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Abstract Due to its ability to account for discontinuities,
the discontinuous Galerkin (DG) method presents two main
advantages for modeling crack initiations and propagation.
On the one hand, it provides an easy way to insert the co-
hesive elements during the simulation and therefore avoids
the drawbacks inherent to the use of an extrinsic cohesive
law. On the other hand, the capture of complex crack path
requires very thin meshes and the recourse to a parallel im-
plementation of DG formulations exhibits a high scalability
of the resolution scheme.

Recently, the authors developed such a DG-fracture frame-
work for Kirchhoff-Love shells in the linear and non-linear
ranges. They proved that this framework dissipates, during
the fracture process, an amount of energy equal to the frac-
ture energy of the material and that the model is able to prop-
agate the crack with the right speed.

In this paper, novel numerical benchmarks are presented
to validate the method in various fracture conditions. The
two first ones include an initial notch and study the fracture
propagation under two different dynamic loadings (impact
and blast). The two other ones focus on the fragmentation
of initially unbroken specimens due to uniform expansion
in order to demonstrate the ability of the new framework to
model crack initiations. Results are in all cases in agreement
with the ones reported in the literature.

G. Becker
University of Liège, CM3
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Tel.: +32-4-3669552
Fax: +32-4-3669217
E-mail: gauthier.becker@ulg.ac.be

L. Noels
University of Liège, CM3
Chemin des Chevreuils 1, 4000 Liège, Belgium
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1 Introduction

In the past decades, numerical techniques were developed to
predict tearing of thin structures. One of them is the com-
bination of the cohesive approach with the finite element
method. As a cohesive law, also called “Traction Separation
Law” (TSL), models the separation work between the crack
lips, cohesive elements can suitably be inserted between two
finite elements to integrate the cohesive law and to model
crack initiations or propagation between them. Such a cohe-
sive model was pioneered by Hillerborg et al (1976).

Different TSL were proposed in the literature. In order
to study the debonding of a spherical inclusion in a ductile
matrix, Needleman (1987) suggested having recourse to a
polynomial potential law, as depicted on Figure 1(a). As this
law only allowed for normal opening, an extension of the
polynomial potential cohesive model was supplied by Tver-
gaard (1990) who suggested considering a uni-dimensional
effective opening to model mixed mode fractures. Then as
the experiments show a universal exponential shape between
the binding energy and the atomistic separation, Needleman
(1990a,b) adapted the model and used the exponential cohe-
sive law depicted on Figure 1(b). To account for the depen-
dency of fracture toughness with the plasticity, Tvergaard
and Hutchinson (1992) developed a trapezoidal cohesive law
restricted to mode I , see Figure 1(c), and Tvergaard and
Hutchinson (1993) extended this model to mixed mode frac-
tures. The dwell region introduced in this law is supposed to
model the plastic work of the fracture process. In their study
they varied the length of the plateau and demonstrated the
little effect of the shape of the cohesive law on the results,
except for the initial slope, which influence is discussed be-
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(a) Polynomial (Needleman,
1987).

(b) Exponential (Needleman,
1990a).

(c) Trapezoidal (Tvergaard and
Hutchinson, 1992; Scheider and
Brocks, 2003).

Fig. 1 Different (intrinsic) cohesive laws.

low. Scheider and Brocks (2003) modified this law by insert-
ing quadratic and cubic functions in place of linear branches
to remove the slope discontinuity at the extremities of the
dwell region, see Figure 1(c). With this modified model they
successfully simulated the cup cone fracture of a uni-axial
tension test in a 2-D axisymmetric setting. However, the na-
ture of ductile fracture cannot be modeled by this cohesive
law. Indeed, ductile fracture involves nucleation, growth and
coalescence of micro-cavities which cannot be resolved by
a cohesive law with constant fracture parameters. To solve
this issue Tvergaard and Hutchinson (1996) modified their
model and consider a σc depending on the plastic strain rate.
More discussions on how to account for ductility will be
given in the Section 4 of this work.

A major problem with the use of cohesive elements is
their insertion, which presents some issues. Indeed, if it is
performed at the beginning of the simulation, the cohesive
law is called intrinsic, and has to model the continuous part
of the deformation (Needleman, 1987; Tvergaard, 1990; Tver-
gaard and Hutchinson, 1993). If this insertion is not limited
to pre-defined crack-path, this cannot be realized in a consis-

tent way and leads therefore to inaccurate results as shown
by Xu and Needleman (1994). On the contrary, the insertion
during the simulation, as proposed by Camacho and Ortiz
(1996); Ortiz et al (2000), allows using an extrinsic cohe-
sive law but requires mesh modifications. In fact, to insert
the cohesive elements the nodes have to be duplicated lead-
ing to a very complex implementation, especially in the case
of a parallel computation (Pandolfi et al, 2000; Mota et al,
2008). Note that such extrinsic approaches have been devel-
oped for shells by Cirak et al (2005).

One method (among others) that can be used to solve
these issues is the combination between the discontinuous
Galerkin formulation and the extrinsic cohesive law as it has
been suggested by Mergheim et al (2004) and demonstrated
by Radovitzky et al (2011); Prechtel et al (2011). The dis-
continuous Galerkin method allows modeling (weakly) the
continuum part of the deformation in a consistent way with
discontinuous elements. At onset of fracture, this disconti-
nuity can be exploited to insert a cohesive element with-
out mesh modification. Becker and Noels (2011); Becker
et al (2011) have extended this combination to thin struc-
tures (discretized with beam, plate or shell elements) un-
der the assumption of linear elasticity and more recently for
elasto-plastic finite deformations (Becker and Noels, 2012).
Note that the use of the DG method has an extra advantage
for thin body formulations. Indeed, for shells the continuity
of displacement derivatives has also to be ensured. One pop-
ular method to enforce this requirement is to insert rotational
degrees of freedom. But with the DG method this can be
(weakly) achieved through the use of interface terms lead-
ing to a one field (displacement) formulation and thus re-
ducing the computational time. This weak enforcement has
been previously developed by Engel et al (2002); Hansbo
and Larson (2002); Wells and Dung (2007) for linear plates,
by Noels and Radovitzky (2008) for linear shells, by Dung
and Wells (2008) for geometrically non-linear shells and by
Noels (2009) for shells under finite deformation gradients.
Error analyzes have also been carried out for general linear
bi-harmonic equations by Süli and Mozolevski (2007).

One apparent limit of the methods based on the cohesive
element concept is that cracks can only follow a path aligned
with the mesh. However Zhou and Molinari (2004a) studied
the mesh dependency and concluded that a few randomness
in the mesh size and orientation allows significantly reduc-
ing the mesh dependency while Papoulia et al (2006) re-
ported the convergence for a pin-wheel based mesh. On top
of the convergence of the crack path and crack growth rate,
Molinari et al (2007) studied the convergence of the dis-
sipated energy with respect to the mesh size. For meshes
with elements of various sizes, a monotonic convergence
was achieved for ultra thin meshes.

The XFEM approach is another popular method used
in fracture mechanics. It circumvents the requirement of a
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crack to follow the mesh as it allows modeling a crack inside
an element. Nevertheless, the DG/ECL framework seems
more suitable than the XFEM to investigate large problems
or/and problems involving fragmentation as structures sub-
jected to shock, blast... Indeed, the DG/ECL framework can
be easily implemented in parallel as the discontinuous na-
ture of the mesh allows its easy partitioning. Besides, to the
authors’ knowledge only a few 2D fragmentation cases are
reported in the XFEM literature, and the cohesive approach
is more developed in the fragmentation field. Recently the
DG/ECL approach has been used to study fragmentation
with 3D elements (Radovitzky et al, 2011; Levy, 2010; Levy
et al, 2012).

In this paper, in order to demonstrate its efficiency, the
DG/ECL framework for shells is applied to study two differ-
ent fracture processes. On the one hand, the dynamic crack
propagation following impact or blast loading is analyzed
in an elastic plate and in an elasto-plastic notched cylinder.
In the first example, previously studied by Zavattieri (2006),
the impact is simulated by a contact between the plate and
a rigid cylinder. The second benchmark was recently pre-
sented by Larsson et al (2011) who studied the problem of
the blasted-cylinder with the XFEM method and provided
experimental data. It is shown that the literature data and
the results obtained with the DG/ECL method for shells are
in good agreement. On the other hand, the fragmentation
process in an initially un-cracked specimen is studied with
the aim to demonstrate the ability of the presented frame-
work to model multiple crack initiations. This is achieved
by considering the fragmentation of a plate ring under cen-
trifugal forces presented in the literature by Zhou and Moli-
nari (2004a). Furthermore, the expansion of a thin sphere
reported in the literature by Levy (2010) is also simulated
with the DG/ECL framework using shell elements in place
of 3D elements (Zhou and Molinari, 2004a; Levy, 2010;
Levy et al, 2012). In this paper it is shown that similar re-
sults are found for thin enough bodies. The results obtained
for the different applications, elastic or elasto-plastic behav-
iors, crack propagation or fragmentation dynamics, are in
good agreement with the numerical/experimental results of
the literature. However, while the published results were re-
lying on different methods (XFEM, embedded discontinu-
ities, cohesive elements ...) in the different references, the
presented simulations are conducted with a single computa-
tional method, which does not require modifications for the
different studied problems. This demonstrates the versatility
of the approach. Also, all these simulations are conducted
in a scalable parallel environment, which was straightfor-
wardly implemented in an existing finite-element code. This
is another advantage of the framework.

The paper is organized as follows. The mechanics of thin
bodies is summarized in Section 2. Afterward, the main con-
cepts of the DG formulation of thin bodies are briefly dis-

cussed in Section 3. In particular this section demonstrates
that the linearization of the general non-linear DG formula-
tion presented by Becker and Noels (2012) leads to the linear
formulation developed by Becker et al (2011). Then, Section
4 presents the combined DG/cohesive model specific to thin
bodies developed recently by Becker et al (2011); Becker
and Noels (2012) for linear and non-linear shells, respec-
tively. Finally, Section 5 presents some numerical bench-
marks for crack propagation and for fragmentation prob-
lems, for linear and non-linear material behaviors. Numeri-
cal results are compared to the ones found in the literature
and are shown to be in good agreement.

2 Mechanics of Kirchhoff-Love shells

The continuum mechanics of thin bodies is largely discussed
in the literature e.g. (Simo and Fox, 1989; Simo et al, 1989,
1990a,b; Simo and Kennedy, 1992; Cirak et al, 2000; Cirak
and Ortiz, 2001; Noels and Radovitzky, 2008; Noels, 2009;
Becker et al, 2011; Becker and Noels, 2012). Therefore this
section regroups only the key concepts of this formulation
that are used to obtain the full-discontinuous Galerkin dis-
cretization presented in Section 3. In particular, the three last
references mentioned display the equations with exactly the
same notations that those used herein.

2.1 Notations

Hereinafter, a subscript will be used to refer to values for-
mulated in the considered basis, while a superscript will be
used to refer to values expressed in the conjugate basis. Ro-
man letters as a subscript or superscript substitute for inte-
gers between one and three, while Greek letters substitute
for integers one or two. In this paper, the subscript 0 is used
to refer to the reference configuration.

Furthermore, the jump J•K and mean 〈•〉 operators are
respectively defined by,

J•K = •+−•− , and 〈•〉=
1
2
(
•+ +•−

)
. (1)

2.2 Kinematics of thin bodies

The kinematics of thin bodies, as represented on Figure 2,
can be described by considering its mid-surface section as a
Cosserat plane A and a third coordinate, representing the
thickness, which belongs to the interval [hmin; hmax]. The
thickness h = hmax − hmin of the thin body is assumed to
remain small compared to the characteristic lengths in the
other directions. In the reference frame EEEI , this representa-
tion is written,

ξξξ =
3

∑
I=1

ξ
IEEEI : A × [hmin; hmax]→ R3 . (2)
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Fig. 2 Description of the different configurations of the shell.

Using ϕϕϕ
(
ξ 1, ξ 2

)
: A →R3 the mapping of the mid-surface

and ttt : A → S2 =
{

ttt ∈ R3|‖ttt‖=1
}

the director of the mid-
surface, with S2 the unit sphere manifold, a configuration
S of the shell is represented by the manifold of position xxx,
which is obtained by the mapping ΦΦΦ : A × [hmin; hmax] →
S ,

xxx = ΦΦΦ
(
ξ

I)= ϕϕϕ (ξ α)+ξ
3
λhttt (ξ α) , (3)

where λh is the thickness stretch of the shell. By conven-
tion, S refers to the current configuration of the shell, while
the reference configuration S0 is obtained by the mapping
ΦΦΦ0 = ϕϕϕ0 (ξ α) + ξ 3ttt0 (ξ α). During the shell deformation,
the director of the mid-surface ttt can be decomposed into the
reference director ttt0 and its variation ∆∆∆ ttt = ttt− ttt0. Moreover,
under Kirchhoff-Love assumption one has

ttt =
ϕϕϕ ,1∧ϕϕϕ ,2∥∥ϕϕϕ ,1∧ϕϕϕ ,2

∥∥ , (4)

The two-point deformation gradient between both con-
figurations can be formulated

F = ϕϕϕ ,α ⊗gggα
0 +ξ

3
λhttt ,α ⊗gggα

0 +λhttt⊗ggg3
0 , (5)

where,

gggα =
∂ΦΦΦ

∂ξ α
= ϕϕϕ ,α +ξ

3
λhttt ,α , and ggg3 =

∂ΦΦΦ

∂ξ 3 = λhttt . (6)

In these relations, the gradient of the variation of thickness,
coming from the term ξ 3tttλh,α has been neglected. Indeed,
this gradient of thickness deformation would correspond to
a shearing, and can therefore be omitted, since this omission
introduces an error of the same order as the Kirchhoff-Love
assumption.

Finally, if j = det(∇ΦΦΦ), and j0 = det(∇ΦΦΦ0), the Jaco-
bian of the deformation gradient reads

J = det(F) =
j
j0

, (7)

with its value in the mid-surface

J̄ =
j̄
j̄0

. (8)

2.3 Governing equations of shells

The governing equations of a thin body are obtained by inte-
grating on the thickness the equations of force and moment
equilibrium, leading to

ρϕ̈ϕϕ− 1
j̄
( j̄nnnα),α = 0 on A , and (9)

1
j̄
( j̄m̃mmα),α − lll +λ ttt = 0 on A , (10)

where λ is an undefined pressure, ρ = hρ is the density by
unit of surface, h the thickness and where the Jacobian of the
mid-surface is j̄ = λh

∥∥ϕϕϕ ,1∧ϕϕϕ ,2
∥∥. Furthermore, the integra-

tion on the thickness of the Cauchy stress tensor σσσ (Simo
and Fox, 1989; Simo et al, 1989) leads to the definition of

nnnα =
1
j̄

∫ hmax0

hmin0

τττgggα det(∇∇∇ΦΦΦ0)dξ
3 , (11)

mmmα =
λh

j̄
ttt ∧
∫ hmax0

hmin0

ξ
3
τττgggα det(∇∇∇ΦΦΦ0)dξ

3 = λhttt ∧ m̃mmα , (12)

lll =
1
j̄

∫ hmax0

hmin0

τττggg3det(∇∇∇ΦΦΦ0)dξ
3 , (13)

respectively the resultant stress vector, the resultant torque
vector and the resultant across-the-thickness stress vector
written in term of the Kirchhoff stress tensor τττ = Jσσσ . Note
that in equations (9) and (10) the inertial angular forces are
neglected1 and the external forces are omitted for concise-
ness.

In order to define the stress components, the resultant
stress vectors are decomposed in the convected basis, as

nnnα = nαβ
ϕϕϕ ,β +qα

λhttt =
(

ñαβ +λ
β

µ m̃αµ

)
ϕϕϕβ +λhqα ttt ,

(14)

m̃mmα = m̃αβ
ϕϕϕ ,β + m̃3α

λhttt , and (15)

lll = lα
ϕϕϕ ,α + l3

λhttt =
(
l̃α +λ

α
µ m̃3µ

)
ϕϕϕ ,α + l3

λhttt . (16)

In these expressions, ñαβ is the resultant membrane stress,
m̃αβ is the resultant stress couple, lα is the resultant out-
of-plane stress, m̃α3 is the resultant out-of-plane stress cou-
ple and λ

β

µ = λhtttµ ·ϕϕϕ ,β characterizes the curvature of the
shell. Due to the symmetry of the Cauchy stress tensor and
as λh,α is neglected, one has qα = lα − λ α

µ m̃3µ = l̃α , see
Noels (2009) for details. Also, l̃α ' lα , as m̃3µ vanishes for
thin plates.

Under the Kirchhoff-Love shell assumption, l̃α can be
neglected, but it is kept temporarily in the equations in order
to develop the full-DG formulation. Indeed, as the compo-
nents nnnα and m̃mmα of the shell equations do not consider ex-
plicitly the normal displacement2, equation (16) will allow

1 The inertial angular forces can be neglected if the thickness is suf-
ficiently thin, which is usually the case for thin body formulations.

2 The normal displacement appears only in m̃mmα via its first deriva-
tive.
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ensuring that the continuity of the normal deflection across
interfaces is weakly satisfied.

This set of governing equations is accompanied by con-
ventional boundary conditions applied on the boundary ∂A
of the mid-surface A , see Noels and Radovitzky (2008) for
details.

2.4 Constitutive behavior

The previous set of equations is completed by a constitutive
relation linking the deformations to the stresses. Herein, de-
pending on the application, two different material laws are
considered. On the one hand the well known Hooke’s law
is used to investigate benchmarks under linear small strains
assumption and on the other hand, a J2-flow hyperelastic-
based law is used for benchmarks exhibiting large deforma-
tions and plasticity.

2.4.1 Hooke’s law

The Hooke’s law assumes a linear elastic response between
the deformation and stress tensors. Furthermore, this law
considers a small displacement field, which leads to,

ϕϕϕh = ϕϕϕ0 +uuuh and (17)

ttt(uuu) = ttt0 + εαβ3

[
ϕϕϕ0,α ∧uuuβ

j̄0
+ ttt0uuu,α ·

ttt0∧ϕϕϕ0,β

j̄0

]
. (18)

The last relation is a first order approximation of the unit
vector, under Kirchhoff-Love assumption, where the symbol
εαβ3 is the Levi-Civita permutation tensor. Such an approxi-
mation can be used as the second and higher order terms are
negligible in the linear range.

For thin bodies the law can be written in plane-stress
state by prescribing the value of ε33 in the convected basis
(in place of an iterative procedure on the integration points
of the thickness, see Section 2.4.2),

ε33 = − ν

1−ν
ϕϕϕ

,α
0 ·ϕϕϕ ,β

0

(
1
2

ϕϕϕ ,γ ·ϕϕϕ ,δ −
1
2

ϕϕϕ0,γ ·ϕϕϕ0,δ

)
. (19)

Since integrated stresses have been decomposed into mem-
brane, shearing and bending stresses acting on the mid-surface
convected basis, following Simo and Fox (1989), the defor-
mations are also separated into membrane ε , shearing δ and
torque ρ strain components,

εαβ =
1
2

ϕϕϕ ,α ·ϕϕϕ ,β −
1
2

ϕϕϕ0,α ·ϕϕϕ0,β

=
1
2

ϕϕϕ0,α ·uuu,β +
1
2

uuu,α ·ϕϕϕ0,β , (20)

δα =
uuu,α · ttt0 +∆ ttt ·ϕϕϕ0,α

2
= 0 , and (21)

ραβ = ϕϕϕ ,α · ttt ,β −ϕϕϕ0,α · ttt0,β

= ϕϕϕ0,αβ · ttt0
eµη3

j̄0
uuu,µ ·

(
ϕϕϕ0,η ∧ ttt0

)
+

eµη3

j̄0
uuu,µ ·

(
ϕϕϕ0,αβ ∧ϕϕϕ0,η

)
−uuu,αβ · ttt0 . (22)

The elastic constitutive relations between the effective (lin-
earized) stresses and strains read, (Simo and Fox, 1989)

ñαβ = E(hmax−hmin)
1−ν2 H αβγδ εγδ = H αβγδ

n εγδ , (23)

m̃αβ = E(hmax−hmin)3

12(1−ν2) H αβγδ ργδ = H αβγδ
m ργδ , and (24)

l̃α = G(hmax−hmin) A′
A H αβ γβ = H αβ

s γβ , (25)

where E is the Young modulus, ν is the Poisson’s ration, G
is the shear modulus, γ = 2δ and where

H αβγδ = νϕϕϕ
,α
0 ·ϕϕϕ ,β

0 ϕϕϕ
,γ
0 ·ϕϕϕ

,δ
0 +

1
2

(1−ν)[
ϕϕϕ

,α
0 ·ϕϕϕ ,γ

0 ϕϕϕ
,δ
0 ·ϕϕϕ

,β
0 +ϕϕϕ

,α
0 ·ϕϕϕ ,δ

0 ϕϕϕ
,γ
0 ·ϕϕϕ

,β
0

]
, (26)

H αβ = ϕϕϕ
,α
0 ·ϕϕϕ ,β

0 . (27)

In these last expressions ϕϕϕ
,α
0 denotes, with an abuse of no-

tation, the conjugate basis to ϕϕϕ0,α .

2.4.2 J2-flow hyperelastic-based law

The plastic behavior of the material is taken into account by
the J2-flow theory with an isotropic linear hardening. The
model is based on an hyperelastic formulation, which im-
plies the assumption of a multiplicative decomposition of
the finite deformation gradient F into an elastic part Fe and
a plastic part Fp. Thus, the stress tensor derives from an elas-
tic potential W , which, in the bi-logarithmic form, reads

W (Ce) =
K
2

logJ2 +
G
4

[logCe]dev : [logCe]dev , (28)

with K and G respectively the bulk and shear moduli. As
W should only depend on the elastic deformations, the elas-
tic right Cauchy strain tensor, defined by Ce = (Fe)T Fe, is
considered in (28). Using these definitions the first Piola-
Kirchhoff stress tensor follows from

P = 2F ·
[
(Fp)−1 ∂W (Ce)

∂Ce (Fp)−T
]

. (29)

Then, the incremental theory can be used to determine the
stresses at stage n + 1 from the known values at stage n as
it is described in Cuitino and Ortiz (1992); Deiterding et al
(2006).

Finally, the determination of the thickness stretch λh, re-
quired to evaluate the deformation gradient (5) has to be
specified. The thickness is discretized with 11 integration
points following a Simpson integration rule. Then, the lo-
cal value λ

p
h is determined at each point, using Newton-

Raphson iterations, to satisfy locally the plane stress require-
ment τ33 = 0. To achieve this, the Kirchhoff stress tensor
τττ = PFT is expressed in the convected basis thanks to

τ
i j = τi jgggi⊗ggg j , (30)

which can be used to compute Eqs. (11 - 13). Finally, the
global thickness stretch λh is then determined from the Simp-
son integration on the 11 local values λ

p
h .
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3 Discontinuous Galerkin formulation

The system of Eqs. (9-10) can be solved using the finite el-
ement method. This weak form of the system considers a
discretization of A into elements Ae. Furthermore, instead
of seeking the exact solution ϕϕϕ , a polynomial approximation
ϕϕϕh constitutes the solution of the finite element problem. In
continuous Galerkin formulation, this approximation is con-
tinuous from one element to its neighbors ensuring in this
way the continuity of the solution. Moreover, for thin bod-
ies, the continuity of the first derivative of ϕϕϕ has also to be
verified. However, the traditional Lagrangian interpolation
does not satisfy this C1 requirement, but C1 continuity can
be ensured weakly within a discontinuous Galerkin frame-
work. This weak enforcement leads to a one-field (displace-
ment) formulation (Engel et al, 2002; Hansbo and Larson,
2002; Wells and Dung, 2007; Noels and Radovitzky, 2008;
Dung and Wells, 2008; Noels, 2009). Recently, with the aim
of taking into account initiations and propagation of frac-
ture, this formulation was extended to discontinuous polyno-
mial approximations for linear beams by Becker and Noels
(2011), linear shells by Becker and Noels (2011) and non-
linear shells by Becker and Noels (2012). This paper sum-
marizes these developments for non-linear and linear shells.
In particular, the weak form is first obtained for the non-
linear case and it is shown that its linearization results in the
linear formulation presented by Becker et al (2011).

3.1 Weak form of the non-linear problem

Let us consider a discretization of A into finite elements
Ae. The discontinuous Galerkin framework is based on find-
ing an approximation ϕϕϕh of the exact solution ϕϕϕ , which be-

longs in the manifold Uh =
{

ϕϕϕh ∈ L2 (A )
∣∣
ϕϕϕh∈Pk(Ae)

}
⊂

∏e H2 (Ae), where k ≥ 2 is the degree of the polynomial
approximation in a finite element.

Due to the discontinuities arising from the definition of
Uh, discontinuous Galerkin methods usually introduce three
interfaces terms

1. The consistency term results directly from the discon-
tinuous approximation of the solution having jumps be-
tween two elements.

2. The symmetrization term is introduced to ensure a sym-
metric formulation (in the linear range).

3. The stability term is introduced to ensure compatibility
and stability as it is well known that for elliptic prob-
lems a discontinuous Galerkin formulation leads to in-
stabilities. As for the symmetrization term, the introduc-
tion of this term does not modify the consistency of the
method. The stability term depends on a stability param-
eter which is independent of the mesh size and of the
material properties.

Fig. 3 Local basis vector on an interface element tangential to the
shell. The interface is drawn with dotted line. By convention, for the
interface element, ϕϕϕ ,1 is parallel and ϕϕϕ ,2 is normal to the interface.

− +

?

-
ϕϕϕ ,2

ϕϕϕ ,1

These 3 terms can be developed to ensure weakly the C1

continuity for a non-linear finite element discretization of
shells, as presented by Noels (2009)

as
mI1(ϕϕϕh,δϕϕϕ) =

∫
s
〈 j̄λhm̃mmα〉 · Jδ tttKν

−
α d∂Ae, , (31)

as
mI2(ϕϕϕh,δϕϕϕ) =

∫
s
JtttK ·

〈
j̄λhm̃mmα ·ϕϕϕ ,β δϕϕϕ ,β + j̄0H αβγδ

m(
δϕϕϕ ,γ · ttt ,δ +ϕϕϕ ,γ ·δ ttt ,δ

)
ϕϕϕ ,β

〉
ν
−
α d∂Ae ,

(32)

as
mI3(ϕϕϕh,δϕϕϕ) =

∫
s
Jttt (ϕϕϕh)K ·ϕϕϕ ,β〈
β1H

αβγδ
m j̄0
hs

〉
Jδ tttK ·ϕϕϕ ,γ ν

−
α ν

−
δ

d∂Ae ,

(33)

which are respectively the consistency (31), symmetrization
(32), and stability (33) terms. In the last equation, β1 is the
dimensionless stability parameter, hs is the characteristic size
of the element, Hm is the linearized bending stiffness de-
fined in Eq. (24).

In Eqs. (31 - 33), the solution is independent of the choice
of the minus and plus element due to the combination of the
jump with the outward unit normal of the minus element ν−,
which can be computed by,

ν
−
α = ϕϕϕ ,2 ·ϕϕϕ ,α , (34)

where by choice ϕϕϕ ,2 is the normal of the interface element,
as illustrated on Figure 3.

It has to be mentioned that, even in the non-linear range,
linear expressions are used for the symmetrization (32) and
stability (33) terms. Indeed, these terms are introduced to en-
sure continuity and stability of the solution and any expres-
sions can be used as long as the consistency is not modified.
The use of linearized expressions allows, on the one hand,
reducing the computational cost and on the other hand pre-
venting a lack of stability for some materials. Indeed, if the
stability term would depend on the tangent moduli in place
of the Young modulus, it could vanish for a perfectly plastic
constitutive behavior.
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In order to enforce weakly the C0 continuity in the con-
text of the full-discontinuous Galerkin framework, additional
interface terms are introduced in the non-linear case follow-
ing exactly the same argumentation developed by Becker
and Noels (2012), yielding

as
nI1(ϕϕϕh,δϕϕϕ) =

∫
s
〈 j̄nnnα〉 · JδϕϕϕKν

−
α d∂Ae , (35)

as
nI2(ϕϕϕh,δϕϕϕ) =

∫
s
JϕϕϕhK · 〈δ ( j̄nnnα)〉ν

−
α d∂Ae , (36)

as
nI3(ϕϕϕh,δϕϕϕ) =

∫
s
JϕϕϕhK ·ϕϕϕ ,γ ν

−
δ

〈
β2H

αβγδ
n j̄0
hs

〉
JδϕϕϕK ·ϕϕϕβ ν

−
α d∂Ae , and (37)

as
sI3(ϕϕϕh,δϕϕϕ) =

∫
s
JϕϕϕhK · tttν−β

〈
β3H

αβ
q j̄0

hs

〉
JδϕϕϕK · tttν−α d∂Ae , (38)

respectively the consistency membrane (35), the symmetriza-
tion membrane (36), the stability membrane (37) and the
stability shearing (38) terms. In these equations β2 and β3
are dimensionless stability parameters and Hn and Hq are
respectively the linearized membrane and shearing stiffness
defined in Eqs. (23) and (25).

The 3 first terms (35-37) ensure a consistent and stable
continuity in the Cosserat plane of the mid-surface of the
shell. The last one (38) guarantees the continuity of the out-
of-plane displacement. As lengthy described by Becker and
Noels (2011, 2012) this expression is obtained by consider-
ing the shearing components in the development of the equa-
tions. As the Kirchhoff-Love assumption corresponds to ne-
glecting shearing, the related consistency and symmetriza-
tion terms can be neglected in such a way that only the sta-
bility term remains. The linearized expression of δ ( j̄nnnα) in
(36) requires some developments similar to the linearization
of δ ( j̄m̃mmα) performed in (32), which leads to Becker and
Noels (2012),

δ ( j̄nnnα) =
j̄0
2

H αβγδ
n

(
δϕϕϕ ,γ ·ϕϕϕ ,δ +ϕϕϕ ,γ ·δϕϕϕ ,δ

)
ϕϕϕ ,β

+ j̄nnnα ·ϕϕϕ ,β
δϕϕϕ ,β

+
j̄0
λh

λ
β

µ H αµγδ
m

(
δϕϕϕ ,γ · ttt ,δ +ϕϕϕ ,γ ·δ ttt ,δ

)
ϕϕϕ ,β

+ j̄λhm̃αµ

(
δ ttt ,µ ·ϕϕϕ ,β −

λ
ζ

µ

λh
ϕϕϕ

,β ·δϕϕϕ ,ζ

)
ϕϕϕ ,β . (39)

Finally, the continuity of the displacement field is en-
sured weakly by the seven interface terms given by equa-
tions (31-33) and (35-38). These expressions can be used to
write the weak form of the problem, see Becker and Noels

(2012) for more details,

ae
d(ϕϕϕh,δϕϕϕ) = −∑

e
ae

n(ϕϕϕh,δϕϕϕ)−∑
e

ae
m(ϕϕϕh,δϕϕϕ)

−∑
s

as
nI1(ϕϕϕh,δϕϕϕ)−∑

s
as

mI1(ϕϕϕh,δϕϕϕ)

−∑
s

as
nI2(ϕϕϕh,δϕϕϕ)−∑

s
as

mI2(ϕϕϕh,δϕϕϕ)

−∑
s

as
nI3(ϕϕϕh,δϕϕϕ)−∑

s
as

mI3(ϕϕϕh,δϕϕϕ)

+∑
s

as
sI3(ϕϕϕh,δϕϕϕ) , (40)

with the traditional inertial, membrane and bending bulk
components arising from the shell theory,

ae
d(ϕϕϕh,δϕϕϕ) =

∫
Ae

ρ̄ϕ̈ϕϕ ·δϕϕϕdA , (41)

ae
n(ϕϕϕh,δϕϕϕ) =

∫
Ae

j̄nnnα (ϕϕϕh) ·δϕϕϕ ,α dA ,and, (42)

ae
m(ϕϕϕh,δϕϕϕ) =

∫
Ae

j̄m̃mmα (ϕϕϕh) ·δ (λhttt ,α)dA . (43)

3.2 Weak form of the linear problem

The general non linear weak form (40) can be linearized to
obtain the linear full-DG formulation earlier presented by
Becker et al (2011), using:

(i) The small displacement field given by Eqs. (17 - 18).
(ii) The linear expression of the resultant stress membrane

ñαβ and of the resultant stress couple m̃αβ given by Eqs.
(23 - 24).

(iii) A first order approximation (i.e. the second and higher
order terms are neglected).

Therefore the different terms of equation (40) can be
successively linearized as,

ae
ld(ϕϕϕh,δϕϕϕ) =

∫
Ae

ρ üuuh ·δuuudA , (44)

ae
ln(ϕϕϕh,δϕϕϕ) =

∫
Ae

j̄0
1
4

(
ϕϕϕ0,γ ·uuuh,δ +ϕϕϕ0,δ ·uuuh,γ

)
H αβγδ

n

(
ϕϕϕ0,β δuuu,α +ϕϕϕ0,α δuuu,β

)
dA

+
∫

Ae

j̄0
(

uuuh,γ · ttt0,δ +ϕϕϕ0,γ ·∆∆∆ ttt ,δ
)

H αβγδ
m ttt0,β ·δuuu,α dA , (45)

ae
lm(ϕϕϕh,δϕϕϕ) =

∫
Ah

j̄0
(

uuuh,γ · ttt0,δ +ϕϕϕ0,γ ·∆∆∆ ttt ,δ
)

H αβγδ
m ϕϕϕ0,β ·δ∆∆∆ ttt ,α dA , (46)

as
lnI1(ϕϕϕh,δϕϕϕ) =

∫
s

1
2

〈
j̄0H αβγδ

n

(
ϕϕϕ0,γ ·uuuh,δ +ϕϕϕ0,δ ·uuuh,γ

)
+λ

β

µ j̄0H αβγδ
m

(
ϕϕϕ0,γ ·∆ ttt ,δ +uuuh,γ · ttt0,δ

)〉
ϕϕϕ0,β · JδuuuKν

−
α d∂Ae , (47)
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as
lmI1(ϕϕϕh,δϕϕϕ) =

∫
s
Jδ∆∆∆ tttK ·

〈
j̄0H αβγδ

m
(
uuuh,γ · ttt0,δ +

ϕϕϕ0,γ ·∆∆∆ ttt ,δ
)

ϕϕϕ0,β

〉
ν
−
α d∂Ae , (48)

as
lnI2(ϕϕϕh,δϕϕϕ) =

∫
s
JuuuhK ·

〈
j̄0ϕϕϕ0,β

[
1
2
H αβγδ

n(
δuuu,γ ·ϕϕϕ0,δ +ϕϕϕ0,γ ·δuuu,δ

)
+λ

β

µ H αβγδ
m(

δuuu,γ · ttt0,δ +ϕϕϕ0,γ ·δ∆ ttt ,δ
)]〉

ν
−
α d∂Ae ,

(49)

as
lmI2(ϕϕϕh,δϕϕϕ) =

∫
s
J∆∆∆ tttK ·

〈
j̄0ϕϕϕ0,β H αβγδ

m(
δuuu,γ · ttt0,δ +ϕϕϕ0,γ ·δ∆∆∆ ttt ,δ

)〉
ν
−
α d∂Ae ,

(50)

as
lnI3(ϕϕϕh,δϕϕϕ) =

∫
s
JuuuhK ·ϕϕϕ0,γ ν

−
δ

〈
β2H

αβγδ
n j̄0
hs

〉
JδuuuK ·ϕϕϕ0,β ν

−
α d∂Ae , (51)

as
lmI3(ϕϕϕh,δϕϕϕ) =

∫
s
J∆∆∆ tttK ·ϕϕϕ0,β

〈
β1 j̄0H

αβγδ
m

hs

〉
Jδ∆∆∆ tttK ·ϕϕϕ0,γ ν

−
α ν

−
δ

d∂Ae , (52)

as
lsI3(ϕϕϕh,δϕϕϕ) =

∫
s
JuuuhK · ttt0ν

−
β

〈
β3H

αβ
q

hs

〉
JδuuuK · ttt0ν

−
α d∂Ae . (53)

In the stability expressions (51-53), the effect of curvature
λ

β

µ has been neglected without compromising the stability of
the method (Becker et al, 2011). These developments allow
writing Eq. (40) as,

ae
ld(ϕϕϕh,δϕϕϕ) = −∑

e
ae

ln(ϕϕϕh,δϕϕϕ)−∑
e

ae
lm(ϕϕϕh,δϕϕϕ)

−∑
s

as
lnI1(ϕϕϕh,δϕϕϕ)−∑

s
as

lmI1(ϕϕϕh,δϕϕϕ)

−∑
s

as
lnI2(ϕϕϕh,δϕϕϕ)−∑

s
as

lmI2(ϕϕϕh,δϕϕϕ)

−∑
s

as
lnI3(ϕϕϕh,δϕϕϕ)−∑

s
as

lmI3(ϕϕϕh,δϕϕϕ)

+∑
s

as
lsI3(ϕϕϕh,δϕϕϕ) , (54)

which corresponds to the linear full-discontinuous Galerkin
formulation presented in Becker et al (2011). Therefore it is
assumed that the non-linear formulation (40) inherits from
the numerical properties (convergence and stability) of its
linear counterpart. Indeed, Becker et al (2011) demonstrated
the stability and convergence of the linearized equations.
Thus, the stability is ensured if the parameters β1 and β2 are
large enough, if β3 is non-zero. As it is lengthy discussed by
Becker and Noels (2011) for linear beams, in order to reduce

locking and to preserve stability, the optimal value for β3 is

β1×
(

h
Lc

)2
, where h is the shell thickness and where Lc is a

characteristic length depending on the problem. The conver-
gence rate of the method in the energy norm with respect to
the mesh size is proved to be equal to k− 1, with k the de-
gree of the polynomial approximation. Finally, the method
presents an optimal-convergence rate k + 1 in the L2-norm,
which can be demonstrated for at least cubic elements.

4 Fracture model

The main advantage of a discontinuous Galerkin formula-
tion is its ability to be extended to account for fracture me-
chanics. Indeed the presented framework can be coupled
with an extrinsic cohesive law in a consistent and efficient
way as no topological mesh modification is required to prop-
agate a crack. In a recent paper Becker et al (2011) presented
a novel cohesive law dedicated to thin body formulations
that can be coupled to the full-DG framework presented in
Section 3.

The combination between the full-DG formulation and
an extrinsic cohesive law can be realized very easily by in-
troducing the cohesive force in equation (40), leading to

0 = ∑
e

(ae
d(ϕϕϕh,δϕϕϕ)+ae

n(ϕϕϕh,δϕϕϕ)+ae
m(ϕϕϕh,δϕϕϕ))+

∑
s

[(1−αs)(as
nI(ϕϕϕh,δϕϕϕ)+as

mI(ϕϕϕh,δϕϕϕ)−

as
sI(ϕϕϕh,δϕϕϕ))+ αsas

cohesive(JϕϕϕhK ,JδϕϕϕK)
]

, (55)

where as
cohesive(JϕϕϕhK ,JδϕϕϕK) is the contribution of the co-

hesive law that has to be defined, where αs is a Boolean
value equal to 0 before fracture initiation and 1 after, and
where interface terms account for the three contributions
previously defined. The Boolean αs is computed at each
Gauss integration point along the interface in such a way
that the whole interface element is not necessarily broken as
a whole.

A criterion used by Corigliano et al (2008); Molinari
et al (2007); Li and Chandra (2003); Pandolfi and Ortiz (2002);
Papoulia et al (2003); Zavattieri (2004); Zhang et al (2007);
Becker et al (2011); Becker and Noels (2012) to determine
fracture onset, is the criterion of Camacho and Ortiz (1996)
based on the evaluation of an effective stress,

σeff =

{√
σ2 +β−2τ2 if σ ≥ 0

1
β
� |τ|−µ |σ | � if σ < 0 . (56)

In this criterion, σ and τ are respectively the normal and
tangential Cauchy stresses at the integration point where the
fracture criterion is evaluated, β = KIIc

KIc
is the coupling mode

parameter between mode II and mode I toughness, and µ is
the friction parameter, these two last parameters depending
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Fig. 4 Mode I effective opening ∆ ?
n .
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Fig. 5 Mode II effective opening ∆ ?
t .

on the material only. The operator � • � is equal to • if
•≥ 0 and 0 otherwise. This criterion developed for 3D cases
can still be employed for shells by evaluating the effective
stress at the skins of the shell as presented by Becker et al
(2011). In fact, the fracture initiates when σeff = σc at the
shell skin, σc being the material strength.

The determination of as
cohesive(JϕϕϕhK ,JδϕϕϕK) requires more

developments. Indeed the implicit discretization of the thick-
ness inherent to shell formulations is not suitable for crack
propagating along the thickness, especially in bending, which
introduces a compressive stress on a part of the thickness
and a tensile stress on the other part. Indeed, as it is brought
to light by equation (56) the fracture behavior is different
in tension and compression leading to the necessity of mov-
ing the neutral axis during fracture propagation, which is
very difficult to implement. To avoid this drawback, Becker
et al (2011); Becker and Noels (2012) have suggested to ap-
ply the cohesive principle directly on the resultant stresses nnn
(14) and m̃mm (15). Thus, the equations of the cohesive model
used to define as

cohesive(JϕϕϕhK ,JδϕϕϕK) can be summarized as
follow, with the convention depicted on Figure 3 for the ba-
sis vectors definition. It has to be mentioned that the evalu-
ation of the parameters depends on the formulation. On one
hand in the linear case, they are evaluated in the reference
frame ϕϕϕ0,α . On the other hand, for the non linear formula-
tion this evaluation is performed in the current configuration

ϕϕϕ ,α to account for the large deformations before crack ini-
tiations or propagation. Therefore we unify both cases by
using the notation ϕϕϕ(0),α .

First an effective opening, accounting for the normal and
for the tangential jumps is defined. Normal and tangential
openings have a contribution coming from the membrane
mode of the shell, and a contribution coming from the bend-
ing mode:

∆
?
n = (1−ηI)

JuuuK? ·ϕϕϕ(0),2∣∣∣∣∣∣ϕϕϕ(0),2

∣∣∣∣∣∣ ±ηIh
eq
I

J∆ tttK? ·ϕϕϕ(0),2∣∣∣∣∣∣ϕϕϕ(0),2

∣∣∣∣∣∣ , (57)

∆
?
t = (1−ηII)

JuuuK? ·ϕϕϕ(0),1∣∣∣∣∣∣ϕϕϕ(0),1

∣∣∣∣∣∣ ±ηIIh
eq
II

J∆ tttK? ·ϕϕϕ(0),1∣∣∣∣∣∣ϕϕϕ(0),1

∣∣∣∣∣∣ , (58)

∆
? =

√
� ∆ ?

n �2 +β 2∆ ?
t

2 , (59)

heq
I =

∣∣m̃22
0

∣∣
hσI −n22

0
, (60)

heq
II =

∣∣m̃21
0

∣∣
hτII −n21

0
, (61)

ηI = 1−
n22

0
hσI

and, (62)

ηII = 1−
n21

0
hτII

. (63)

(64)

In these expressions ∆ ?
n and ∆ ?

t are respectively the effec-
tive normal and tangential resultant opening displacements,
see Figures 4 and 5 for a physical interpretation. Star terms
JuuuK? and J∆ tttK? are respectively the effective displacement
and rotation openings resulting from the use of a DG method
before fracture activation. Indeed, displacement and rotation
jumps are not exactly equal to 0 at fracture initialization due
to the weak continuity enforcement. Thus in order to guaran-
tee a null opening at fracture initialization these initial jumps
are subtracted from the current displacement and rotational
jumps. The equivalent thicknesses heq

I and heq
II are defined

to account for the contributions of the rotational opening in
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such a way that the correct amount of energy is released
during the crack process. The values of σI and τII are re-
spectively the ones of σ and τ reached in Eq. (56) when
σeff = σc. Finally, ratios ηI and ηII are defined to couple
respectively the efforts in tension n22

0 and in bending m̃22
0 re-

sponsible for the normal opening and the efforts in shearing
n21

0 and torsion m̃21
0 responsible for the tangential opening.

The subscript 0 means that these quantities are evaluated at
fracture initiation.

Fig. 6 Linear monotonically decreasing cohesive law based on re-
duced stresses
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(b) Resultant membrane law

These definitions of the effective openings can now be
used to define the contributions to the cohesive law of the

membrane and bending openings,

as
cohesive(JϕϕϕhK ,JδϕϕϕK) =

∫
s

j̄ 〈nnnα〉coh · JδϕϕϕKν
−
α d∂Ae +

∫
s

j̄ 〈m̃mmα〉coh · Jλhδ tttKν
−
α d∂Ae ,

(65)

for non-linear applications, while in the linear range, this
expression becomes

as
cohesive(JϕϕϕhK ,JδϕϕϕK) =

∫
s

j̄0 〈nnnα〉coh · JδϕϕϕKν
−
α d∂Ae +

∫
s

j̄0 〈m̃mmα〉coh · Jδ∆ tttKν
−
α d∂Ae ,

(66)

The determination of 〈nnnα〉coh and 〈m̃mmα〉coh depends on the
cohesive law. As it is well known that for brittle materials
the shape of the cohesive law has a little influence on numer-
ical results, as long as the law is monotonically decreasing,
a simple linear decreasing law is considered in this work,
in which case one can define the critical opening ∆c = 2Gc

σc
from the fracture energy GC. In case of unloading when ∆ ?

becomes lower than the maximal opening reached ∆ ?
max, the

cohesive forces decrease linearly to zero.
By application of the cohesive principle on the resultant

stress vectors, the cohesive model illustrated on Figure 4 is
defined as follows:

(i) Tensile case (σ ≥ 0 at mid-surface)3,
(i.a) if ∆ ? ≥ ∆ ?

max (loading case),〈
m̃22〉

coh = m̃22
0

(
1− ∆ ?

∆c

)
∆ ?

n

∆ ?
, (67)

〈
n22〉

coh = n22
0

(
1− ∆ ?

∆c

)
∆ ?

n

∆ ?
, (68)

〈
m̃21〉

coh = m̃21
0 β

(
1− ∆ ?

∆c

)
|∆ ?

t |
∆ ?

, (69)

〈
n21〉

coh = n21
0 β

(
1− ∆ ?

∆c

)
|∆ ?

t |
∆ ?

, (70)

(i.b) if ∆ ? < ∆ ?
max (unloading case),〈

m̃22〉
coh = m̃22

0

(
∆ ?

∆ ?
max

− ∆ ?

∆c

)
∆ ?

n

∆ ?
, (71)

〈
n22〉

coh = n22
0

(
∆ ?

∆ ?
max

− ∆ ?

∆c

)
∆ ?

n

∆ ?
, (72)

〈
m̃21〉

coh = m̃21
0 β

(
∆ ?

∆ ?
max

− ∆ ?

∆c

)
|∆ ?

t |
∆ ?

, (73)

〈
n21〉

coh = n21
0 β

(
∆ ?

∆ ?
max

− ∆ ?

∆c

)
|∆ ?

t |
∆ ?

. (74)

(ii) Compression case (σ < 0 at mid-surface),

3 Note that the cohesive zone is in terms of the traction components
nαβ and not ñαβ
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(ii.a) if ∆ ? ≥ ∆ ?
max (loading case),〈

m̃21〉
coh = m̃21

0

(
1− ∆ ?

∆c

)
, (75)

〈
n21〉

coh = n21
0

(
1− ∆ ?

∆c

)
, (76)

(ii.b) if ∆ ? < ∆ ?
max (unloading case),〈

m̃21〉
coh = m̃21

0

(
∆ ?

∆ ?
max

− ∆ ?

∆c

)
, (77)

〈
n21〉

coh = n21
0

(
∆ ?

∆ ?
max

− ∆ ?

∆c

)
, (78)

where in this last case the condition |∆?
t |

∆? = 1
β

(cf. Eq.
(59)) is taken into account.

The use of n22
0 , m̃22

0 , n21
0 , m̃21

0 allows guarantying the con-
tinuity of interface forces at fracture initialization. If this
continuity is not ensured, Papoulia et al (2003) have demon-
strated that there are some convergence problems. Further-
more, as at fracture initialization the ratios ∆?

n
∆? and |∆?

t |
∆? are

undetermined, their initial values are chosen equal to respec-
tively 1 and 1

β
in order to ensure the continuity of efforts.

Note that the choice of the tensile or compressive case is
performed at fracture initialization.

The choice of such a linearly decreasing cohesive law
is motivated by the applications considered in this paper,
which are either with brittle materials or elasto-plastic ma-
terials under the small-scale yielding assumption. However,
when considering ductile fracture, mainly for metals, the
stress triaxiality modifies the critical strains. The stress tri-
axiality is not the only indicator that should be accounted
for, as axisymmetric and shear-dominated stress states imply
different fracture strains as shown by Barsoum and Faleskog
(2007); Gao and Kim (2006); Nahshon and Hutchinson (2008).
Recently, damage models have been developed or improved
to account for these behaviors, see Nahshon and Hutchin-
son (2008); Nielsen and Tvergaard (2009); Scheyvaerts et al
(2011) among others. An advantage of the DG/ECL frame-
work proposed is its ability to integrate damage models at
the interface, and thus to give more physical insight to frac-
ture criterion and to the cohesive law. Another possibility
is to calibrate the cohesive law to account for the partic-
ular plane-stress state. The determination of cohesive en-
ergy associated to plane-stress crack growths in ductile ma-
terials can account for the energy dissipated during neck-
ing, shear localization and slant fracture following the onset
of necking as pointed out by Scheider and Brocks (2006);
Nielsen and Hutchinson (2011). Finally, when considering
shell elements, the implicit representation of the thickness
usually restricts fracture mechanics to through-the-thickness
cracks normal to the mid-surface and limits the 3D effects of
the crack that can be accounted for. Although the cohesive
model presented in this section allows considering partially
fractured thickness, more physical insight could be obtained

Fig. 8 Crack propagation for the 3-point bending plate. Results are in
agreement with Zavattieri (2006).

Table 1 Material properties for the 3-point bending plate.

Property Value

Young modulus [GPa] 200
Poisson ratio [-] 0.3
Density [kg/m3] 7850
Fracture energy [J/m2] 24500
Fracture strength [MPa] 2170
Coupling parameter β [-] 1
Frictional coefficient [-] 0.

by considering locally 3D elements as suggested by Wyart
et al (2007).

5 Applications

The ability of the DG/ECL framework presented in this pa-
per to model different fracture phenomena is demonstrated
in this section through 4 numerical benchmarks. The two
first ones investigate the crack propagation in an elastic plate
and in an elasto-plastic cylinder, both having an initial notch.
The last two examples study the fragmentation of a ring
and of a sphere made of a brittle material using the linear-
elasticity assumption.

5.1 Three-point bending plate

This benchmark focuses on a simply supported notched plate
dynamically impacted in its center by a rigid cylinder of
0.01 [m]-diameter, with a prescribed velocity of 1 [m/s].
The setup of this benchmark, including the dimensions, is
depicted on Figure 8(a) and the material values are reported
in Table 1. The crack propagation was previously reported in
the literature by Zavattieri (2006), who used shell elements
combined with an intrinsic cohesive law for which cohesive
elements are pre-inserted along the crack path. Furthermore
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Fig. 7 Setup of the 3-point bending plate as previously presented by Zavattieri (2006).
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he used a fracture criterion based on a maximal bending mo-
mentum, which is transformed herein to a criterion in σc.
The mesh used, Figure 8(b), has 40 × 80 cubic quadrangle
elements. Finally, although the crack path is well defined
for this case, due to the loading conditions, in our frame-
work crack can propagate along any interface elements. This
shows that the stress wave propagation is not modified by the
DG/ECL framework.

The simulation is performed on 4 CPUs using Hulbert
and Chung (1996) time-integration algorithm, and without
numerical dissipation. The stability parameters chosen ac-
cordingly to Becker et al (2011) are β1 = β2 = 10., β3 =
0.0001. The crack propagation over time is displayed on
Figure 8 which also shows the results obtained by Zavattieri
(2006). The crack propagation initiates at the same time and
the plate is fully broken at the same time too.

5.2 Blasted notched-cylinder

This benchmark focuses on a axially notched cylinder dy-
namically loaded by a blast wave. In particular the speed of
the crack propagation is studied. The use of a linear mate-
rial law leads to a spurious high speed of propagation, as
shown by Larsson et al (2011), see Figure 10(b), and there-
fore the non-linear formulation (40) is used in combination
with a J2-flow material law (Section 2.4.2). The cylinder has
a diameter of 1.2 [m], is 1 [m] long and has a thickness of

Table 2 Material properties for the blasted cylinder.

Properties Values

Young modulus [GPa] 73.1
Poisson ratio [-] 0.33
Density [kg/m3] 2780
Yield stress [MPa] 350
Hardening modulus [MPa] 800
Fracture energy [J/m2] 19000
Nominal fracture strength [MPa] 650
Coupling parameter β [-] 1
Frictional coefficient [-] 0.

1 [mm]. It exhibits an initial crack of 56 [mm] centered on
its height. The material is the Al2024-T3, with the proper-
ties reported in Table 2. In order to avoid unphysical blow
up of elements during crack propagation, the idea suggested
by Zhou and Molinari (2004b), who used statistical distribu-
tions for the fracture strength σc, is considered. This strength
can vary in a range around its nominal value (10% for the
presented application) at each Gauss point of the interface
elements, which is physically justified by the material im-
perfections.

Due to the symmetry and to save computational time,
only the top side of the cylinder is modeled with an unstruc-
tured mesh of 18536 cubic triangles, see Figure 10(c). The
simulation is performed with the Hulbert and Chung (1996)
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Fig. 9 Model and results for the blasted cylinder.

(a) Applied pressure

(b) Crack speed

(c) Cylinder at the end of simulation

explicit time integration scheme including a low numerical
dissipation (spectral radius of 0.9). The blast is simulated
thanks to the curve depicted on Figure 10(a). The speed of
crack propagation is studied on Figure 10(b), which shows
the crack evolution obtained during the experiments, for the
simulations achieved by Larsson et al (2011), and also for
the presented DG/ECL framework. As predict by Larsson et
al. the introduction of plasticity allows obtaining results in
agreement with experiments even if the crack speed at the
beginning seems faster in our model. After a propagation of

0.18[m] the model matches quite well the experimental data,
see Figure 10(c).

5.3 Fragmentation problems

The previously presented results demonstrate the ability of
the full-discontinuous Galerkin / extrinsic cohesive law frame-
work to propagate an initial crack. Hereafter, the authors in-
vestigate the ability of such a model to initiate cracks. An in-
teresting case of multiple crack initiations is the case of frag-
mentation. Recently, several authors developed the frame-
work presented herein for 3D elements (in place of shell el-
ements). On the one hand, Radovitzky et al (2011) studied
the fragmentation of a thick plate due to the impact of a rigid
sphere. On the other hand Levy (2010) applied the same
framework to the uniform expansion of a hollow sphere.
This last case, can be solved with the shell linear formulation
(54) when the thickness is small enough (the thickness of the
sphere is 0.1 [mm] for an external radius of 10 [mm]), which
allows to model the sphere as a thin body. Furthermore, the
literature reports other fragmentation studies as, among oth-
ers, the one presented by Zhou and Molinari (2004a). In this
reference the fragmentation of a plate ring under radial uni-
form expansion is studied with classical extrinsic cohesive
law for 3D elements. As they used a continuous formulation
only serial computations were performed with a high com-
putational time. The DG/ECL framework presented in this
paper allows using a parallel implementation and leads to a
reduced computational time.

In the following, through the study of two benchmarks,
a successful comparison between the 3D formulations of the
literature and the shell framework presented herein is carried
on.

5.3.1 Defect model: Weibull distribution

The mechanism of fragmentation is mainly controlled by
the distribution of the defects in the specimen. Indeed, for
a specimen made of a perfect material and uniformly loaded
the fracture takes place in each point at the same time. Thus,
the number of fragments obtained by a finite element analy-
sis is equal to the number of elements contained in the mesh.
On the contrary, in a component made of a non perfect ma-
terial the fracture initiations of multiple cracks take place
near the defects, as these are the location of stress concen-
tration in the microstructure. Obviously, fracture occurs ear-
lier at these stress concentrations and forms fragments com-
posed of several elements. The model of these defects is not
straightforward in a finite element analysis as they cannot
be represented by simple parameters. So a statistical distri-
bution of the cohesive strength is commonly used as sug-
gested by Leterrier et al (1997); Zhou and Molinari (2004a);
Dickens and Cho (2005); Levy (2010).
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Although to model the fragmentation, the cohesive model
presented in Section 4 could be used, in this section we con-
sider a more elaborate statistical distribution of the strength
σc to be consistent with the fragmentation data of the litera-
ture. The most employed statistical model for defects distri-
butions, and used hereafter, is based on the work of Weibull
(1939). He performed some experiments which demonstrated
that the tensile loading leading to fracture can vary for spec-
imens of the same material and of the same geometry. Based
on these experiments he suggested an empirical formula for
the probability of fracture, which accounts for the hetero-
geneity of the material,

Pf (σ , V ) = 1− exp−N(σ ,V ) , (79)

where σ is the value of the equivalent stress and where V is
the volume of the specimen. The function N(σ , V ) increases
necessarily monotonically with σ and, therefore, Weibull
(1939) suggested, based on his experimental data, to employ
a power law,

N(σ , V ) =

{
V
V0

(
σ−σmin

σ0

)m
if σ ≥ σmin

0 otherwise
, (80)

where V0 is a arbitrary normalizing volume. Furthermore the
other parameters σ0, σmin and m, representing respectively a
stress scale factor, the minimal value for which the fracture
can occur and the Weibull modulus, are all characteristics of
the material.

The work of Weibull can be applied on the cohesive
strength, which is then computed from

F(σc) = 1− exp−
(

σc−σc,min
σ0

)m

. (81)

In practice it is easier to generate a uniform distribution be-
tween 0 and 1, so a Weibull distribution can be easily ob-
tained from

σcs = σ0 (− log(xrand))
1
m +σc,min , (82)

with σcs the value of the cohesive strength for the interface
s and xrand a random value coming from a uniform distri-
bution between 0 and 1.

5.3.2 Fragmentation of a plate ring

The first example of fragmentation presented herein focuses
on a thin plate ring under radial expansion, as shown on Fig-
ure 10 and with the material properties given in Table 3.
The fragmentation is consequent to a centrifugal force that
is simulated, as suggested by Zhou and Molinari (2004a), by
prescribing on each mass point i a body force computed as,

fi(r) = miw2r , (83)

where mi is the nodal mass, r is the radial vector of node i
and where w is the angular velocity given by,

w =
{ w0t

2πt0
if t ≤ t0

w0
2π

if t > t0
. (84)

Fig. 10 Geometry of the plate ring fragmentation.

Fig. 11 Weibull distributions: the more a material is homogeneous, the
more the Weibull modulus is high and the more the pdf is concentrated
around the peak value.

Table 3 Material properties of the plate ring fragmentation.

Properties Values

Young modulus [GPa] 320
Poisson ratio [-] 0.3
Density [kg/m3] 3300
Fracture energy [J/m2] 200
Minimal fracture strength [MPa] 0
Weibull modulus [-] 5 or 40
Fracture strength scale factor [MPa] 450
Coupling parameter β [-] 1
Frictional coefficient [-] 0.

Values w0 = 60000 [rps] and t0 = 75 [µs] are considered for
the presented simulations.

The ring is meshed with 32380 quadratic triangles to ob-
tain the same number of interfaces than Zhou and Molinari
(2004a). The simulation is performed on 16 CPUs for differ-
ent Weibull moduli (5 and 40) with the explicit Hulbert and
Chung (1996) time-integration algorithm associated to low
numerical dissipation (spectral radius = 0.95). The stability
parameters used are β1 = β2 = 10. In this case, as the out of
plane displacement is prescribed, the value of β3 has no in-
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Fig. 12 Fragmentation process of the plate ring with a Weibull modulus m = 5. Results are in agreement with Zhou and Molinari (2004a)

(a) t=26[µs] (b) t=28[µs]

(c) t=30[µs] (d) t=32[µs]

(e) t=34[µs] (f) t=36[µs]
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Fig. 13 Fragmentation process of the plate ring with a Weibull modulus m = 40. Results are in agreement with Zhou and Molinari (2004a)

(a) t=36[µs] (b) t=38[µs]

(c) t=40[µs] (d) t=42[µs]

(e) t=44[µs] (f) t=46[µs]
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fluence on the results. Two Weibull moduli are successively
considered, which give the strength distributions reported in
Figure 11.

For both Weibull moduli, the fragmentation processes,
displayed in the Figures 12 for m = 5 and 13 for m = 40,
are coherent with the results provided by Zhou and Moli-
nari (2004a). For m = 5, cracks initiate at the inner radius
at approximately 28 [µs] and propagate more or less radi-
ally (with crack branching) toward the outer radius. With a
Weibull modulus of 40, more cracks (i.e. smaller fragments)
are generated and they appear later than for m = 5. This ob-
servation is in agreement with Zhou and Molinari (2004a)
who noticed that as “a high Weibull modulus implies a fairly
homogeneous material, it is not surprising that under suffi-
cient loading conditions, crack initiation occurs at more lo-
cations [...] the ring rotation speed at crack initiation should
be an increasing function of the Weibull modulus”. However
in our simulations, for m = 40 the cracks reach the outer
side after 44 [µs] instead of the 36 [µs] reported by Zhou
and Molinari (2004a).

5.3.3 Fragmentation of a sphere

Table 4 Material properties for the fragmentation of a sphere.

Properties Values

Young modulus [GPa] 370
Poisson ratio [-] 0.22
Density [kg/m3] 3900
Fracture energy [J/m2] 50
Minimal fracture strength [MPa] 264
Weibull modulus [-] 2
Fracture strength scale factor [MPa] 50
Coupling parameter β [-] 1
Frictional coefficient [-] 0.

The second fragmentation test considers the thin sphere
under uniform expansion problem previously analyzed by
Levy (2010) with 3D elements. In this work, this simula-
tion is performed with the linear full-discontinuous Galerkin
Kirchhoff-Love shell formulation presented in the Section
3. The fracture initiation is modeled by cohesive interface
elements as described in Section 4. The cohesive strength
of these elements follows a Weibull distribution, see Sec-
tion 5.3.1. The material parameters of the ceramic sphere
are reported in Table 4. The symmetry of the sphere is taken
into account and only 1/8th of the sphere is meshed with
144,528 quadratic triangles. As the mesh corresponds to the
mid-plane of the sphere, its radius is equal to 9.95 [mm]
for a thickness of 0.1 [mm]. Note that the very thin mesh
used to discretize the sphere leads to consider a problem
with approximately 2.6 million of unknowns. This number

Fig. 14 Final configuration of the fragmentation of a sphere with a
strain rate of 1e4s−1.

of unknowns is larger than the number used by Levy (2010),
which is 818,928 dofs, modeling the sphere with one tetra-
hedral element over the thickness. The ultra fine meshes
was required in our simulation to increase the number of
elements per fragment. Nevertheless, this large number of
degrees of freedom can be treated by the parallel imple-
mentation suggested by Becker and Noels (2012), and an
acceptable computational time is obtained using 32 CPUs.
The stability parameters are set, following Becker and Noels
(2012), to 10, 10 and 0.0001 respectively for β1,β2 and β3.
The uniform expansion of the sphere (centered in (0,0,0))
is simulated by prescribing an initial velocity profile follow-
ing,

vx(x,y,z) = ε̇x , (85)

vy(x,y,z) = ε̇y , and, (86)

vz(x,y,z) = ε̇z , (87)

where ε̇ is the strain rate. Three different strain rates are
successively considered: 1e4, 2e4 and 1e5s−1 and the final
configuration of the sphere is displayed on Figure 14 in the
case of the lowest strain rate (ε̇ = 1e4s−1).

Figure 16(a) represents the time evolutions of the kinetic
and potential energies of the sphere loaded with a strain rate
of 1e5s−1. As an initial velocity is prescribed the kinetic en-
ergy is initially different from zero and decreases with the
increase of the potential energy. This one reaches a peak
value at time tpeak when part of the potential energy is re-
leased during the fracture process which occurs at that time.
Afterward, the kinetic and potential energies stabilize. The
final time of our simulation is chosen as twice the value of
tpeak, which differs for the different strain rates. Figure 16(b)
shows the energy dissipated by the fracture process which
starts to increase when the potential energy begins to de-
crease as expected. Then it remains constant for a short time
before a second increase follows the second peak in the po-
tential energy. At this end of the simulation the dissipated
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Fig. 15 The energy is conserved over time for the fragmentation of a sphere. Illustration with a strain rate of 1e5s−1.

(a) Kinetic and potential energy (b) Fracture energy

(c) Membrane - bending ratio (d) Total energy

energy seems stabilized. Figure 16(c) displays the ratio be-
tween the energy dissipated in the membrane mode and the
energy released in the bending mode. During the first re-
lease of the fracture energy, the major contribution comes
from the membrane mode and the energy dissipated by the
bending mode is anecdotal. However, during the second re-
lease of the fracture energy, a larger bending contribution is
involved, as shown by the decrease of the ratio at that time.
Finally, the Figure 16(d) proves that our method preserves
the energetic balance. Indeed, the variation of the total en-
ergy over the whole simulation is about 0.0001%. This low
dissipation results from the choice of a spectral radius of
0.95 in the Hulbert-Chung algorithm.

Figure 16 represents the mass distribution and the num-
ber of fragments obtained in terms of the loading strain rate
ε̇ . In the presented results, the dust-like fragments (i.e. the
fragments composed of only 1 or 2 elements) are neglected
as suggested by Levy (2010). The pictures show that the re-
sults obtained by the framework presented in this paper are
in agreement with the mass distribution and the number of
fragments predicted by the work of Levy (2010), at the ex-
ception of the largest strain rate for which the shell formu-
lation predicts less fragments. This difference is due to the
small number of elements per fragment obtained with our
mesh. Indeed, the mean value is around 7 elements by frag-
ment, which may cause a mesh dependency. Overall, our
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Fig. 16 Results for the fragmentation of a sphere with different strain
rates. Results obtained with the DG/ECL shell framework are com-
pared to 3D fragmentation results obtained by Levy (2010).

(a) Mass distribution of fragment ε̇ = 1e4

(b) Mass distribution of fragment ε̇ = 2e4

(c) Mass distribution of fragment ε̇ = 1e5

(d) Number of fragments

shell formulation is shown to be an efficient tool to predict
fragmentation of brittle materials.

6 Conclusions

This paper focuses on the applicability of the DG/ECL frame-
work for shells to model various fracture cases. On the one
hand, the recourse to a discontinuous formulation allows in-
serting cohesive elements on the fly during the simulation
without any modification of the mesh, which is an issue with
the continuous approach, and on the other hand, it allows
obtaining an easy parallel implementation of the resolution
scheme. The recourse to a parallel algorithm is mandatory
as the number of degrees of freedoms required to capture
the fracture process is particularly important.

The presented benchmarks involve very different frac-
ture processes: crack propagation and fragmentation. On the
one hand, the ability of the framework to model the crack
propagation under different dynamic loadings (impact and
blast) is demonstrated by comparison with numerical and
experimental results reported in the literature for elastic and
elasto-plastic materials. On the other hand, the fragmenta-
tion due to the expansion of two different linear brittle spec-
imens are studied to prove the ability of the framework to
model multiple crack initiations. Once again the results are
in good agreement with the ones reported in the literature.
Therefore the DG/ECL framework is found to be a versatile
tools, which can be applied for both dynamic crack propa-
gation and fragmentation.
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