Estimating pCO₂ from remote sensing in the Belgian Coastal Zone

Alberto V. Borges * Kevin Ruddick ** Jérôme Harlay *

* University of Liège ** Management Unit of the North Sea Mathematical Models

Global CO₂ fluxes (PgC yr⁻¹)

Borges and Abril (2011) In Treatise on Estuarine and Coastal Science

There is a paucity of data on CO₂ fluxes in most coastal environments to :

- adequately describe the spatial and seasonal variations
- capture inter-annual variations
- capture long-term changes

Can be achieved by a combination of :

- sustained observations
- numerical modelling
- interpolation/extrapolation with remote sensing

Air-sea CO₂ flux (F) is computed according to :

 $F = k \alpha (pCO_{2sea} - pCO_{2air})$

where α is the CO₂ solubility coefficient that is mainly a function of SST that can easily be derived from RS

where k is the gas transfer velocity that is parameterized as a function of wind speed that can easily be derived from RS (Quickscat) or from reanalysis products (ECMWF or NCEP)

where pCO_{2air} is the partial pressure of CO_2 in the atmosphere that changes much less than the pCO_{2sea} that can be derived from monitoring stations

where pCO_{2sea} is the partial pressure of CO_2 in the sea that is the tricky bit

Liège Colloquium 8 May 2012 http://www.co2.ulg.ac.be/

Introduction

Seasonal variability of pCO₂ in the Belgian Coastal Zone

Borges et al. (2008) BMC Ecology, 8:15, doi:10.1186/1472-6785-8-15

Introduction

Strong influence by river inputs => strong salinity gradients Strong tidal currents => permanently well mixed

Borges et al. (2008) BMC Ecology, 8:15, doi:10.1186/1472-6785-8-15

Introduction

Seasonal variability of pCO₂ in the Scheldt

Introduction

Seasonal and spatial variability of pCO₂ in the BCZ

Development of RS algorithms :

 $pCO_2 = f(SSS, Chla)$

SSS is essential but cannot be remote sensed at required resolution

• To remove source of variability of SST on solubility, pCO₂ was normalized at a constant temperature : pCO₂@10°C

- SST is not to be an useful variable in the algorithms
- Due to the non-linear nature of relationships we used Multiple Polynomial Regressions (MPR)

Field data

Overview of field data

Field data

Overview of field data

		SSS		Chla (µg L ⁻¹)		pCO ₂ @10°C (ppm)	
2007							
	April	27.2	35.0	0.6	110.3	90	479
	July	28.5	35.0	1.0	10.0	284	479
	September	27.9	34.8	1.3	6.8	303	520
2008	-						
	April	28.0	35.2	1.7	69.6	103	517
	July	28.2	35.1	1.0	7.7	297	468
	September	31.4	34.8	0.2	6.1	284	554
2009	-						
	April	29.0	34.9	0.5	8.6	191	461
	July	24.6	35.0	0.3	15.0	265	400
	September	29.2	35.0	1.0	6.9	298	504

- Chl *a* from MERIS algal2 product
 - MEGS 7.1
 - QCed with Product Confidence Flag
 - Using <u>best image of week</u> during in situ campaigns (April/July/Sept 2007)
- SSS from COHERENS-3D hydrodynamic model
 - Southern North Sea model
 - Operational run for 2007
 - Using <u>average output for week</u> of in situ campaigns (April/July/Sept 2007)

In-situ SSS

In-situ pCO₂

32 h cycle at a fixed station near Zeebrugge (May 1996)

Liège Colloquium

http://www.co2.ulg.ac.be/

8 May 2012

Borges and Frankignoulle (1999) JMS, 19(4): 251-266

• MPR algorithms were developed and tested to derive pCO₂ from SSS and Chla.

SSS was modelled within ± 1 psu

• MERIS Chla reproduces well spatial patterns and seasonal variations, but possible under-estimates values at high values

• First attempt to derive pCO₂ was encouraging in these very challenging Case-II waters.

 Some of the scatter in comparison of SSS and Chl-a could be due to tidal effects