Introduction to Mathematical Morphology Overview and trends

M. Van Droogenbroeck

December, 2010

Outline

- Historical notes
- Definitions and geometric interpretation
- Algebraic foundations
- Tools
- Current trends

Historical notes

Matheron and Serra: first work on Mathematical Morphology in 1976.

- Used in the context of stereology
- Two "schools": american and french (prior to 1990)
- Work on fast algorithms (1990)

Major ideas

"Classical" signal processing theory / vector spaces:

- linearity is assumed
- pointwise operators: $f(x) \rightarrow g(x)$

Mathematical morphology:

- models are based on shapes and patterns
- essential objects are sets (not points), operators, graphs, trees

Framework: set theory

Set are denoted by A, B, \ldots and elements by a, b, \ldots

- Equality

$$
X=Y \Leftrightarrow(x \in X \Rightarrow x \in Y \text { and } x \in Y \Rightarrow x \in X) .
$$

- Inclusion

$$
X \subseteq Y \Leftrightarrow(x \in X \Rightarrow x \in Y) .
$$

- Intersection $X \cap Y=\{x$ such that $x \in X$ and $x \in Y\}$.
- Union
$X \cup Y=\{x$ such that $x \in X$ or $x \in Y\}$.

Additional operations

- Complementary $X^{c}=\{x$ such that $x \in \mathscr{E}$ and $x \notin X\}$.

- Symmetric

$$
\check{X}=\{-x \mid x \in X\} .
$$

- Translate

$$
X_{b}=\{z \in \mathscr{E} \mid z=x+b, x \in X\} .
$$

Basic operations on sets

Let \mathscr{E} be a referentiel (for example \mathbb{R}^{n} or \mathbb{Z}^{n}, with $n \geq 1$), a set $X \subseteq \mathscr{E}$ and a vector (or location) $b \in \mathscr{E}$,

Definition
Dilation

$$
X \oplus B=\bigcup_{b \in B} X_{b}=\bigcup_{x \in X} B_{x}=\{x+b \mid x \in X, b \in B\}
$$

Definition
Erosion

$$
X \ominus B=\bigcap_{b \in B} X_{-b}=\left\{p \in \mathscr{E} \mid B_{p} \subseteq X\right\}
$$

Dilation and erosions are dual operators: $X \ominus \check{B}=\left(X^{c} \oplus B\right)^{c}$

Illustrations

Cascading operators

Definition
Opening

$$
\begin{equation*}
X \circ B=(X \ominus B) \oplus B \tag{1}
\end{equation*}
$$

Geometric interpretation:

$$
\begin{equation*}
X=\bigcup\left\{B_{p} \mid B_{p} \subseteq X\right\} \tag{2}
\end{equation*}
$$

Definition
Closing

$$
\begin{equation*}
X \bullet B=(X \oplus B) \ominus B \tag{3}
\end{equation*}
$$

Illustrations

Properties on operators

Increasingness: ordering is preserved:
If $X \subseteq Y$, then $(X \ominus B) \subseteq(Y \ominus B)$ and $(X \oplus B) \subseteq(Y \oplus B)$;
Anti-extensivity / extensivity: shrinking or expanding If the origin belongs to $B(o \in B): X \ominus B \subseteq X$ and $X \subseteq X \oplus B$ Idempotence: more or less the notion of ideal linear filter $(X \circ B) \circ B=(X \circ B)$ and $(X \bullet B) \bullet B=(X \bullet B)$
"Quest" for these properties

Hit or Miss transform

-	900000	-1吅
	Q	
0	g-	- 0
-	O-1-	\square
	gadada	-
Hit	Miss	Hit or Miss pattern

Reconstruction

Take $X \subseteq Y$ (Y is a mask). Repeat the following operation (geodesic dilation):

$$
(X \oplus B) \cap Y
$$

Notes on algebraic properties

- Most properties valid for sets are applicable to other data structures: grayscale images, color images, graphs, trees.
- The order is tricky:
- how do we order RGB values?
- order is not complete, to the contrary of numbers If N, M are numbers, then $N \leq M$ or $N>M$. For two functions f, g : $f(x) \leq g(x)$ or $f(x)>g(x)$ for $x \in D$, a subset of \mathbb{R}^{2}.
- \Rightarrow Algebraic notions of partial order, complete lattices, ...
- There are dual concepts

Functions

Switch from binary sets to functions:

- Replace the union \cup by the supremum \vee
- Likewise, the intersection \cap by the infimum \wedge
- Define the complementary set: $f^{c}(x)=255-f(x)$
- The (horizontal) translate: $f_{b}(x)=f(x-b)$
and there you go:

$$
\varepsilon_{B}(f)=f \ominus B=\bigwedge_{b \in B} f_{-b} \quad \delta_{B}(f)=f \oplus B=\bigvee_{b \in B} f_{b} \quad \gamma_{B}=\delta_{B} \varepsilon_{B} \ldots
$$

Erosion

Opening

Grayscale reconstruction

Example
Original, eroded image and successive geodesic dilations:

$$
\left(\left(\left(\varepsilon_{B}(f) \oplus B\right) \wedge f\right) \oplus B\right) \wedge f \ldots
$$

A note on algorithms

- Large structuring elements.

Size of a structuring element: a set B of size n, denoted $n B$, is usually defined as

$$
\begin{equation*}
n B=\underbrace{B \oplus B \oplus \ldots \oplus B}_{n-1 \text { dilations }} \tag{4}
\end{equation*}
$$

- The definition of an operation usually leads to the worst implementation. Really!
- Useful property (chain rule):
- $X \ominus(n H \oplus m V)=(X \ominus n H) \ominus m V$
- Logarithmic decomposition.

For example, if $\partial(B)$ denotes the border of B,

$$
\begin{equation*}
9 B=B \oplus \partial(B) \oplus \partial(B) \oplus \partial(2 B) \oplus \partial(4 B) \tag{5}
\end{equation*}
$$

Theorem

$$
\begin{equation*}
B \oplus B=B \oplus \partial(B) \tag{6}
\end{equation*}
$$

Algorithms

- There are algorithms that have a computation time that decreases with the size!
- Openings are not always more "expensive" than erosions!

Filters

There are many filters:

- median,
- composition of openings,
- composition of openings and closings,
- area openings,
- openings by attribute,
- etc.

Median

Original image + noise

Butterworth low-pass filter

Opening with a 5×5 square

5×5 median

Supremum of openings

$\gamma_{m H \oplus n v}(f), \gamma_{m H}(f), \gamma_{n V}(f)$ and $\gamma_{m H}(f) \bigvee \gamma_{n V}(f)$

Algebraic filters

Filtres morphologiques
Definition
An algebraic filter is defined as an increasing and idempotent operator:

$$
\psi \text { is an algebraic filter } \Leftrightarrow \forall f, g\left\{\begin{array}{l}
f \leq g \Rightarrow \psi(f) \leq \psi(g) \tag{7}\\
\psi(\psi(f))=\psi(f)
\end{array}\right.
$$

Definition
An algebraic opening is an algebraic filter + anti-extensivity property:

$$
\begin{gather*}
\forall f, g, f \leq g \Rightarrow \psi(f) \leq \psi(g) \tag{8}\\
\forall f, \psi(\psi(f))=\psi(f) \tag{9}\\
\forall f, \psi(f) \leq f \tag{10}
\end{gather*}
$$

Structural theorm

Let ψ_{1} and ψ_{2} be two filters such that $\psi_{1} \geq I \geq \psi_{2}$ (for example, ψ_{1} is a closing and ψ_{2} an opening).
Theorem
[Structural theorem] Let ψ_{1} and ψ_{2} be two filters with $\psi_{1} \geq I \geq \psi_{2}$

$$
\begin{equation*}
\psi_{1} \geq \psi_{1} \psi_{2} \psi_{1} \geq\left(\psi_{2} \psi_{1} \vee \psi_{1} \psi_{2}\right) \geq\left(\psi_{2} \psi_{1} \wedge \psi_{1} \psi_{2}\right) \geq \psi_{2} \psi_{1} \psi_{2} \geq \psi_{2} \tag{11}
\end{equation*}
$$

$\psi_{1} \psi_{2}, \psi_{2} \psi_{1}, \psi_{1} \psi_{2} \psi_{1}, \psi_{2} \psi_{1} \psi_{2}$ are filters
Note that $\psi_{1} \psi_{2}$ and $\psi_{2} \psi_{1}$ are not ordered.

Other filters: alternate sequential filters

Alternate sequential filters
If $\gamma_{i}\left(\phi_{i}\right)$ is an opening (resp. a closing) of size i and I is the identity operator (i.e. $I(f)=f$). Then these filters are all ordered:

$$
\begin{equation*}
\forall i, j \in \mathbb{N}, \quad i \leq j, \quad \gamma_{j} \leq \gamma_{i} \leq I \leq \phi_{i} \leq \phi_{j}, \tag{13}
\end{equation*}
$$

Then we define a series of operators according to:

$$
\begin{aligned}
m_{i}=\gamma_{i} \phi_{i}, & r_{i}=\phi_{i} \gamma_{i} \phi_{i}, \\
n_{i}=\phi_{i} \gamma_{i}, & s_{i}=\gamma_{i} \phi_{i} \gamma_{i} .
\end{aligned}
$$

Definition

[Alternate sequential filters] For any $i \in \mathbb{N}$, the following filters are named alternate sequential filters of size i

$$
\begin{align*}
M_{i}=m_{i} m_{i-1} \ldots m_{2} m_{1} & R_{i}=r_{i} r_{i-1} \ldots r_{2} r_{1} \tag{14}\\
N_{i}=n_{i} n_{i-1} \ldots n_{2} n_{1} & S_{i}=s_{i} s_{i-1} \ldots s_{2} s_{1} \tag{15}
\end{align*}
$$

Alternate sequential filters

(e) Median 5×5

(b) $M_{1}(f)$

(f) $N_{1}(f)$

(c) $M_{2}(f)$

(g) $N_{2}(f)$

(d) $M_{3}(f)$

(h) $N_{3}(f)$

Area opening

Geodesy

Grascale granulometries

Granulometries

Definition
[Pattern Spectrum] $P S(X, B, r)=-\frac{d}{d r} \sharp(X \circ r B)$

Granulometric curve as a tool for classification

Figure 1. Granulometric curve of the soil mixture

Skeleton - medial axis

Distance map

Several definitions of distance (Euclidean distance is most common but not the easiest to compute).
Definition
[Distance map] $\forall x \in X$

$$
D_{X}(x)=\min d\left(x, X^{c}\right)
$$

(a) Binary image of cells.

(c) Distance function modulo 4 .

(b) Rounded Euclidean distance func-

(d) Topographic representation of (b).

Watershed

Watershed

Watershed

What about color images?

Paper: A new approach to morphological color image processing by G. Louverdis, M.I. Vardavoulia, I. Andreadis, Ph. Tsalides, 2002.

Abstract

This paper presents a new approach to the generalization of the concepts of grayscale morphology to color images. A new vector ordering scheme is proposed, infimum and supremum operators are defined, and the fundamental vector morphological operations are extracted....

Topology

Theorem
Jordan. Any simple closed curve (a closed curve that does not self-intersect) divides the plane into two distinct regions which are connected within themselves: one is of finite extent and the other not.
In the discrete case, this property is not true by default.

Connectivity

Levelings \Rightarrow Flaten the image, which changes the connectivity

Trends

- Application to other types of data
- Segmentation
- Better algorithms
- Connectivity
- Use of graphs or trees
- Many applications

For further reading

围 Najman and Talbot（editors）．
Mathematical Morphology．
Wiley， 2010.
围 P．Soille．
Morphological Image Analysis：Principles and Applications． Springer， 1999.
围 H．Heijmans，
Morphological Image Operators．
Academic Press， 1994.

