University of Liège Aerospace & Mechanical Engineering

A one-field formulation of elasto-plastic shells with fracture applications

BECKER Gauthier & NOELS Ludovic

Computational & Multiscale Mechanics of Materials, ULg
Chemin des Chevreuils 1, B4000 Liège, Belgium

<u>Gauthier.Becker@ulg.ac.be</u>

<u>L.Noels@ulg.ac.be</u>

ESCM 2012 - July 2012

- The fracture process is modeled by cohesive elements to study
 - Dynamic crack propagation
 - Fragmentation

XFEM

Commonly used for crack propagation

Interface elements

Dynamic phenomena (crack propagation due to impact, fragmentation)

- Cohesive zone model is very appealing to model crack initiations in a numerical model
 - Model the separation of crack lips in brittle materials

- The insertion of cohesive elements during the simulation is difficult to implement as it requires topological mesh modifications
 - Extrinsic cohesive approach

- A recourse to an intrinsic cohesive law is generally done with FEM
 - Intrinsic cohesive approach

An intrinsic cohesive law leads to numerical problems [Seagraves et al 2010]

Spurious stress wave propagation

Mesh dependency

Crack propagation rate too high

Use of extrinsic cohesive law is easier when coupled with DG

Plan

- Develop a discontinuous Galerkin method for shells
 - One-field formulation
- Discontinuous Galerkin / Extrinsic Cohesive law framework
 - Develop a suitable cohesive law for thin bodies

- Applications
 - Fragmentation, crack propagation under blast loading

- The stress tensor σ is integrated on the thickness in the convected basis
 - Reduced stresses

FEM (Continuous Galerkin)

Discontinuous Galerkin

Integration by parts of

$$\sum_{e} \left\{ \int_{A_{e}} \left[\left(\bar{j} \boldsymbol{n}^{\alpha} \right)_{,\alpha} \cdot \delta \boldsymbol{\varphi} + \left(\bar{j} \widetilde{\boldsymbol{m}}^{\alpha} \right)_{,\alpha} \cdot \lambda_{h} \delta \boldsymbol{t} \right. \right. \\ \left. - \bar{j} \boldsymbol{l} \cdot \lambda_{h} \delta \boldsymbol{t} \right] dA = 0$$

$$\sum_{e} \int_{A_{e}} [\bar{j} \boldsymbol{n}^{\alpha} \cdot \delta \boldsymbol{\varphi}_{,\alpha} + \bar{j} \widetilde{\boldsymbol{m}}^{\alpha} \cdot \lambda_{h} \delta \boldsymbol{t}_{,\alpha}]$$
$$- (\bar{j} \boldsymbol{l})_{,\alpha} \cdot \int_{\alpha} \lambda_{h} \delta \boldsymbol{t} d\alpha' d\alpha' d\alpha = 0$$

Additional interface terms

$$\sum_{e} \int_{A_{e}} \left[\bar{j} \boldsymbol{n}^{\alpha} \cdot \delta \boldsymbol{\varphi}_{,\alpha} + \bar{j} \widetilde{\boldsymbol{m}}^{\alpha} \cdot \lambda_{h} \delta \boldsymbol{t}_{,\alpha} \right.$$
$$\left. - (\bar{j} \boldsymbol{l})_{,\alpha} \cdot \int_{\alpha} \lambda_{h} \delta \boldsymbol{t} d\alpha' \right] dA$$

$$+ \int_{\partial A_e} \left[\overline{j} \boldsymbol{n}^{\alpha} \cdot \delta \boldsymbol{\varphi} v_{\alpha}^{-} + \overline{j} \widetilde{\boldsymbol{m}}^{\alpha} \cdot \lambda_h \delta \boldsymbol{t} v_{\alpha}^{-} \right]$$

$$+ \overline{j} l \cdot \int_{\alpha} \lambda_h \delta t d\alpha' v_{\alpha}^{-} dA$$

$$= 0$$

• The equation of the full-DG formulation [Becker et al. cmame 2011, Becker et al. ijnme 2012]

$$\sum_{e} \int_{A_{e}} \left[j \mathbf{n}^{\alpha} \cdot \delta \boldsymbol{\varphi}_{,\alpha} + j \widetilde{\boldsymbol{m}}^{\alpha} \cdot \lambda_{h} \delta \boldsymbol{t}_{,\alpha} \right] dA +$$
 FEM (CG) equation
$$\sum_{s} \int_{s} \left[\langle j \mathbf{n}^{\alpha} \rangle \cdot [\![\delta \boldsymbol{\varphi}]\!] + [\![\boldsymbol{\varphi}]\!] \cdot \langle \delta (j \mathbf{n}^{\alpha}) \rangle + [\![\boldsymbol{\varphi}]\!] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta} \left(\frac{\beta_{2} \mathcal{H}_{n}^{\alpha\beta\gamma\delta} j_{0}}{h^{s}} \right) [\![\delta \boldsymbol{\varphi}]\!] \cdot \boldsymbol{\varphi}_{,\beta} \right] v_{\alpha} d\partial A_{e} +$$

$$\sum_{s} \int_{s} \left[\langle j \widetilde{\boldsymbol{m}}^{\alpha} \rangle \cdot [\![\lambda_{h} \delta \boldsymbol{t}]\!] + [\![\boldsymbol{t}]\!] \cdot \langle (j \lambda_{h} \widetilde{\boldsymbol{m}}^{\alpha}) \rangle + [\![\boldsymbol{t}]\!] \cdot \boldsymbol{\varphi}_{,\gamma} v_{\delta} \left(\frac{\beta_{1} \mathcal{H}_{n}^{\alpha\beta\gamma\delta} j_{0}}{h^{s}} \right) [\![\delta \boldsymbol{t}]\!] \cdot \boldsymbol{\varphi}_{,\beta} \right] v_{\alpha} d\partial A_{e} +$$
 Consistency terms
$$\sum_{s} \int_{s} [\![\boldsymbol{\varphi}]\!] \cdot \boldsymbol{t} v_{\beta} \left(\frac{\beta_{3} \mathcal{H}_{s}^{\alpha\beta\gamma\delta} j_{0}}{h^{s}} \right) [\![\delta \boldsymbol{\varphi}]\!] \cdot \boldsymbol{t}$$

$$v_{\alpha} d\partial A_{e} = 0$$
 Stabilization
$$\sum_{s} \int_{s} [\![\boldsymbol{\varphi}]\!] \cdot \boldsymbol{t} v_{\beta} \left(\frac{\beta_{3} \mathcal{H}_{s}^{\alpha\beta\gamma\delta} j_{0}}{h^{s}} \right) [\![\delta \boldsymbol{\varphi}]\!] \cdot \boldsymbol{t}$$

 Application of the DG method gives 2 Bulk, 2 consistency, 2 symmetrization and 3 stabilization terms

terms

- A benchmark to prove the ability of the full-DG formulation to model continuous mechanics
 - J₂-linear hardening (elasto-plastic large deformations)
 - Panel loaded dynamically (explicit Hulbert-Chung scheme)

- A benchmark to prove the ability of the full-DG formulation to model continuous mechanics
 - J₂-linear hardening (elasto-plastic large deformations) panel loaded dynamically (explicit Hulbert-Chung scheme)

The results match experimental data

- Only modes I and II can be modeled by Kirchhoff-Love theory
 - Kirchhoff-Love → out-of-plane shearing is neglected

Model restricted to problems with negligible 3D effects at the crack tip

- Fracture criterion based on an effective stress
 - Camacho & Ortiz Fracture criterion [Camacho et al ijss 1996]

 σ_c , β and μ_c are material parameters

- The cohesive law is formulated in terms of an effective opening
 - Camacho & Ortiz Fracture criterion [Camacho et al ijss1996]

$$\Delta = \sqrt{\llbracket u \rrbracket + \beta^2 \llbracket v \rrbracket}$$

- Through-the-thickness crack propagation with shell elements?
 - No elements on thickness
 - Integrate the 3D TSL on the thickness [Cirak et al cmame2005]

Fracture criterion is met

→ cohesive law

Unreached fracture

→ bulk law

The position of the neutral axis has to be recomputed to propagate the crack

- The cohesive law can be formulated in terms of reduced stresses
 - Same as shell equations

Bulk law Stress tensor σ

$$\boldsymbol{n}^{\alpha} = \frac{1}{\overline{j}} \int_{h_{min}}^{h_{max}} j\boldsymbol{\sigma} \cdot \boldsymbol{g}^{\alpha} d\xi^{3}$$

$$\widetilde{\boldsymbol{m}}^{\alpha} = \frac{1}{\overline{j}} \int_{h_{min}}^{h_{max}} j\xi^{3} \boldsymbol{\sigma} \cdot \boldsymbol{g}^{\alpha} d\xi^{3}$$

Similar concept suggested by Zavattieri [Zavattieri jam2006]

• Define Δ^* and $N(\Delta^*)$, $M(\Delta^*)$ to dissipate an energy equal to $hG_{\mathbb{C}}$ during the fracture process [Becker et al ijnme2012, Becker et al ijf2012]

$$G_N + G_M = hG_C$$

- The law $N(\Delta^*)$ is defined to release an energy hG_C in pure tension
 - Pure mode I

- The law $M(\Delta^*)$ is defined to release an energy hG_C in pure bending
 - Pure mode I

- Using the superposition principle the energy released for any couple N, M is equal to hG_c [Becker et al ijnme2011]
 - Pure mode I

Coupling parameter

$$\eta_I = \frac{\left| 1/h_I^{eq} M_0 \right|}{N_0 + \left| 1/h_I^{eq} M_0 \right|} = \frac{h\sigma_c - N_0}{h\sigma_c}$$

The cohesive model for mode I can be extended to mode II

$$\Delta_{II}^{\star} = (1 - \eta_{II})\Delta_t + \eta_{II}h_{II}^{eq}\Delta_{rt}$$

$$h_{II}^{eq} = \frac{M_0^T}{h\beta\sigma_c - T_0}$$

Coupling parameter

$$\eta_{II} = \frac{\left| 1/h_{II}^{eq} M_0^T \right|}{T_0 + \left| 1/h_{II}^{eq} M_0^T \right|} = \frac{h\beta \sigma_c - T_0}{h\beta \sigma_c}$$

- The transition between uncracked to fully cracked body depends on ΔE_{int}
 - Double clamped elastic beam loaded in a quasi-static way

- The framework can model stable/unstable crack propagation
 - Geometry effect (no pre-strain)

- A benchmark to investigate the fragmentation
 - Elastic plate ring loaded by a centrifugal force

- Fragmentation is studied by the full-DG/ECL framework
 - Results are compared with the literature [Zhou et al ijnme2004]

- Application to the dynamic fragmentation of a sphere
 - Elastic sphere under radial uniform expansion

 The distribution of fragments and the number of fragments are in agreement with the literature [Levy EPFL2010]

Blast of an axially notched elasto-plastic cylinder (large deformations)

- Accounting for plasticity to capture the crack speed
 - Compare with the literature [Larson et al ijnme2011]

556 080 Dofs ±72h on 16 cpus

 Pressure wave passes through an axially notched elasto-plastic pipe (large deformations)

Crack path and speed are well captured by the framework

Conclusions

 Full-DG / ECL framework allows accounting for fracture in dynamic simulations of thin bodies

One-field formulation

Crack propagation as well as fragmentation

Recourse to an elasto-plastic model is mandatory to capture crack speed

Affordable computational time for large models (using // implementation)

Future work

 Model the damage to crack transition by coupling a damage law with the full-DG/ECL framework

 Replace the criterion based on an effective stress by a criterion based on the damage

Define the shape of the cohesive law

Thank you for your attention