by an ordering of regions to be coded, a position entropy
reduction and a graph model for the regions. We discuss these three points now.

o Performance criteria
During the representation construction process, the subset we add to the previous
approximation is the one which has the most border points in common with the region
border not already considered in the representation.

The task is more difficult for ordering the regions. In a sense, the better region requires
the lower number of subsets. Certainly this implies that small regions are preferred
to large regions. However in practical situations, it is often indicated to transmit
large regions first, from coarse to fine. Moreover the coding of a large region reduces
significantly the further possible positions for subset translations and, the more the
uncertainty decreases, the more the code is compact.

The performance criteria giving the best results in our experiments is a contour point
to number of subset used ratio. In this way, a choice is possible between small and
large regions.

o Progressive filling of the plane and associated position entropy reduction
As we remark previously, during the representation construction, the insertion of a
triplet [j,(a, b)] in the representation reduces the number of positions for further sub-
set translations. For example, if Y is the region already represented and B(j) is a
structuring element, then all the translations Bas)(j) that give Bag)(j) C Y are
irrelevant.

In order to exploit the progressive filling of the plane, the possible positions associated
with a given structuring element are transformed in a linear equivalent, starting the
counting form left to right and from top to bottom. Furthermore, for each region we
regroup the linear positions depending of a same structuring element. The resulting
representation looks like {[B(1), k1, ks, ...],[B(2), k1, b3, ...],...}. The position entropy
reduction is maximum if the linear positions are such that k, precedes k, when u < v.

o Graph model for regions
The objects of a picture have a spatial organization based on a neighbourhood relation-
ship. The representation conserves this organization. A simple mathematical model,
a graph in fact, renders perfectly the spatial arrangement.

The spatial arrangement is represented by means of a graph, where the vertices denote
the region; two vertices are joined by an edge if the region are neighbours in the picture.

The graph is adapted during the construction of the representation: when a region is
coded, the edges ending at the corresponding vertex are suppressed in the graph model.
The interesting point to exploit is the creation of subgraphs or isolated regions. The
consideration lying behind is that borders are shared by two regions. Both regions
are able to code the commom border points. This is why 1solated vertices or, more
generally, subgraphs appear in the model. As a consequence, the subgraphs are treated
separately and this contributes to reduce the number of possible positions for the
structuring elements to smaller spatial zones of the picture.
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In conclusion, the graph model translates the spatial organization of regions in an
useful form, leading to a substantial win when subgraphs appear. In counterpart, we
need some bits, only a small amount, to indicate if each subgraph is composed of
different regions or if it is a single region.

3 Result

The coding algorithm was computed for the simple picture drown in figure 2 (128x128 pixels).
The seven structuring elements used are squares of size 32, 16, 8, 4,2, 1 and a rhombus of

diagonal length equal to 7.
We limit ourselves to an entropy estimation, where probabilities are estimated by means of

experimental frequencies.
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Figure 2: A simple set of shapes for testing the shape representation.

The total cost regroups the entropic costs of the structuring elements and the linear positions,
plus the information for the graph model of regions. The result is 0.107 bit per pixel. For
comparison, contours coded with a run-length technique —~we used Eden’s method (1], 1.e.
1.5 bit for each border point plus starting points— lead to a total cost of 0.113 bit per pixel.
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4 Conclusion

In this document, we develop a complete shape coding technique. The representation is a
collection of subsets contained in the different regions. We added the possibility of overlap
over regions already coded, a transformation in a linear equivalent for all the positions and
a graph model of the regions for efficiency. In a simple case, the result is comparable to a
classical run-length technique. For complicated pictures, this is actually not the case.
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