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Discontinuous Galerkin Methods

• Main idea
– Finite-element discretization
– Same discontinuous polynomial approximations for the

• Test functions ϕh and 
• Trial functions δϕ

– Definition of operators on the interface trace:
• Jump operator:
• Mean operator:

– Continuity is weakly enforced, such that the method
• Is consistent
• Is stable
• Has the optimal convergence rate
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Discontinuous Galerkin Methods

• Discontinuous Galerkin methods vs Continuous
– More expensive (more degrees of freedom)
– More difficult to implement
– …

• So why discontinuous Galerkin methods?
– Weak enforcement of C1 continuity for high-order equations

• Strain-gradient effect
• Shells with complex material behaviors
• Toward computational homogenization of thin structures?

– Exploitation of the discontinuous mesh to simulate dynamic 
fracture [Seagraves, Jérusalem, Noels, Radovitzky, col. ULg-MIT]:

• Correct wave propagation before fracture
• Easy to parallelize & scalable
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Discontinuous Galerkin Methods

• Continuous field / discontinuous derivative
– No new nodes
– Weak enforcement of

C1 continuity
– Displacement formulations 

of high-order differential 
equations

– Usual shape functions in 3D (no new requirement)
– Applications to

• Beams, plates [Engel et al., CMAME 2002; Hansbo & Larson, CALCOLO 2002; Wells 

& Dung, CMAME 2007]

• Linear & non-linear shells [Noels & Radovitzky, CMAME 2008; Noels IJNME 
2009]

• Damage & Strain Gradient [Wells et al., CMAME 2004; Molari, CMAME 2006; 
Bala-Chandran et al. 2008]
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Topics

• Key principles of DG methods
– Illustration on volume FE

• Kirchhoff-Love Shell Kinematics
• Non-Linear Shells
• Numerical examples
• Conclusions & Perspectives
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Key principles of DG methods

• Application to non-linear mechanics 
– Formulation in terms of the first Piola stress tensor P

&

– New weak formulation obtained by integration by parts on
each element Ω 

e
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Key principles of DG methods

• Interface term rewritten as the sum of 3 terms
– Introduction of the numerical flux h

• Has to be consistent:

• One possible choice:
– Weak enforcement of the compatibility

– Stabilization controlled by parameter β, for all mesh sizes hs

– These terms can also be explicitly derived from a variational 
formulation (Hu-Washizu-de Veubeke functional)

Noels & Radovitzky, IJNME 2006 & JAM 2006
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Key principles of DG methods

• Numerical applications
– Properties for a polynomial approximation of order k

• Consistent, stable for β >Ck, convergence in the e-norm in k
• Explicit time integration with conditional stability
• High scalability

– Examples
Taylor’s impact Wave propagation

Time evolution of the free face velocity
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Kirchhoff-Love Shell Kinematics

• Description of the thin body

• Deformation mapping

• Shearing is neglected

& the gradient of thickness stretch   neglected
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Kirchhoff-Love Shell Kinematics

• Resultant equilibrium equations:
– Linear momentum

– Angular momentum

– In terms of resultant stresses:       

of resultant applied tension        and torque

and of the mid-surface Jacobian
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Non-linear Shells

• Material behavior
– Through the thickness integration by Simpson’s rule
– At each Simpson point

• Internal energy W(C=FTF) with 

• Iteration on the thickness ratio in order to reach 
the plane stress assumption σ33=0

– Simpson’s rule leads to the 

resultant stresses:
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Non-linear Shells

• Discontinuous Galerkin formulation
– New weak form obtained from the momentum equations
– Integration by parts on each element A e

– Across 2 elements δt is discontinuous
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Non-linear Shells

• Interface terms rewritten as the sum of 3 terms
– Introduction of the numerical flux h

• Has to be consistent:

• One possible choice:

– Weak enforcement of the compatibility

– Stabilization controlled by parameter β, for all mesh sizes hs

Linearization leads to the
material tangent modulii Hm
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Non-linear Shells

• New weak formulation

• Implementation
– Shell elements

• Membrane and bending responses 
• 2x2 (4x4) Gauss points for bi-quadratic 

(bi-cubic) quadrangles
– Interface elements

• 3 contributions
• 2 (4) Gauss points for quadratic (cubic) meshes
• Contributions of neighboring shells evaluated at these points
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Numerical examples

• Pinched open hemisphere 
– Properties:

• 18-degree hole
• Thickness 0.04 m; Radius 10 m
• Young 68.25 MPa; Poisson 0.3

– Comparison of the DG methods 
• Quadratic, cubic & distorted el.

with literature 
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Numerical examples

• Pinched open hemisphere 
Influence of the stabilization Influence of the mesh size

parameter

– Stability if β > 10
– Order of convergence in the L2-norm in k+1
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Numerical examples

• Plate ring 
– Properties:

• Radii 6 -10 m
• Thickness 0.03 m
• Young 12 GPa; Poisson 0

– Comparison of DG methods 
• Quadratic elements

with literature 

A

Bδ zA, 16x3 bi-quad. el.
δ z

B
, 16x3 bi-quad. el.

δ z
A
, Sansour, Kollmann 2000

δ z
B
, Sansour, Kollmann 2000

δ zA, Areias et al. 2005
δ zB, Areias et al. 2005




Department of Aerospace and Mechanical Engineering

Numerical examples

• Clamped cylinder        
– Properties:

• Radius 1.016 m; Length 
3.048 m; Thickness 0.03 m

• Young 20.685 MPa; Poisson 
0.3

– Comparison of DG methods 
• Quadratic & cubic elements

with literature 
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Conclusions & Perspectives

• Development of a discontinuous Galerkin framework for 
non-linear Kirchhoff-Love shells
– Displacement formulation (no additional degree of freedom)

• Strong enforcement of C0 continuity
• Weak enforcement of C1 continuity

– Quadratic elements:
• Method is stable if β ≥ 10
• Reduced integration (but hourglass-free)

– Cubic elements:
• Method is stable if β ≥ 10
• Full Gauss integration (but locking-free)

– Convergence rate:
• k-1 in the energy norm
• k+1 in the L2-norm
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Conclusions & Perspectives

• Perspectives
– Next developments:

• Plasticity 
• Dynamics …

– Full DG formulation 
• Displacements and their derivatives discontinuous
• Application to fracture

– Application of this displacement formulation to computational 
homogenization of thin structures


