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Rasch modeling and plausible values methodology were used to scale and report the results of the Organiza-
tion for Economic Cooperation and Development’s Programme for International Student Achievement (PISA).

This paper will describe the scaling approach adopted in PISA.  In particular it will focus on the use of 
plausible values, a multiple imputation approach that is now commonly used in large-scale assessment. As with 
all imputation models the plausible values must be generated using models that are consistent with those used in 
subsequent data analysis. In the case of PISA the plausible value generation assumes a flat linear regression with 
all students’ background variables collected through the international student questionnaire included as regres-
sors. Further, like most linear models, homoscedasticity and normality of the conditional variance are assumed.

This paper will explore some of the implications of this approach. First, we will discuss the conditions 
under which the secondary analyses on variables not included in the model for generating the plausible values 
might be biased. 

Secondly, as plausible values were not drawn from a multi-level model, the paper will explore the adequacy 
of the PISA procedures for estimating variance components when the data have a hierarchical structure. 
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Introduction

The Organization for Economic Cooperation 
and Development’s Programme for International 
Student Achievement (PISA) is a survey of the 
Reading, Mathematics and Science proficiencies 
of 15-year-olds who are enrolled in school. PISA 
is an ongoing data collection that will assess 
students every three years. The first PISA data 
collection occurred in 2000 and the second oc-
curred in 2003. The next data collection will occur 
in 2006. The international results of PISA 2000 
and 2003 were published in December 2001 and 
2004 respectively (OECD, 2001; OECD 2004).

To reach satisfactory coverage, many items 
need to be developed and included in the final test. 
At the same time, it is unreasonable and perhaps 
undesirable to assess a sampled student with 
the whole battery, therefore PISA implements a 
rotated test design. For details on the design see 
the initial report (OECD, 2001) and the study’s 
technical report (Adams and Wu, 2002).

The purpose of a study such as PISA is to 
describe the characteristics of populations of 
the 15-year-olds students in school. That is, 
the assignment of valid and reliable scores to 
individuals is not a purpose of PISA. When the 
purpose of assessment is to describe populations 
rather than to measure individuals a number of 
authors (Mislevy, 1991; Adams, Wilson and Wu, 
1992; Wu and Adams 2002), have shown that 
scaling the data with traditional item response 
methods, assigning students scale scores1 and then 
analyzing the estimated scale scores to estimate 
population characteristics does not, in general, 
provide correct results. The alternative, and now 
generally preferred approach in studies such as 
PISA, The Third Intenational Mathematics and 
Science Study (TIMSS; Macaskill, Adams and 
Wu, 1998) and the National Assessment of Edu-
cational Progress (NAEP; Beaton, 1987), is the 
use of Mislevy’s so-called plausible value meth-
odology (Mislevy, 1991; Mislevy et al., 1992).

In this paper we describe the scaling meth-
odology that was applied to PISA 2000. We then 

1   Typically maximum likelihood estimates of latent pro-
ficiencies.

note and discuss two potential weaknesses in the 
methodology. These two weaknesses apply not 
only to the scaling of PISA, but also the scaling 
of TIMSS and NAEP. We then describe a set of 
simulations that were undertaken to examine 
the potential impact of these weaknesses on the 
outcomes of the PISA 2000 scaling.

PISA Scaling Methodology

The PISA data were scaled with the mixed 
coefficients multinomial logit model as described 
by Adams, Wilson and Wang (1997). The scaling 
was implemented using the ConQuest software 
(Wu, Adams and Wilson, 1997).

The model that was applied to the scaling of 
PISA was a generalized form of the Rasch model. 
The model is a mixed coefficients model because 
the items are described by a fixed set of unknown 
parameters x, while the student outcome levels 
(the latent variable), q, is a random effect.

Assume that I items are indexed i = 1,..., I 
with each item admitting Ki + 1 response catego-
ries indexed k = 0,1,..., Ki. Use the vector valued 
random variable, ( )1 2, , ,  ,

i

T

i i i iKX X XX = , where

1 if response to item  is in category
,

0 otherwiseij

i j
X


= 


	(1)

to indicate the Ki + 1 possible responses to item i.
A vector of zeroes denotes a response in 

category zero. This effectively makes the zero 
category a reference category and is necessary 
for model identification. The choice of this as 
the reference category is arbitrary and does not 
affect the generality of the model. We can also 
collect the Xi together into the single vector 

( )1 2, , ,T T T T
IX X X X=  which we call the response 

vector (or pattern). Particular instances of each 
of these random variables are indicated by their 
lower case equivalents; x, xi and xjk.

The items are described through a vector 
xT = (x1,x2,...,xp), of p parameters. Linear combi-
nations of these are used in the response probabil-
ity model to describe the empirical characteristics 
of the response categories of each item. Design 
vectors aij, (i = 1,...,I; j = 1,...,Ki), each of length 
p, which can be collected to form a design matrix 
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( )1 211 12 1 21 2, , , , , , , ,
I

T
K K IKA a a a a a a  =  define 

these linear combinations.
The multidimensional form of the model 

assumes that a set of D traits underlie the in-
dividuals’ responses. The D latent traits define 
a D‑dimensional latent space and the vector, 

( )1 2, , , ,D

′= θ θ θθ  represents the individuals’ 
positions in the D-dimensional latent space.

An additional feature of the model is the 
introduction of a scoring function that allows 
the specification of the score or ‘performance 
level’ that is assigned to each possible response 
category to each item. To do this we introduce 
the notion of a response score bijd which gives 
the performance level of an observed response 
in category j of item i in dimension d. The scores 
across D dimensions can be collected into a 
column vector ( )1 2, , , T

ik ik ik ikDb b bb = , and then 
again be collected into the scoring sub-matrix for 
item i, ( )1 2, , , T

i i i iDB b b b= , and then collected 
into a scoring matrix ( )1 2, , ,

TT T T
IB B B B=  for the 

whole test. (By definition, the score for a response 
in the zero category is zero, but other responses 
may also be scored zero).

The probability of a response in category j 
of item i is modelled as

( ) ( )
( )

1

exp
Pr 1; , , |

exp
i

ij ij
ij K

ik ik
k

b a
X A B

b a

θ ξ
ξ θ

θ ξ
=

+ ′
= =

+ ′∑
	 (2)

And for a response vector we have;

( ) ( ) ( ); | , exp ,f x q y q x q xé ù¢= +ë ûx x B A 	 (3)

with

( ) ( )
1

, exp ,T

z

y q x q x
-

ÎW

ì üï ïï ïé ù= +í ýê úë ûï ïï ïî þ
å z B A 	 (4)

where W is the set of all possible response vectors.

The Population Model

The item response model is a conditional 
model, in the sense that it describes the process 
of generating item responses conditional on the 
latent variable, q. The complete definition of the 

model, therefore, requires the specification of a 
density, fq(q; a) for the latent variable, q. We use a 
to symbolise a set of parameters that characterise 
the distribution of q. The most common practice 
when specifying uni-dimensional marginal item 
response models is to assume that the students 
have been sampled from a normal population 
with mean m and variance s2. That is:

( ) ( ) ( ) ( )2
1

2 2 2
2; ; , 2 exp ,

2
f fq

q m
q m s ps

s

- é ù-ê úº = -ê ú
ê úë û

q q a 	 (5)

or equivalently

q = m + E,	  (6)

where E - N(0,s2).
Adams, Wilson and Wu (1997) discuss how 

a natural extension of (5) is to replace the mean, 
m with the regression model, T

nY b  where Yn is a 
vector of u, fixed and known values for student 
n, and b is the corresponding vector of regression 
coefficients. For example, Yn could be constituted 
of student variables such as gender or socioeco-
nomic status. Then the population model for 
student n, becomes,

,T
n n nEq = +Y b 	 (7)

where we assume that the En are independently 
and identically normally distributed with mean 
zero and variance s2so that (7) is equivalent to:

( ) ( )
( ) ( )

1 22 2

2

; , b,   2

1exp ,
2

n n

TT T
n n n n

f q s ps

q q
s

Y

Y Y

−

θ =

 − − −  
b b 	 (8)

a normal distribution with mean T
nY b  and vari-

ance s2. If (8) is used as the population model then 
the parameters to be estimated are b, s2 and x.

The generalization needs to be taken one step 
further to apply it to the vector valued, q, rather 
than the scalar valued q. The extension results in 
the multivariate population model:

( ) ( )

( ) ( )

12 2; , ,   2

1exp ,
2

d
n n

T
n n n n

f p
--

=

é ù
ê ú- - -
ê úë û

W

W W−1

q q g å å

q g å q g 	(9)
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where g is a u ´ d matrix of regression coef-
ficients, S is a d ´ d variance-covariance matrix 
and Wn is a u ´ 1 vector of fixed variables. In 
PISA the Wn variables as referred to as condition-
ing variables.

Combined Model

In (10), the conditional item response model 
(6) and the population model (9) are combined 
to obtain the unconditional, or marginal, item 
response model

( ) ( ) ( )x x; ,   ; | ; , .f f f d= òx x, q
q

x g å x q q g å q 	(10)

It is important to recognize that under this model 
the locations of individuals on the latent variables 
are not estimated. The parameters of the model 
are g, S and x.

The procedures that are used to estimate the 
parameters of the model are described in Adams, 
Wilson and Wu (1997), and Adams, Wilson, and 
Wang (1997).

For each individual it is possible however 
to specify a posterior distribution for the latent 
variable. The posterior distribution is given by:

( )
( ) ( )

( )
( ) ( )

( ) ( )

; | ; , ,
; , , , |  

; , , ,

; | ; , ,
 .

; | ; , ,
n

n n n n
n n n

n n

n n n n

n n n n

f f
h

f

f f

f f

=

=
ò

x

x

x

x

x W
W x

x W

x W

x W

q
q

q

q
q

x q q g å
q x g å

x g å

x q q g å

x q q g å 	(11)

Application To PISA

In PISA this model has been used in three 
steps:
•	 national calibrations;
•	 international scaling; and
•	 student score generation.
For both the national calibrations and the inter-
national scaling the conditional item response 
model (3) is used in conjunction with the popula-
tion model (9), but conditioning variables are not 
used. That is, it is assumed that students have been 
sampled from a multivariate normal distribution.

For PISA 2000 the model was a five-
dimensional model, made up of three reading 
dimensions, one science and one mathematics 

dimension. The design matrix was chosen so 
that the partial credit model was used for items 
with multiple score categories and the simple 
logistic model was fitted to the dichotomously 
scores items.

National Calibrations

The national calibrations were performed 
separately country-by-country using unweighted 
data. The results of these analyses were used to 
monitor the quality of the data and to make deci-
sions regarding national item treatment.
•	 an item was deleted from PISA if it had poor 

psychometric characteristics in more than 8 
countries.

•	 an item would be regarded as not-adminis-
tered in particular countries if it had poor psy-
chometric characteristics in that country, but 
functions well in the vast majority of others.

•	 an item that has sound characteristics in 
each country but shows substantial item-by-
country interactions may be regarded as a 
different (for scaling purposes) item in each 
country (or in some subset of the countries). 
That is, the difficulty parameter will be free 
to vary across countries.2

Note that both the second and third options 
above have the same impact on comparisons be-
tween countries. That is, if an item is identified 
as behaving differently in one country than in 
others, then choosing either the second or third of 
the above options will have the same impact on 
inter-country comparisons. The choice between 
the second or third options could, however, influ-
ence within-country comparisons.

When reviewing the national calibrations 
particular attention was paid to the fit of the items 
to the scaling model, item discrimination and 
item-by-country interactions.

International Calibration

International item parameters were set by 
applying the conditional item response model 
(3) in conjunction with the multivariate popula-
tion model (9), without the use of conditioning 

2   No decisions of this type were taken in PISA 2000.
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variables to a sub-sample of students. This sub-
sample of students, referred to as the international 
calibration sample, consisted of 500 students 
drawn at random from each of the participating 
OECD countries. 

Student Score Generation

As with all item response scaling models 
the proficiencies (or measures) of each student 
are not observed. The proficiencies are missing 
data that must be inferred from the observed item 
responses.

There are a number of possible alternative ap-
proaches for inferring these missing proficiencies. 
In PISA, we have used two approaches: maximum 
likelihood, using Warm’s (1985) weighted estima-
tor (WLEs), and plausible values (PVs).
•	 The WLE proficiency is the proficiency that 

makes the score that the student attained 
most likely.

•	 The PVs are a selection of likely proficiencies 
for students that attained each score.

Computing Maximum Likelihood Estimates  
in PISA

In PISA 2000, six weighted likelihood es-
timates were provided for each student, one for 
each of mathematics literacy, reading literacy and 
scientific literacy and one for each of three reading 
literacy sub-scales.3

Weighted maximum likelihood ability es-
timates (WLE; Warm, 1985) are produced by 
maximising (3) with respect to qn, that is, solving 
the likelihood equations

( )
( )1

=1

ˆexp
 0,

2ˆexp

i

ni i

K
ij ij nd nd ij nd

ix K
d D i j nd

ik nd nd ik
k

s J
Is

q

qÎ ÎW =

æ öæ ö ÷ç ÷ç ÷÷ç ç ÷¢ ÷+ç ç ÷÷ç ç ÷÷ç ç ÷- + =÷ç ÷ç ÷ç ÷ç ÷ ÷ç ÷ç ¢+ ÷÷ç ç ÷÷ç ÷ç ÷ç è øè ø

å å å
å

b b a
b

b a

x

x
	(12)

for each case, where x̂  are the item parameter 
estimates obtained from the international calibra-
tion and d indicates the latent dimensions. Ind is 
the test information for student n on dimension d 
and Jnd the first derivative with respect to theta.

3   Note that in PISA 2003 weighted likelihood estimates 
were not provided since, unlike plausible values, they could 
not be estimated for all sampled students.

These equations are solved using a routine 
based on the Newton-Raphson method.

Plausible Values

Using item parameters anchored at their 
estimated values from the international calibra-
tion plausible values are random draws from 
the marginal posterior of the latent distribution, 
(9), for each student. For details on the uses of 
plausible values the reader is referred to Mislevy 
(1991) and Mislevy et al. (1992).

For PISA the random draws from the mar-
ginal posterior distribution, (11), are taken as 
follows.

M vector-valued random deviates, { } 1
,M

mn m=
j  

from the multivariate normal distribution, 
( ), ,n nf W; ,q q g å  for each case n.4 These 

vectors are used to approximate the integral in 
the denominator of (11), using the Monte-Carlo 
integration

( ) ( )

1

; | ,

1 ( ; | ) .
M

mn
m

f f d

f
M =

» º Á

ò

å

x

x

x

x

,q
q

x q q g å q

x j 	 (13)

At the same time, the values

( ) ( ); | ; , ,mn n mn mn np f f= åx x Wθx j j g 	(14)

are calculated, so that we obtain the set of pairs 

1
,

M
mn

mn
m

p
=

æ ö÷ç ÷ç ÷Áè ø
j , which can be used as an ap-

proximation of the posterior density (11); and 
the probability that jnj could be drawn from this 
density is given by

1

.mn
nj M

mn
m

pq
p

=

=

å
	 (15)

At this point, L uniformly distributed random 
numbers, { } 1

L
i i
h

= , are generated; and for each 
random draw, the vector, jnj, that satisfies the 
condition

4   The value M should be large. For PISA we have used 2000.
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0 01

1 1

i i

sn i sn
s s

q qh
-

= =

< £å å 	 (16)

is selected as a plausible vector.
It is important to recognize that this approach 

to drawing the plausible values differs slightly 
from that implemented in NAEP. The NAEP pro-
cedures use an approximate method that is based 
on assuming that the posterior distribution (11) is 
normal (Beaton, 1987; Thomas and Gan, 1997).5

Constructing Conditioning Variables

The PISA conditioning variables are prepared 
using procedures based upon those used in the 
NAEP (Beaton, 1987) and the TIMSS (Macaskill, 
Adams and Wu, 1998).

The steps involved in this process are as 
follows:
Step 1:	 Each variable in the student question-

naire was dummy coded. This is under-
taken so that categorical variables can be 
used in the following steps and so that 
missing data can be included.

Step 2:	 For each country a principal components 
analysis of the dummy coded variables 
was performed and component scores 
were produced for each student. A suf-
ficient number of components to account 
for 90 per cent of the variance in the 
original variables were retained.

Step 3:	 Using item parameters anchored at their 
international location and conditioning 
variables derived from the national prin-
cipal components analysis the item re-
sponse model was fitted to each national 
data set and the national population 
parameters g, and S were estimated.6

Step 4:	 Five vectors of plausible values are 
drawn using the method described 
above.

5   Chang and Stout (1993) show that the posterior is as-
ymptotically normal. But as the number of items taken by 
individual students is often very small we do not believe it is 
an appropriate assumption to make in PISA.

6   In addition to the principal components gender, ISEI 
and school mean performance were added as conditioning 
variables.

The Analysis of Data with Plausible Values

It is very important to recognise that plau-
sible values are not test scores and should not 
be treated as such. Plausible values are random 
numbers that are drawn from the distribution of 
scores that could be reasonably assigned to each 
individual—that is from the marginal posterior 
distribution (11). As such the plausible values 
contain random error variance components and 
are not optimal as scores for individuals. The 
beauty of plausible values is that as a set they are 
better suited to describing the performance of the 
population than is a set of scores that are optimal 
at the individual student level.7

The plausible value approach, which was 
developed by Mislevy and Sheehan (1989) based 
upon the imputation theory of Rubin (1987), 
produces consistent estimators of population 
parameters provided that the imputation model 
is commensurate with the data analytic model.

Plausible values are intermediate values 
that are provided so that consistent estimates 
of population parameters can be obtained using 
standard statistical analysis software such as SPSS 
and SAS. As an alternative to plausible values, 
analyses can be completed using a package such 
as ConQuest (Wu, Adams and Wilson, 1997).

PISA provides five plausible values per scale 
or subscale. If an analysis is to be undertaken with 
one of these five cognitive scales then (ideally) 
the analysis should be undertaken five times, once 
with each of the five relevant plausible values 
variables. The results of these five analyses are 
averaged and then significance tests that adjust 
for variation between the five sets of results are 
computed.

More formally, suppose that r(q,Y) is some 
statistic that depends upon the latent variable 
and some other observed characteristic of each 
student. That is: (q,Y) = (q1,y1,q2,y2,...,qN,yN) where 
qN,yN are the values of the latent variable and 
the other observed characteristic for student n. 
Unfortunately qn is not observed, although we do 

7   Where optimal might be defined for example as either 
unbiased or minimising the mean squared error at the student 
level.
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observe the item responses, xn from which we can 
construct for each student, n, the marginal pos-
terior hq(qn;yn,x,g,S|xn). So that if hq(q;Y,x,g,S|X) 
is the joint marginal posterior for n = 1,...,N then 
we can compute:

( ) ( )

( ) ( )

* *

; , , , | .

r E r

r h dq

q

q

q q x g q

é ù= ê úë û

= åò

X,Y ,Y X,Y

,Y Y X 	 (17)

The computation of the integral in (17) can be 
accomplished using the Monte-Carlo method. If 
M random vectors (Q1,Q2,...,QM) are drawn from 
hq(q;Y,x,g,S|X) (17) is approximated by:

( ) ( )*

1

1

1

1 ˆ ,

M

m
m
M

m
m

r r
M

r
M

=

=

»

=

å

å

X,Y ,YQ

	 (18)

where m̂r  is the estimate of r computed using the 
mth set of plausible values.

From (17) we can see that the final estimate 
of r is the average of the estimates computed using 
each plausible value in turn. If Um is the sampling 
variance for m̂r  then the sampling variance of r* is:

( )* 11 MV U M B-= + + ,	 (19)

where 

*

1

1 M

m
m

U U
M =

= å

and 

( )2*

1

1 ˆ
1

M

M m
m

B r r
M =

= -
- å

.

An a-% confidence interval for r* is

( ) 1* 21
2r t Vu

aæ ö- ÷ç± ÷ç ÷÷çè ø

where tv(s) is the s percentile of the t-distribution 
with n degrees of freedom. 

( )

( )

22

1

1 ,
1

1
1

MM

M M

ff
M d

f M B V

u

-

=
-

+
-

= +

and d is the degrees of freedom that would have 
applied if qn had been observed. In PISA the value 
of d, will vary from country-to-country and will 
have a maximum possible value of 80.

Note that analyses based upon a single plau-
sible value will provide unbiased results (if the 
imputation model is correct), but will underesti-
mate the error variance since the measurement 
error component cannot be included.

Possible Issues with the Methodology

It was noted above that a plausible value 
approach would provide consistent estimates of 
population parameters if the imputation model 
that is used to generate the plausible values is 
commensurate with the data analytic model that-
There are many ways there may be an inconsis-
tency between the imputation and data analytic 
models, but there are few published studies that 
explore this issue. One example is Thomas (2000), 
which examines the influence of skewness in the 
latent distribution on the estimation of means, 
variances and percentiles.

In this paper we explore two ways in which 
the imputations and data analytic models may 
differ. First, the sampling model for PISA, and 
for most school-based studies, typically involves 
the use of schools as the primary sampling unit 
(selected with probability proportional to size) 
followed by random sampling of a fixed number 
of eligible students from each sampled school. 
Because the students are nested within schools, 
and in most education systems are not randomly 
assigned to schools, a two-level model will often 
be the appropriate method for data analysis. The 
population model underlying the plausible value 
generation (equation (8)) is a single-level model 
that does not recognise the hierarchical structure 
of the data.

Second, the conditioning variables used do 
not represent all possible variables that might 
be used as regressors in subsequent analysis. It 
does not, for example, include interactions be-
tween independent variables, nor does it include 
national variables that countries may add to the 
instrumentation.
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In following simulations we report the extent 
to which PISA results might be compromised by 
the failure of the conditioning model to deal with 
these two issues.

Simulations: One

The first set of simulations intends to analyse 
the effectiveness of different proficiency estima-
tors for use in recovering the decomposition of 
the sampling variance in the case of a cluster 
sampling design like that used in PISA. We 
compare four approaches. They are the usual 
maximum likelihood estimator (MLE), the WLE 
(or weighted likelihood estimator) described 
above, the expected a-posteriori estimator (EAP) 
and plausible values (PVs) (as described above).

Wu and Adams (2002) showed that estimates 
of the population mean computed using MLEs, 
WLEs, EAPs and PVs are not biased, but that es-
timates of population variance are underestimated 
if the EAP is used, overestimated if the MLE or 
WLE is used and correctly estimated with PVs.

In this first simulation we explore the effec-
tiveness of various estimators of the within- and 
between-school variance in a two stage, PISA-like 
design. The decomposition of variance into these 
components is important for at least two reasons. 
First, the relationship between these two variance 
components is often regarded as an important 
descriptive statistic. Second, these components 
may be needed to estimate the sampling variance 
of other statistics, such as the sampling mean.

In a two stage cluster design where a simple 
and random sample of schools is drawn from 
an infinite population of schools and equal size 
simple and random samples of students is drawn 
from infinite populations of students within each 
school, the sampling variance on the mean is 
equal to:

2 2
2
ˆ( ) ,b w

b b wn n nm
s s

s = +
´

	 (20)

where 2
bs  is the between cluster variance, (that 

is, the school variance), 2
ws  is the within-school 

variance, nb is the number of schools in the sample 
and nw the number of students per school. As 

this formula clearly shows, biased estimates of 
the cluster and within cluster variances will lead 
to biased estimates of the sampling variance on 
the mean.

Design of the simulation

As the reliability of the test might affect 
the estimation of the cluster and within cluster 
variance estimates and as the reliability is partly 
a function of the number of items in the test, 
the simulations were performed with different 
number of dichotomous items, respectively 3, 
20, 50 and 100.

The simulations were designed so that Con-
Quest (Wu, Adams and Wilson, 1997) generates 
for each simulation and for each replicate a sam-
ple of 80 schools and for each school, a sample of 
25 students. This gives a total of 2000 students.

For data generation the between-school vari-
ance was set at 0.4 and the within-school variance 
was set at 0.6 and item parameters were randomly 
generated from a uniform distribution with mini-
mum –2.0 and maximum 2.0. After generation 
the mean of the item parameters was set at zero.

The number of replicates for each of the four 
simulations was chosen to ensure a standard error 
of 0.005 on the estimator of the population mean 
based upon plausible values. The number of rep-
licates was set at 276 for a test of three items, to 
223 for a test of 20 items, to 219 for a test of 50 
items and finally to 2138 for a test of 100 items. 
The difference in the number of replicates reflects 
the variation in the measurement error depending 
on the number of items included in the tests.

For each replicate the item and person pa-
rameters were generated as above and then item 
response vectors that conformed to the dichoto-
mous Rasch model were generated. The marginal 
Rasch model (10) was then estimated from the 
data and MLE, WLE, EAP and PVs were com-
puted for each case.9

8   Due to time constraints, the simulation with conditioning 
for a test of 100 items is based on 150 replications.

9   Both data generation and estimation were undertaken with 
a new version on of the ConQuest software, which provides 
a wide variety of data generation and simulation features. 
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Note that, in this first set of four simulations 
conditioning variables were not used. To emulate 
the PISA procedures a second set of simulations 
was then run with school mean of the student la-
tent proficiencies used as a conditioning variable. 

For each simulation, the mean and the 
variance of the different type of estimates were 
computed. The between-school variance and the 
within-school variance were also computed for 
each replicate using SAS PROC MIXED (Littell, 
Milliken, Stroup, Wolfinger, 1999). 

Most of our results are presented in terms 
of the means of the between-school and within-
school variance estimates across replications. The 
variation across replicates of the between-school 
and within-school variances is used to estimate 
their respective sampling distribution errors.

We have used z-tests to compare the differ-
ence of mean of the estimates with the generat-
ing values—namely, 0.4 for the between-school 
variance and 0.6 for the within-school variance.10 

Results

Table 1 presents the means of the between-
school variance estimates for each type of 
proficiency estimates and for each of the eight 
simulations and tests of their differences from 
the generating values. The first five rows show 
results for the simulations without conditioning 
and the following three rows show the results with 
conditioning. The MLE and WLE results are not 
affected by the choice of conditioning variables.

10   The large degrees of freedom for the variance estimates 
means they should be very closely to normally distributed 
under the null hypothesis. 

The MLEs underestimate the between-school 
variance with a test of 3 items but overestimate 
the school variance once the test contains a larger 
number of items. The WLEs underestimate the 
between-school variance with a test of 3 items 
but appear to do a reasonable job when there are 
20 items or more.

It should be noted that these conclusions 
are only valid for the conditions of these simula-
tions—that is, an intraclass correlation of 0.4 and 
clusters of 25. While it is not expected that the 
number of schools in the sample would directly 
affect the bias of the estimates,11 it is expected that 
a reduction of the within school sample size or a 
modification of the intraclass correlation would 
influence the bias. The bias should be inversely 
proportional to the number of students selected 
per school.

The EAP and Plausible values, whether the 
estimates are based on one plausible value (PV1) 
or the mean estimates of 5 Plausible Values (5PV) 
clearly underestimate the school variances. The 
bias appears to be proportional to the number of 
items in the test, in other words, to the reliability 
of the test. EAP and PVs behave in a similar way. 
The school estimates are on average identical.

The EAP and PVs school variance estimates 
that were generated by conditioning on the latent 
proficiency estimates are all unbiased, even with 
a test of three items. 

Table 2 presents the means of the within-
school variance estimates for each type of 
proficiency estimate and for each of the eight 

11   Unless the school sample is be very small.

Table 1
Means of the Between-School Variance Estimates
	 3 items	 20 items	 50 items	 100 items

	 Mean	 Z	 Mean	 z	 Mean	 z	 Mean	 z

MLE	 0.327	 –19.50	 0.445	 8.75	 0.415	 3.14	 0.407	 1.36
WLE	 0.272	 –38.08	 0.399	 –0.16	 0.399	 –0.25	 0.399	 –0.26
EAP	 0.050	 –305.74	 0.241	 –50.06	 0.320	 –20.19	 0.356	 –10.51
PV1	 0.049	 –270.72	 0.241	 –48.37	 0.319	 –20.43	 0.356	 –10.30
5 PV	 0.050	 –242.12	 0.241	 –47.24	 0.320	 –19.95	 0.356	 –9.99
EAP With Conditioning	 0.392	 –1.57	 0.399	 –0.38	 0.393	 –1.47	 0.397	 –0.47
PV1 With Conditioning	 0.393	 –1.50	 0.397	 –0.76	 0.392	 –1.49	 0.397	 –0.53
5PV With Conditioning	 0.392	 –1.44	 0.398	 –0.51	 0.392	 –1.48	 0.397	 –0.49
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simulations and tests of their differences from the 
generating values. As Table 2 shows, most of the 
within school variance estimates are substantially 
biased. The upward bias in the MLE and WLE 
based estimates of the total variance (Wu and 
Adams, 2001) mostly affect the within-school 
variance estimates. As was observed for the total 
variance the bias is a function of the reliability 
of the test. For instance, the mean of the WLE 
between-school variance estimates is equal to 
0.75 for a test of 50 items. The EAP, with or 
without conditioning, systematically underesti-
mate the within school variance while the EAP 
with conditioning recovers the school variance. 
Finally, plausible values without conditioning 
overestimate the within-school variance. This 
result is not unexpected, as the plausible value 
methodology provides unbiased estimates of the 
total variance and as the between-school variance 
is substantially underestimated the within-school 
variance must be overestimated. The best esti-
mates of the within-school variance are based 
on plausible values generated with conditioning 

on the latent proficiency school means. In this 
case the normalized difference with the expected 
values seems to indicate a slight overestimation.

Table 3 summarises the estimation of the re-
lationship between the two variance components. 
It does so by reporting the intraclass correlation 
coefficients. As the generating between-school 
variance was 0.4 and the generating within-school 
variance was 0.6, the generating intraclass cor-
relation is equal to 0.4.

MLEs, WLEs, EAPs and PVs generated 
without conditioning systematically underesti-
mate the intraclass correlation. The bias appears 
to be directly related to the reliability of the test, 
but as noted previously, other parameters like 
the expected intraclass correlation or the within 
school sample size should also influence the bias. 
Nevertheless, these two other parameters should 
not change the relationship between the reliability 
of the test and the size of the bias.

In the introduction of the first set of simula-
tions, the importance of reliably estimating the 

Table 2
Means of the Within-School Variance Estimates
	 3 items	 20 items	 50 items	 100 items

	 Mean	 Z	 Mean	 z	 Mean	 z	 Mean	 z
MLE	 2.037	 130.38	 1.010	 151.68	 0.753	 82.57	 0.672	 38.74
WLE	 1.711	 71.83	 0.901	 125.19	 0.722	 69.78	 0.659	 32.43
EAP	 0.302	 –71.63	 0.537	 –30.57	 0.576	 –14.35	 0.588	 –6.70
PV1	 0.947	 43.16	 0.762	 58.85	 0.683	 42.84	 0.643	 21.91
5 PV	 0.948	 42.04	 0.763	 54.45	 0.682	 38.16	 0.643	 20.90
EAP With Conditioning	 0.151	 –161.99	 0.407	–106.39	 0.505	 –61.91	 0.555	 –22.99
PV1 With Conditioning	 0.615	 2.18	 0.606	 2.52	 0.604	 2.19	 0.608	 4.13
5PV With Conditioning	 0.612	 1.85	 0.606	 2.46	 0.604	 2.00	 0.609	 4.47

Table 3
Intraclass Correlation Estimates
	 3 items	 20 items	 50 items	 100 items

MLE	 0.138	 0.306	 0.355	 0.377
WLE	 0.137	 0.307	 0.356	 0.377
EAP	 0.141	 0.310	 0.357	 0.377
PV1	 0.049	 0.240	 0.318	 0.356
5 PV	 0.050	 0.240	 0.319	 0.356
EAP With Conditioning	 0.722	 0.495	 0.437	 0.417
PV1 With Conditioning	 0.390	 0.396	 0.394	 0.395
5PV With Conditioning	 0.391	 0.396	 0.394	 0.395
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between-school and within-school variance for 
estimating the sampling variance on the mean 
for instance, was mentioned. The results reported 
here show that plausible values can provide un-
biased estimates of the school and within-school 
variances if conditioning on the school mean 
is implemented. Neither the MLEs, WLEs, nor 
EAPs can be used for this purpose. If the between-
school or the within-school variances are biased, 
one might therefore expect biases in the sampling 
variance on the mean estimates. To express the 
importance of the bias, the ratio of the standard 
error estimate on the mean estimate to the stan-
dard error was computed.12 This ratio was then 
multiplied by 1.96 and the a-error computed. If 
the sampling variance estimate is unbiased, a will 
be equal to 0.05. If the sampling variance on the 
mean is underestimated, a will be greater than 
0.05. This means that the null hypothesis will be 
more often rejected than it should be. Values lower 
than 0.05 mean that the null hypothesis will be 
less often rejected than expected. One might be 
pleased with this latter outcome but on the other 
hand, it increases the Type 2 error, that is accept-
ing the null hypothesis when it is false.

Table 4 presents the Type 1 error per simula-
tion per type of proficiency estimate. The biggest 
biases are associated with EAP and PV generated 
without conditioning on the school mean of the 
latent proficiency. As the sampling variance on a 

12   Strictly speaking one is interested in the ratio of the 
estimate of the combined sampling and measurement error 
variance to the between replication variance. This may mean 
that the following results are based on ratios that are very 
slight underestimated for the PVs.

mean for a cluster sample mainly depends on the 
cluster variance, these results reflect the important 
underestimation of the cluster variance and it 
demonstrates the importance of the condition-
ing. As the EAPs generated with conditioning 
properly estimate the between-school variance 
but systematically underestimate the within-
school variance, the Type 1 error is only slightly 
overestimated. PVs with conditioning seem the 
most appropriate, as this type of estimates can 
recover both variance in a satisfactory way. Fi-
nally, while MLEs and WLEs proved to provide 
poor estimates of the variances, and one might 
have expected large inconsistencies in Table 4 for 
these estimates, clearly this is not the case. As the 
bias is mostly located at the within-school level, 
type 1 error for MLE and especially for WLE are 
quite acceptable. 

Simulations: Two

A national or an international assessment, 
such as PISA, does not only focus on the estima-
tion of the proficiency mean for a population or 
a set of populations. Policy makers may use the 
outcomes of the assessment to initiate educational 
reforms supposed to improve the quality and the 
equity of the educational system.

Therefore, student proficiency estimates are 
usually related to some student background or 
behavioral characteristics or with some teacher 
or school features. In this context, it is important 
to ensure that the estimates based upon student 
proficiency estimates are good estimates of the 
relationship that exists between the latent profi-
ciency and the school or student characteristics.

Table 4
Type 1 Error Rates
	 3 items	 20 items	 50 items	 100 items

MLE	 0.054	 0.036	 0.045	 0.048
WLE	 0.079	 0.047	 0.049	 0.050
EAP	 0.454	 0.123	 0.078	 0.064
PV1	 0.374	 0.117	 0.077	 0.063
5 PV	 0.373	 0.117	 0.076	 0.063
EAP With Conditioning	 0.057	 0.053	 0.053	 0.051
PV1 With Conditioning	 0.052	 0.051	 0.052	 0.051
5PV With Conditioning	 0.052	 0.050	 0.052	 0.051
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As student proficiency estimates are con-
taminated by measurement error, it is well known 
that the first order correlation between student 
proficiency estimates and any school or student 
characteristics is biased towards zero (eg Guil-
ford, 1954; Fuller, 1987). 

Suppose Y is a variable measured without 
error and q is a second variable measured with 
error by q̂  then if q̂ = q + e  and ( )ˆcov , 0q e =  
then it is easy to show that an unbiased estimate 
of the correlation between Y and q is given by:

ˆ

ˆ ˆ

Y
Y

r
r

r
q

q

qq

= 	 (21)

where ˆYr
q  is the observed correlation between Y 

and q̂ , ˆ ˆr
qq is the reliability of q̂ , that is 

2

ˆ ˆ 2
ˆ

.r q
qq

q
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s
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While these conditions hold for the WLE and 
MLE they do not hold for the EAP. In the case 
of the EAP, the estimated value and the error, e, 
are correlated. However Wu and Adams (2002) 
show that for the EAP a result analogous to (21) 
holds if ˆ ˆr

qq
 is given by

2
ˆ

ˆ ˆ 2 .r q
qq

q

s

s
=

The second simulation intends to examine 
how well the different types of student proficiency 
estimates recover the latent correlation between 
the student proficiency and another characteristic.

As Guilford pointed out, the bias in the cor-
relation estimate will depend on the reliability of 
the instrument. Therefore, as above, simulations 
were based on 3, 20, 50 and 100 items. 

Simple random samples of 2000 students 
were drawn from a normal latent population 
distribution with a mean of zero and a standard 
deviation of one. The number of replicates used 
for the first simulation was used for the second 
one. So the results presented below are based on 
276 replicates for a test of 3 items, 223 for a test 

of 20 items, 220 for a test of 50 items are 21313 
for a test of 100 items.

Results

The observed correlations and correlation 
estimates corrected for attenuation are provided 
for these simulations in Table 5. The reliability 
of the MLE and WLE used for the dissatenuation 
are defined as:

ˆ ˆ 2
ˆ

1 .r
qq

q
s

= 	 (22)

For the EAP the dissattentuation was computed 
using:

2
ˆ ˆ ˆ .r
qq q

s= 	 (23)

The reliability of the plausible values was 
estimated as the mean of the 10 correlations be-
tween the five PVs. The average correlation was 
computed by using the Fisher transformation. 
Table 5 presents the average of the correlation 
coefficient estimates14 with their standardized dif-
ference between the correlation and the expected 
value of 0.30.15 

As expected, MLE, WLE, EAP and plausible 
values without conditioning provide biased esti-
mates of the latent correlation. The bias is also 
proportional to the reliability of the test.

The correction for attenuation appears to 
work less well for the MLE than for WLE. Indeed, 
with a test of 20 items or higher, the correlation 
estimate corrected for attenuation is not signifi-
cantly different from the generating value while 
more than fifty items seems necessary to provide 
an unbiased estimate of the latent correlation 
with MLE. This is likely due to the outward bias 
in MLEs.

13   Due to time constraints, the simulation for a test of 100 
items is based on 202 replications with no conditioning, 135 
replications with conditioning. 

14   The Fisher transformation was firstly applied to the 
correlation estimates. The mean of the transformed correla-
tions was computed and then the inverse transformation was 
applied.

15   The Fisher transformation was also used to test the dif-
ference with the expected value.
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The correction for attenuation is best for EAP 
estimated without conditioning. Even with a test 
of 3 items, the correlation estimate is unbiased. 
On the other hand, the correction for attenuation 
does not work for plausible values generated 
without conditioning.

On average, the MLE, WLE and EAP corre-
lation estimates appear to be identical. This result 
is not surprising, as in the case of a complete test 
design, MLE, WLE and EAP each associate a 
common estimate (in logits) to each possible raw 
score. Nevertheless, as the interval between two 
possible logit scores from one type of estimate to 
another one does not depend on a linear relation-
ship, slight differences will be observed between 
the correlation estimates.

Plausible values with conditioning provide 
unbiased estimates of the latent correlation, 
regardless the number of items in the test. On 
the other hand, due to the underestimation of the 
total variance, and more specifically the underes-
timation of the residual variance, EAP estimates 
systematically overestimate the latent correlation. 
As the bias of the residual variance is a function 
of the reliability, then the product of the observed 
correlation by the reliability appears to be a satis-
factory way of correcting this overestimation. We 
have not however yet proved this result. In our 
example, this would give correlation estimates of 

0.280, 0.297 and 0.299 respectively for a test of 
3, 20 and 50 items. 

Discussion and Conclusion

In the PISA 2000 international database, two 
types of proficiency estimates were included: 
Weighted Maximum Likelihood Estimates and 
Plausible Values. Each student who took part in 
the assessment has at least results on the combined 
reading scale and the three reading subscales (re-
trieving information, interpreting and reflecting) 
and about 5/9 of the assessed students students 
also have proficiency estimates in mathematics 
and/or in science.

With an average test length of 60 items, it 
follows that student proficiency estimates for the 
reading subscales, the mathematics scale and the 
science scale are based on a small set of items 
(typically between 15 and 20). 

As the database is currently widely used for 
secondary analysis, it is important to ensure that 
the type of proficiency estimates returned mini-
mises the risk of bias.

PISA 2000 data were collected through a 
complex sampling design. In most cases, schools 
were firstly drawn and then students were ran-
domly selected. Goldstein (1987), Bryk and 
Raudenbush (1992) brought to our attention the 
importance of recognising the hierarchical struc-

Table 5
Means of Correlation estimates 
	 3 items	 20 items	 50 items	 100 items

	 Mean	 Z	 Mean	 z	 Mean	 z	 Mean	 z

MLE	 0.176	 –99.88	 0.262	 –30.75	 0.283	 –14.40	 0.291	 –6.59
WLE	 0.175	 –100.87	 0.262	 –30.28	 0.283	 –14.25	 0.292	 –6.53
EAP	 0.176	 –99.91	 0.263	 –29.47	 0.283	 –14.09	 0.292	 –6.43
PV1	 0.105	 –160.76	 0.230	 –52.00	 0.268	 –26.97	 0.283	 –13.06
5 PV	 0.105	 –146.51	 0.231	 –51.95	 0.268	 –26.58	 0.283	 –12.61
MLE corrected 	 0.272	 –14.15	 0.316	 9.30	 0.306	 4.46	 0.304	 2.35 
   for attenuation
WLE corrected 	 0.248	 –26.81	 0.299	 –0.66	 0.300	 0.16	 0.301	 0.49 
   for attenuation
EAP corrected 	 0.299	 –0.49	 0.299	 –0.88	 0.299	 –0.69	 0.300	 –0.28 
   for attenuation
PV1 corrected 	 0.178	 –62.70	 0.261	 –25.73	 0.283	 –13.43	 0.291	 –6.51 
   for attenuation
EAP With Conditioning	 0.478	 47.68	 0.339	 24.61	 0.317	 12.88	 0.309	 5.86
PV1 With Conditioning	 0.298	 –1.01	 0.298	 –1.43	 0.301	 0.40	 0.300	 0.32
5PV With Conditioning	 0.297	 –1.18	 0.299	 –0.51	 0.300	 0.26	 0.300	 0.15
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ture of the data. The first simulation has shown 
that the hierarchical structure of the data needs to 
be taken into account not only when secondary 
analyses are performed but also when student 
proficiency estimates are generated. The results 
show the superiority of the plausible values with 
conditioning for recovering the between-school 
and within-school variances.

The second simulation compares the ef-
ficiency of the different types of estimates for 
recovering a latent correlation. It appears that 
WLE will provide unbiased estimates if the test 
has at least about 20 items. But this correlation 
needs to be attenuated and users of the database 
might not be aware of this requirement. Plausible 
values allow the users to safely avoid this correc-
tion. Nevertheless, the generation of plausible 
values requires a careful conditioning; otherwise 
their superiority will be limited to the estimation 
of the total variance and percentiles.
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