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Abstract

Control laws to synchronize attitudes in a swarm of fully actuated rigid bodies, in the absence of a common reference attitude
or hierarchy in the swarm, are proposed in [31, 19]. The present paper studies two separate extensions with the same energy
shaping approach: (i) locally synchronizing the rigid bodies’ attitudes, but without restricting their final motion and (ii) relaxing
the communication topology from undirected, fixed and connected to directed, varying and uniformly connected. The specific
strategies that must be developed for these extensions illustrate the limitations of attitude control with reduced information.
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1 Introduction

Coordination is a common requirement in applications
involving robotic swarms or formations [5, 14, 4, 30,
9, 29]; understanding basic coordination mechanisms is
the subject of ongoing research [5, 24, 32]. Controlling a
swarm of three-dimensional rigid bodies such that their
orientations become asymptotically equal is called atti-
tude synchronization. Its main use is in satellite forma-
tions [7, 16, 35, 12, 3, 11], e.g. for the Darwin mission, a
space interferometer project under study by NASA and
ESA, or for on-orbit assembly [7, 16]. Operational re-
quirements focus on accuracy near equilibrium [1]. The
present paper focuses on convergence from arbitrary ini-
tial orientations with limited information. This is proba-
bly most relevant for deployment or recovery. Each rigid
body is assumed fully actuated and called an agent.

A first main constraint limits communication links
among agents. Under this constraint, [35, 12] consider
attitude synchronization coupled to the tracking of a
common external reference. Alternatively, [3, 11] syn-
chronize attitudes in a leader-follower approach.
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The qualifier “autonomous” refers to a second main con-
straint in the present paper: there is no hierarchy in the
swarm and no external reference tracking. Autonomous
operation in multi-agent systems is well motivated. It
can increase robustness, since synchronization does not
rely on permanent communication of a common refer-
ence, nor on the health of a potential leader. Also, it can
stabilize the formation without interfering with its ab-
solute motion. When orientation in inertial frame is not
relevant (e.g. in assembly), this additional freedom may
lower costs; in other cases, it builds a swarm that behaves
more like a single body than a set of individual agents.
The autonomous setting relies on the global Lie group
structure of orientation manifold SO(3). Therefore the
popular unitary quaternion representation, containing
two elements for each point of SO(3), cannot be used.

Control laws for autonomous attitude synchronization
are designed in [31, 19] with energy shaping. The present
paper extends them in two separate ways.

1. In [31, 19], the dissipative control term, based on angu-
lar velocities, imposes the final motion of the swarm.
By only using relative angular velocities between
agents, the present paper obtains a swarm behaving
like a single rigid body: any synchronized free rigid
body motion is a solution for the controlled swarm.

2. The results in [31, 19] are valid for fixed, undirected
communication topologies. Inspired by consensus
strategies on compact Lie groups [26, 28], the present
paper uses auxiliary variables to allow directed and
time-varying communication topologies.
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Both extensions illustrate difficulties encountered when
reducing available information. The limitations of “rela-
tive dissipation” show the difficulty to control a system
whose dynamics just have configuration symmetry with
a controller that has configuration and velocity sym-
metry; this illustrates the relevance of formal reduction
techniques [6]. With limited communication, it is well-
known that for more than local synchronization, the non-
convexity of compact Lie groups requires new strategies
as compared to simple vector space algorithms [18].

The paper is organized as follows. Section 2 formalizes
the problem and reviews the main result of [31, 19]. Sec-
tion 3 presents extension 1 and Section 4 extension 2.

2 Problem setting and previous results

Orientations of N rigid bodies with respect to an inertial
frame are represented by rotation matrices Qk ∈ SO(3),
k = 1...N . Their motion follows Euler’s equations

QT
k

d
dt

Qk = [ωk]∧ (1)

Jk
d
dt

ωk = [Jkωk]∧ ωk + τk (2)

where Jk = diag(Jk1, Jk2, Jk3) is the moment of inertia
matrix of agent k, ωk ∈ R3 its angular velocity and
τk ∈ R3 its control torque; these are all expressed in body
frame and Jk1 ≥ Jk2 ≥ Jk3 without loss of generality.
Torque and velocity in inertial frame are Qkτk and Qkωk.
Matrix transpose is denoted ·T , and [·]∧ is defined by
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such that a × b = [a]∧b, ∀a, b ∈ R3 with × the vector
product. The inverse of [·]∧ is denoted [·]∨ : so(3) → R3.
The objective is to design τk, k = 1...N such that Q1 =
... = QN asymptotically, under two main constraints.

1. (communication) Communication links among agents
are restricted to the edges of a communication graph
G; “j sends information to k” is denoted j  k.

2. (autonomy) Agents use no external reference; avail-
able information is expressed relative to body frame.

References [31, 19] solve this problem with energy shap-
ing: “shape” the potential and kinetic energy of a sys-
tem to make the desired state a stable equilibrium; con-
trol torques implement the “shaped” energy. Early work
uses artificial potentials for robotic navigation and ob-
stacle avoidance [10, 25]. Spacecraft control uses poten-
tial [15] and kinetic [2] energy shaping. Potential shap-
ing is used in [13] for stabilization of rigid bodies in
SE(3). Energy shaping is used for synchronization of
mechanical system networks in [20] and applied to net-
works on SO(3) and SE(3) in [31, 19, 6]. Kinetic en-
ergy shaping can transform any principal axis into the

short axis [31, 19]; this part is ignored here for simplifi-

cation. djk :=
√

3 − trace(QT
k Qj) characterizes the dis-

tance between Qk and Qj , and (djk)2 is smooth. There-
fore [31, 19] use artificial potential

V = σ
2

∑

k

∑

j k trace(QT
k Qj) , σ < 0 (3)

whose global minimum is attitude synchronization. V
can have local minima when G is not a tree or complete
graph [26]. For G undirected (i.e. j  k ⇔ k  j), the
conservative control torques only depend on the relative
orientations QT

k Qj of agents j  k with respect to k:

τ
(P )
k = −[gradQk

(V )]∨ = −σ
∑

j k

[QT
k Qj−QT

j Qk]∨. (4)

Write τk = τ
(P )
k + τ

(D)
k , energy H = T + V with ki-

netic energy T =
∑

k Tk =
∑

k
1
2ωT

k Jkωk, and angular

momentum M =
∑

k QkJkωk. d
dt

H =
∑

k ω T
k τ

(D)
k and

d
dt

M =
∑

k Qkτk. When τ
(D)
k = 0, attitude synchroniza-

tion with rotation around the short axis is (Lyapunov)

stable. Asymptotic stability requires τ
(D)
k to decrease H .

[19] exponentially stabilize this rotation when V con-
tains an additional term aligning the short axis with a
specific direction in inertial space; this does not satisfy
autonomy. An alternative torque satisfying autonomy is

with τ
(P )
k from (4), τ

(D)
k = −γ ωk , γ > 0 (5)

as in [23], for which H decreases till ωk = 0 ∀k. This
asymptotically stabilizes attitude synchronization with
zero velocity.

3 Extension 1: relative angular velocities

Dissipation (5), although it preserves symmetry with
respect to orientation of the agents (autonomy con-
straint), imposes their motion. A dissipative term pre-
serving motion symmetry should drive agent velocities
towards each other instead of towards 0, comparing
Qkωk to the Qjωj (inertial frame), or equivalently ωk to
the QT

k Qjωj (body frame). The corresponding torque is

τ
(D)
k = γ

∑

j k

(QT
k Qjωj − ωk) , γ > 0 . (6)

Attitude synchronization is more difficult with (6) than
with (5) because the τk only influence relative velocities,
while the rigid body dynamics still depend on ωk; indeed,
the nonlinearity of (2) with respect to ωk cannot be re-
duced. The study of mechanical systems that are invari-
ant with respect to configuration symmetries, but still
depend on the associated velocities, is the subject of re-
duction techniques – see [6] for a discussion about SO(3)
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and SE(3). The following result illustrates typical diffi-
culties caused by the remaining velocity in the dynamics.
The proof also illustrates the difficulty to obtain results
without resorting to formal reduction techniques.

Theorem 1 Consider G fixed, undirected and connected

and control τk = τ
(P )
k +τ

(D)
k with τ

(D)
k defined by (6) and

τ
(P )
k = −[gradQk

(V )]∨, where V is a bounded potential.

(a) Regardless of V , for any initial conditions, velocities
in inertial frame Qkωk asymptotically synchronize.

(b) For identical rigid bodies (Jk = J ∀k) and V defined by
(3), angular momentum M is conserved. Given Mmax,
there exists σ∗ < 0 (depending on N , J , G and Mmax)
such that for |σ| > |σ∗|, the set of free rigid body mo-
tions with synchronized attitudes Qk(t) = Qj(t) ∀j, k
and ‖M‖ ∈ (0, Mmax) is locally asymptotically stable.

PROOF. (a) d
dt

H =
∑

k ω T
k τ

(D)
k

= γ
∑

k

∑

j k ω T
k (QT

k Qjωj − ωk)

= γ
∑

k

∑

j k (Qkωk)T (Qjωj − Qkωk)

= −γ (Ωa)T (L ⊗ I3)Ω
a

where Ωa is the 3N -vector containing all Qkωk and L⊗I3

is the Kronecker product of the Laplacian 1 L of G with
the 3×3 identity matrix. For undirected graphs, L is pos-
itive semidefinite; its kernel reduces to x = (c c c...c)T ,
c ∈ R, if and only if G is connected. Thus H decreases un-
less all Qkωk are equal. Orientations evolve in a compact
set where V is bounded, and H is radially unbounded in
the non-compact dimension corresponding to velocities.
Therefore a LaSalle argument proves that the swarm
converges to an invariant set where Qkωk = Qjωj ∀j, k,

under the dynamics (1),(2) with τk = τ
(P )
k .

(b) Conservation of M is equivalent to
∑

k Qkτk = 0
which is easy to verify. For synchronization of the Qk,
the proof is in two steps. First, show that given a neigh-
borhood W ∋ (Q1...QN , ω1...ωN ) of the set SM∗ of
free rigid body motions with synchronized attitudes
Qk(t) = Qj(t) ∀j, k and total angular momentum
‖M∗‖ < Mmax, there exist |σ1| and a neighborhood U
of SM∗ such that starting in U implies staying in W if
|σ| > |σ1|. Then show that there exist |σ2| and a neigh-
borhood W1 of SM∗ such that for |σ| > |σ2|, solutions

of (1),(2) with identical Qkωk and τk = τ
(P )
k as in (4)

that stay in W1 are necessarily in SM0
, where M0 is the

initial angular momentum of the system. Then taking
W = W1 and |σ∗| > max(|σ1|, |σ2|) concludes the proof.

For the first part, recalling (djk)2 = 3−trace(QT
k Qj), let

W = {(Q1...QN , ω1...ωN ) : (djk)2 < ε ∀k, j and ‖M −

1 The Laplacian of a graph has entries lkj = −1 if j  k
and lkj = 0 otherwise for j 6= k; lkk = −

P

j 6=k
lkj .

M∗‖ < δ}. If E is the number of edges in G,

1
2

∑

k

∑

j k(3 − trace(QT
k Qj)) = 3E − V (t)/σ < ε

(the factor 1
2 comes from counting each distance twice) is

sufficient for a solution starting with ‖M−M∗‖ < δ to be
in W at time t. Since H decreases, for t ≥ 0, T (t)+V (t) ≤
T (0)+V (0) so V (t)−V (0) ≤ T (0)−T (t) ≤ T (0). Hence
if |σ| > |σ1|, then (V (0) − V (t))/σ ≤ T (0)/|σ1| and so

3E − V (t)/σ ≤ (3E − V (0)/σ) + T (0)/|σ1| .

Choose a neighborhood U1 ⊆ W of SM∗ such that
maxk‖QkJωk −

M∗

N
‖ < β

N
‖M∗‖, for some β > 0. Initial

conditions in U1 imply T (0) < ‖M∗‖2

2J3N
(1+β)2. Then tak-

ing (assuming actual M∗ unknown) |σ1| >
M2

max

εJ3N
(1+β)2

ensures T (0)/|σ1| < ε
2 . Also define U2 such that

3E − V (0)/σ < ε/2. Then with initial conditions in
U = U1 ∩ U2, the system stays in W for t ≥ 0.

The second part involves more calculations, which will
not all be detailed. Denote the final common velocity

by Qkωk = Ω(t) ∀k; note that ‖Ω‖ ≤ ‖M‖
NJ3

. The time
derivative of Ω = Qkωk along solutions of the closed-loop
system is (note that d

dt
(QT

k Qj) = 0 when Qkωk = Qjωj)

d
dt

Ω =−σ QkJ−1 ∑

l k [QT
k Ql − QT

l Qk]∨

+ QkJ−1QT
k [QkJQT

k Ω]∧ Ω (7)

which must hold ∀k. Denoting the first and second terms
of the right side of (7) by (7a)k and (7b)k respectively,

‖(7a)k − (7a)j‖
2 = ‖(7b)k − (7b)j‖

2 (8)

∀k, j. The right side of (8) is bounded by (calculations)

‖(7b)k − (7b)j‖
2 ≤

16J2
1

J2
3

‖Ω‖4 (djk)2 .

Thus the same bound must hold for the left side of (8),

‖(7a)k − (7a)j‖
2 ≤

16J2
1

J2
3

‖Ω‖4 (djk)2 .

Summing the last condition over all k, j, using conser-
vation of M and linearizing leads to (calculations)

2σ2λ 3
2

J 2
1

(d2
max + O( d4

max)) ≤
16J 2

1 E ‖M∗‖4

J 6
3

N2 d2
max

+ O(d3
max) (9)

where λ2 > 0 is the second-smallest eigenvalue of the
Laplacian L of G and d2

max denotes the maximal value
of (djk)2 among all pairs of connected agents. Choosing
W1 such that the higher-order terms represent less than
γ1 < 1 and γ2 < 1 respectively on the left and right side
of (9), the condition becomes

d2
max ≤

8J 4
1 E

(1−γ1)(1−γ2)J 6
3

λ3
2

‖M∗‖4

σ2 d2
max . (10)

Taking σ2 > (σ2)
2 :=

8J 4
1 E M4

max

(1−γ1)(1−γ2)J 6
3

λ3
2

, (10) can only be

satisfied if d2
max = 0 ⇔ Qk = Qj ∀k, j. 2
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Several comments are in order about Theorem 1.

• Theorem 1(a) still holds for time-varying (uniformly
connected) and directed, but balanced graphs 2 be-
cause xT Lx is still non-negative in this case.

• When the swarm is synchronized, all control torques
τk vanish. Hence, the (unimposed) motion of the syn-
chronized swarm can be any free rigid body motion.

• Theorem 1(b) is a local result. However, simulations
indicate a large basin of attraction U . The proof con-
tains three conditions for U . Conditions with δ and β
basically impose ‖M‖ lower and upper bounded and
‖ωk‖ upper bounded; for “infinite σ”, this still allows
almost any initial condition. The critical constraint is
with ε chosen to bound high order terms in (9). For
“infinite σ” relevant high-order terms are on the left;
they are like sin2(θ)− θ2 around θ = 0. Then it is suf-
ficient that all Qk are inside a geodesic ball of radius
π/2, also the maximal convex set of SO(3). This is
consistent with synchronization being the only mini-
mum of V for all Qk in a convex set.

• The bound on |σ| reflects that the controller must
overcome unknown “perturbations” [Jωk]∧ωk. Sliding
mode control like gradk(V )/‖gradk(V )‖ is similar to
“infinite σ” near synchronization. However, the result-
ing chattering depends on controller parameters, and
ωk-dependent bounds will still be required to stay in
a neighborhood of synchronization where the “pertur-
bations” do not desynchronize the system. This even
gets more difficult since d

dt
M 6= 0 and d

dt
H � 0.

• With no condition on σ, there are situations arbitrar-
ily close to synchronization but from which it is never
reached. Take two agents A and B synchronized and
rotating around e3 with velocity Ω, where e1, e2, e3 de-
note principal axes of J1 > J2 > J3. Now (see Figure
1), with respect to this synchronized state, A and B
are tilted by φ and −φ respectively around e2, with
φ arbitrarily small; they still rotate with QAωA =
QBωB = Ω around the axis aligned with the initial
synchronized e3, which now makes an angle φ with ac-
tual axes e3A and e3B. Then [Jωk]∧ωk pulls A and B

further apart, while τ
(P )
k pulls them together. For a

particular ratio ‖Ω‖2/σ, both effects exactly cancel.
• In [8], general forms for relative dissipation are pro-

posed based on reduction techniques; they require that
consecutive Poisson brackets of allowed torques re-
store full rank, which is not the case here.

4 Extension 2: directed and varying graphs

The previous algorithms require fixed, undirected
graphs. “Consensus algorithms”, see [34, 18, 21], glob-
ally synchronize variables in vector spaces with directed
and time-varying graphs. Therefore, [26] embeds SO(3)
in R3×3 and builds a consensus algorithm for auxiliary

2 A directed graph is balanced when at each node, the num-
ber of incoming edges equals the number of outgoing edges.

66
Ω

⊗e2 A = e2 B

(towards back)

�����
e1 A

XXXXX
e1 B

�
�
�
�
�
��e3 B

C
C
C
C
C
CCe3 A

φ
φ

Fig. 1. Two rigid bodies in a situation from which (4),(6) do
not synchronize attitudes for small σ. All vectors lie in the
same plane, except e2 A = e2 B perpendicular to the page.

variables Yk ∈ R3×3; Qk tracks the projection of Yk on
SO(3) such that synchronizing Yk implies synchronizing
Qk. Here [26] is extended to mechanical system (1),(2).

The consensus algorithm is, in inertial frame,

d
dt

Yk = β
∑

j k (Yj − Yk) , β > 0 (11)

or equivalently in body frames with Xk = QT
k Yk

d
dt

Xk = β
∑

j k (QT
k QjXj − Xk) − [ωk]∧Xk (12)

for k = 1...N . Projection and tracking is implented with
artificial potential

V = σ
∑

k trace(QT
k Yk) , σ < 0 . (13)

Indeed, the distance from Yk to Q ∈ SO(3) in R3×3 is

‖Yk − Q‖2 = trace((Yk − Q)T (Yk − Q))

= 3 + trace(Y T
k Yk) − 2 trace(QT

k Yk) .

The resulting torque is

τk = −σ [Xk − XT
k ]∨ + τ

(D)
k , k = 1...N . (14)

Controller (12),(14) only involves variables in body
frame (autonomy) but, unlike extension 1, contains ωk.
Cost is added to store, update and exchange the Xk.

Theorem 2 For G uniformly connected 3 , attitude syn-
chronization with ωk = 0 ∀k is almost globally asymptot-
ically stable for (1),(2) with controller (12),(14),(5).

PROOF. The Yk evolve under (11) independently of
the agents’ motions. Hence classical consensus results
(e.g. [18]) ensure their exponential convergence to a com-
mon constant Y∞ for G uniformly connected. The Y∞

3 [18]: G is uniformly connected if there exist an agent k, and
time periods T, ∆ > 0 such that, ∀t, there is a directed path
from k to all other agents in the union of all edges appearing
at least during ∆ time units in the interval [t, t + T ].
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such that v(Q) := σ trace(QT Y∞) has several minimiz-
ers on SO(3), are non-generic [26]; the following assumes
that v(Q) has a unique minimizer Q∗ = ProjSO(3)(Y∞).

From the previous paragraph, (1),(2),(14),(5) form an
asymptotically autonomous system where agents are de-
coupled; the limiting (autonomous) system is obtained
by replacing Xk with QT

k Y∞. Solutions of an asymp-
totically autonomous system converge to a chain recur-
rent set of the limiting system [17]. A point x in state
space is chain recurrent if and only if it belongs to the
intersection of all locally asymptotically stable sets con-
taining the positive limit set L+(x) of x [22]. The lim-
iting system for k is of the “shaped energy” form with
H bounded below and d

dt
H = −γ ‖ωk‖

2. A LaSalle ar-
gument on H as for Theorem 1(a) shows that the pos-
itive limit set L+(x) for the autonomous system of any
point x := (Qk, ωk) only contains equilibria xe, where
ωk = 0 and Qk is at a critical point of v(Qk); the set
of equilibria is denoted by E . Any x ∈ E is chain recur-
rent. For x /∈ E , define µ := maxy∈L+(x)(H(y)) < H(x)

and S := {y : H(y) ≤ µ}. S contains L+(x) but not x,
since H(y) < H(x) for any y ∈ L+(x) when x /∈ E . For
any Y∞, v(Qk) takes a finite number of values at critical
points [26]. Then there exists ν > µ such that H(y) ∈
(µ, ν) ⇒ y /∈ E . Choose an ε-neighborhood Sε of S and
define ρ = miny∈(SO(3)×R3)\Sε

(H(y)) > µ. Select a δ-
neighborhood Sδ of S where H(y) < min({ν, ρ}). Start-
ing in Sδ ensures staying in Sε so S is locally stable; every
point of Sδ must converge to a point of E∩Sδ ⊆ E∩S so S
is locally asymptotically stable. Thus S is an asymptot-
ically stable set containing L+(x) but not x. Then from
[22], non-equilibrium points are not chain recurrent: the
autonomous system’s chain recurrent set reduces to the
critical points of v(Qk). For a generic Y∞, the latter con-
tain the unique minimum Q∗ and three unstable points
[26]. All solutions starting outside these three points and
their stable manifolds converge to Qk = Q∗. 2

Theorem 2 deserves the following comments.

• Unstable solutions that do not converge to synchro-
nization are (i) situations where ProjSO(3)(Y∞) is not

unique; (ii) a few unstable critical points of V in (13).
• The choice Xk(0) = αk I3 with αk ∈ R+ ∀k avoids

unnecessary transients when the Qk(0) are close.
• Embedding SO(3) in R3×3 uses 9-dimensional Xk. In

fact, the 3-dimensional SO(3) can be embedded in
R3×2 by only retaining the first two columns of Qk. It
is even possible to embed SO(3) in R5 [33].

• The proof of Theorem 2 uses vector space consensus
in cascade with projection and tracking for the actual
system. [26] applies this to first-order integrators. [27]
consider (1),(2) with “consensus tracking”; “energy
shaping” control is expected to be more robust.

• Dissipation (5) forces 0 final velocities. It is tempting
to combine extensions 1 and 2 to obtain global conver-

gence without restricting final motion. Unfortunately

this is not easy, independently of τ
(D)
k , because the

final motion is dictated by Q∗ = Proj(Y∞) and (11)
leads to a constant Y∞. Different adaptations have
been explored in simulation, with no conclusive result.

5 Conclusion

This paper presents two extensions of results in [31,
19] for rigid body attitude synchronization with limited
communication links and no external reference.

A first controller avoids imposing the final motion of the
swarm. For fixed, undirected, connected communication
graphs, angular velocities globally synchronize. Asymp-
totic attitude synchronization is local and requires adap-
ting the strength of the interaction potential to the initial
total angular momentum. These limitations illustrate
difficulties, in accordance with insights of formal reduc-
tion techniques [6], encountered when using controllers
with configuration and velocity symmetry for mechani-
cal systems that just have configuration symmetry.

A second controller achieves almost-global attitude syn-
chronization for time-varying and directed graphs, at
the cost of introducing auxiliary variables that commu-
nicating agents exchange; connectedness can be relaxed
to the union of all links appearing in a fixed time span.

Combining both extensions remains speculative. Future
work could add actuator constraints to the communi-
cation constraints. Also, similar proofs can likely be re-
peated for mechanical systems on other Lie groups.
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